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Abstract

For any p ∈ (1,∞), we construct p-energies and the corresponding p-energy
measures on the Sierpiński carpet. A salient feature of our Sobolev space is the self-
similarity of energy. An important motivation for the construction of self-similar
energy and energy measures is to determine whether or not the Ahlfors regular
conformal dimension is attained on the Sierpiński carpet. If the Ahlfors regular
conformal dimension is attained, we show that any optimal Ahlfors regular measure
attaining the Ahlfors regular conformal dimension must necessarily be a bounded
perturbation of the p-energy measure of some function in our Sobolev space, where
p is the Ahlfors regular conformal dimension. Under the attainment of the Ahlfors
regular conformal dimension, the (1, p)-Newtonian Sobolev space corresponding to
any optimal Ahlfors regular metric and measure is shown to coincide with our
Sobolev space with comparable norms, where p is the Ahlfors regular conformal
dimension.

Keywords: Sierpiński carpet, Sobolev space, Ahlfors regular conformal dimension,
Loewner space
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1 Introduction and main results

The goal of this work is to construct and investigate properties of (1, p)-Sobolev space,
p-energy and p-energy measures on the Sierpiński carpet. Our (1, p)-Sobolev space can be
considered to be an analogue of W 1,p(Rn) on Euclidean space, the p-energy of a function f
is an analogue of

´
Rn |∇f|

p(x) dx, and the p-energy measure of a function f is an analogue
of the measure A 7→

´
A
|∇f|p(x) dx. Similar (1, p)-Sobolev spaces were constructed in

recent works of Kigami and the second-named author but much of the results there only
apply to the case p > dimARC, where dimARC is the Ahlfors regular conformal dimension
[Shi+, Kig23].

Our approach and that of [Shi+, Kig23] goes back to the construction of Brownian
motion on the Sierpiński carpet by Kusuoka and Zhou [KZ92]. The Dirichlet form cor-
responding to the Brownian motion on the Sierpiński carpet is a special case of p-energy
when p = 2. The idea behind defining a p-energy of a function f on a metric space (X, d)
is to approximate a metric space by a sequence of graphs {Gn = (Vn, En) : n ∈ N} on a
sequence of increasingly finer scales and to consider a sequence of discrete approximations
Mnf : Vn → R of the function f : X → R. Consider the discrete p-energies,

EGnp (Mnf) =
∑

{x,y}∈En

|(Mnf)(x)− (Mnf)(y)|p.

We then choose a sequence {rn : n ∈ N} of re-scaling factors rn ∈ (0,∞) so that the
quantities lim supn→∞ rnEGnp (Mnf), lim infn→∞ rnEGnp (Mnf), and supn∈N rnEGnp (Mnf) are
comparable uniformly for all integrable functions f . The existence of such a sequence
rn is guaranteed by analytic properties on the sequence of graphs Gn such as bounds on
capacity and Poincaré inequality. The Sobolev space is then defined as

Fp :=
{
f ∈ Lp

∣∣∣ sup
n∈N

rnEGnp (Mnf) <∞
}
.

To describe our results, we prepare some notations of the Sierpiński carpet (see Definition
8.1 for details) and its approximations. The Sierpiński carpet K is the invariant set of
eight contraction maps {Fi}i∈{1,...,8}, where each contraction Fi maps the square [−1, 1]2

to one of nine divided identical squares with side length 2/3 except for the central one, i.e.
Fi(x) = 3−1(x− qi) + qi for some qi ∈ R2 and K =

⋃
i∈{1,...,8} Fi(K). Let Vn = Sn denote
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Figure 1.1: The planar Sierpiński carpet and its approximation graphs {Gn}. (G1 and
G2 are drawn in blue.)

the set of words of length n over the alphabet S = {1, 2, . . . , 8}. For w = w1 · · ·wn ∈ Vn,
we set Fw := Fw1 ◦ Fw2 ◦ · · · ◦ Fwn . Let Gn = (Vn, En) be the graph whose vertex set is
the set of words Vn with n-alphabets and the edge set is defined by

En = {{u, v} : u, v ∈ Vn, Fu(K) ∩ Fv(K) 6= ∅}.

The sequence of graphs Gn, n ∈ N approximate the Sierpiński carpet K (see Figure 1.1).

We now describe how to approximate a function on K by a function on Gn. To
this end, we equip K with the Euclidean metric d and the self-similar Borel probability
measure m on K such that m(Fw(K)) = 8−n for all w ∈ Vn, n ∈ N. For n ∈ N, we define
the discrete approximation operators Mn : Lp(K,m)→ RVn as

(Mnf)(u) :=
1

m(Fu(K))

ˆ
Fu(K)

f dm, for all u ∈ Vn.

For any p ∈ (1,∞), we show the existence of an exponent ρ(p) ∈ (0,∞) and some constant
C ∈ (1,∞) such that

sup
n∈N

ρ(p)nEGnp (Mnf) ≤ C lim sup
n→∞

ρ(p)nEGnp (Mnf) ≤ C2 lim inf
n→∞

ρ(p)nEGnp (Mnf)

for all f ∈ Lp(K,m). This implies that each of the three expressions in the above
display are uniformly comparable up to multiplicative constants. One of them, say
supn∈N ρ(p)nEGnp (Mnf) could be a considered as a candidate p-energy. However, we would
like to construct an improved p-energy Ep : Fp → [0,∞) that is comparable to the above
candidate p-energy but satisfies desirable properties such as self-similarity, Lipschitz con-
tractivity, and strong locality that the above candidate need not satisfy. The definitions
of these properties are included in the statement of Theorem 1.1. For f ∈ Lp(K,m), by
suppm[f ] we denote the support of the measure f dm. The following theorem describes
the definition and basic properties of our Sobolev spaces.

Theorem 1.1 (Construction of (1, p)-Sobolev space and p-energy). Let p ∈ (1,∞) and let
(K, d,m) be the Sierpiński carpet equipped with the Euclidean metric and the self-similar
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measure described above. Then there exists ρ(p) ∈ (0,∞) such that the normed linear
space (Fp, ‖ · ‖Fp) defined by

Fp :=

{
f ∈ Lp(K,m)

∣∣∣∣ ˆ
K

|f|p dm+ sup
n∈N

ρ(p)nEGnp (Mnf) <∞
}
,

and

|f|Fp :=

(
sup
n∈N

ρ(p)nEGnp (Mnf)

)1/p

, ‖f‖Fp := ‖f‖Lp(m) + |f|Fp ,

satisfies the following properties.

(i) (Fp, ‖ · ‖Fp) is a reflexive separable Banach space.

(ii) (Regularity) Fp ∩ C(K) is a dense subspace in the Banach spaces (Fp, ‖ · ‖Fp) and

(C(K), ‖ · ‖∞).

Furthermore, there exist C ≥ 1 and Ep : Fp → [0,∞) satisfying the following:

(iii) Ep( · )1/p is a semi-norm satisfying C−1|f|Fp ≤ Ep(f)1/p ≤ C|f|Fp for all f ∈ Fp.

(iv) (Uniform convexity) Ep( · )1/p is uniformly convex.

(v) (Lipschitz contractivity) For any f ∈ Fp and 1-Lipschitz map ϕ ∈ C(R), we have
ϕ ◦ f ∈ Fp and Ep(ϕ ◦ f) ≤ Ep(f).

(vi) (Spectral gap) It holds that

‖f − fK‖pLp(m) ≤ CEp(f) for all f ∈ Fp,

where fK :=
´
K
f dm is the m-average of f . In particular,

{f ∈ Fp : Ep(f) = 0} = {f ∈ Lp(K,m) : f is constant m-a.e.}. (1.1)

(vii) (Strong locality) If f, g ∈ Fp satisfy suppm[f ]∩suppm[g−a1K ] = ∅ for some a ∈ R,
then Ep(f + g) = Ep(f) + Ep(g).

(viii) (Self-similarity) For any f ∈ Fp, we have f ◦ Fi ∈ Fp for all i ∈ S and

Ep(f) = ρ(p)
∑
i∈S

Ep(f ◦ Fi). (1.2)

Furthermore, Fp ∩ C(K) = {f ∈ C(K) | f ◦ Fi ∈ Fp for all i ∈ S}.

(ix) (Symmetry) Let D4 denote the dihedral group of isometries of K. For any f ∈ Fp
and Φ ∈ D4, we have f ◦ Φ ∈ Fp and Ep(f ◦ Φ) = Ep(f).
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We compare the above result with earlier results in [Shi+, Kig23]. Theorem 1.1 was
previously known only in the case p > dimARC(K, d), where dimARC(K, d) ∈ (1,∞) is the
Ahlfors regular conformal dimension [Shi+] (we recall the definition of Ahlfors regular
conformal dimension in Definition 1.6). Similar to this work, Kigami uses an approach
based on discrete energies and introduces a conductive homogeneity condition under which
the Sobolev space was constructed [Kig23]. However much of the results apply only to
the case p > dimARC(K, d) as the author points out “Regrettably, we do not have much
for the case p ≤ dimARC(K, d)” in [Kig23, p. 8]. In particular, Theorem 1.1 answers a
question of Kigami [Kig23, §6.3, Problem 1] for the Sierpiński carpet which asks for the
property (ii) above. This property is known as regularity in the theory of Dirichlet form
[FOT, p. 6].

The difficulty in the case p ≤ dimARC(K, d) is due to the fact that the Sobolev space
contains discontinuous functions. If p > dimARC(K, d), there is a version of Morrey’s
embedding theorem which makes the analysis easier. Recently Cao, Chen and Kumgai
show that under the conductive homogeneity condition, the Sobolev space constructed
by Kigami contains discontinuous functions if and only if p ≤ dimARC(K, d) [CCK23+].
Another difficulty is that the conductive homogeneity condition of [Kig23] (or its analogue
‘knight move condition’ in [Shi+]) was not obtained on the Sierpiński carpet if p ≤
dimARC(K, d). The Poincaré inequality for graphs Gn shown in our work (Theorem 4.2)
implies these conditions when p ≤ dimARC(K, d) for the Sierpiński carpet. We do not show
them because their proofs are technical. Our approach only relies on Poincaré inequality
and certain upper bounds on capacity across annulus on the sequence of graphs Gn.

As we will see in Theorem 1.4, the value of ρ(p) in Theorem 1.1 is uniquely determined
by the above properties. If ρ(p) were larger, the Sobolev space Fp would only consist of
constant functions violating property (ii). If ρ(p) were smaller, then the resulting p-energy
would be too small to satisfy property (vi).

Our next result is the existence of energy measures. To motivate energy measure,
let us consider the following question: what information does the energy measure contain
about a function? In the primary example on Rn, the p-energy measure of a function
f ∈ W 1,p(Rn) is the measure A 7→

´
A
|∇f(x)|p dx. By considering the Radon-Nikodym

derivative of the energy measure with respect to Lebesgue measure, we see that the
energy measure contains the same information as |∇f| up to sets of Lebesgue measure
zero, were ∇f is the distributional gradient of f . A generalization of |∇f| is given by
the minimal p-weak upper gradient in the theory of Newton-Sobolev space [HKST]. In
these settings, the energy measure is always absolutely continuous with respect to the
reference measure. In the setting of diffusion on fractals, the energy measure (for p = 2)
is typically singular with respect to the reference measure [Hin05, KM20]. As we will
see in Theorem 1.7, not requiring the p-energy measure to be absolutely continuous with
respect to the reference measure is useful as the reference measure might not be suited to
express energies and also because the energy measure might satisfy better properties such
as the Loewner property. Based on the above analogy, we think of our energy measures as
containing similar information about the function as the minimal p-weak upper gradient
in the setting of Newton-Sobolev spaces.
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Let us describe the construction of energy measure. Following an idea of Hino [Hin05],
we use the self-similarity property of the p-energy to construct our p-energy measure. To
describe it, we let Σ = SN be the set of all infinite words in the alphabet S equipped
with the product topology. Recall that the canonical projection χ : Σ → K is defined to
satisfy {χ(ω)} =

⋂
n∈N(Fw1 ◦ · · · ◦Fwn)(K) for any ω = (w1, w2, · · · ) ∈ Σ. For w ∈ Sn, let

Σw ⊂ Σ be the set of infinite words whose beginning n alphabets coincide with w. For any
function f ∈ Fp, self-similarity of the p-energy Ep(·) and Kolmogorov’s extension theorem
guarantees the existence of a measure mp〈f〉 on Σ such that mp〈f〉(Σw) = ρ(p)nEp(f ◦Fw)
for all w ∈ Sn, n ∈ N. The energy measure is then defined to be the pushforward
measure Γp〈f〉 := χ∗(mp〈f〉). Our next theorem shows the existence of energy measure
corresponding to self-similar energy and describes some of its basic properties.

Theorem 1.2 (Existence of p-energy measure). Let p ∈ (1,∞) and let (K, d,m) be the
Sierpiński carpet. Let (Ep,Fp) be the p-energy in Theorem 1.1. There exists a family of
Borel finite measures {Γp〈f〉}f∈Fp on K satisfying the following:

(i) For any f ∈ Fp, we have Γp〈f〉(K) = Ep(f) and

Γp〈f〉(Fw(K)) = ρ(p)nEp(f ◦ Fw) for all w ∈ Sn, n ∈ N.

(ii) (Triangle inequality) For any Borel set A of K, Γp〈 · 〉(A)1/p is a semi-norm on Fp.

(iii) (Lipschitz contractivity) If f ∈ Fp and ϕ ∈ C(R) is 1-Lipschitz, then Γp〈ϕ◦f〉(A) ≤
Γp〈f〉(A) for any Borel set A of K.

(iv) (Self-similarity) For any n ∈ N and f ∈ Fp,

Γp〈f〉 = ρ(p)n
∑
w∈Sn

(Fw)∗
(
Γp〈f ◦ Fw〉

)
.

(v) (Symmetry) For any f ∈ Fp and Φ ∈ D4, we have Φ∗
(
Γp〈f〉

)
= Γp〈f ◦ Φ〉.

(vi) (Chain rule and strong locality) For any Ψ ∈ C1(R) and f ∈ Fp ∩ C(K),

Γp〈Ψ ◦ f〉(dx) = |Ψ′(f(x))|pΓp〈f〉(dx).

If f, g ∈ Fp ∩ C(K) and A ∈ B(K) satisfy (f − g)
∣∣
A

= a · 1A for some a ∈ R, then
Γp〈f〉(A) = Γp〈g〉(A).

We describe another approach to defining Sobolev space motivated by a work of
Korevaar and Schoen [KoSc]. This work describes classical Sobolev spaces in terms of
Besov–Lipschitz spaces at the critical exponent (also called Korevaar-Schoen space). On
a metric space (X, d), we denote by Bd(x, r) = {y ∈ X : d(x, y) < r} the open ball
centered at x ∈ X and radius r > 0. Our next result identifies our Sobolev space ob-
tained using rescaled discrete energies in Theorem 1.1 as the critical Besov-Lipshitz or
Korevaar-Schoen type space with comparable seminorms.



Sobolev spaces on the Sierpiński carpet 7

Definition 1.3. Let (X, d) be a connected metric space with #X ≥ 2 and let m be a
Borel-regular measure on X such that m(Bd(x, r)) ∈ (0,∞) for any x ∈ X, r > 0. For
p ∈ (1,∞) and s > 0, the Besov–Lipschitz space Bs

p,∞ = Bs
p,∞(X, d,m) is defined as

Bs
p,∞ :=

{
f ∈ Lp(X,m)

∣∣∣∣ sup
r∈(0,diam(X,d)]∩R

ˆ
X

 
Bd(x,r)

|f(x)− f(y)|p

rsp
m(dy)m(dx) <∞

}
.

Korevaar and Schoen show the coincidence W 1,p(Rn) = B1
p,∞(Rn, d, λ) where d is the

Euclidean metric and λ is the Lebesgue measure [KoSc, Theorem 1.6.2]. Furthermore
there exists C ∈ (0,∞) such that the distributional gradient ∇f of any function f ∈
W 1,p(Rn) satisfies

C−1

ˆ
Rn
|∇f|p dλ ≤ sup

r∈(0,∞)

ˆ
Rn

 
Bd(x,r)

|f(x)− f(y)|p

rp
λ(dy)λ(dx) ≤ C

ˆ
Rn
|∇f|p dλ.

This result was later extended to spaces satisfying doubling property and Poincaré in-
equality by Koskela and MacManus [KoMa, Theorem 4.5]. In these settings, it turns out
that the exponent s = 1 is critical in that for every s > 1 every function f ∈ Bs

p,∞ is
constant almost everywhere and for every s ≤ 1, the space Bs

p,∞ contains non-constant
functions. This motivates the definition of the critical exponent for Besov–Lipschitz space

sp := sup{s > 0 : Bs
p,∞ contains non-constant functions} (1.3)

and the Korevaar-Schoen space as the critical Besov–Lipschitz space B
sp
p,∞. This approach

to define Sobolev space was recently proposed by Baudoin [Bau22+]. Our next result is
that the Sobolev spaces defined using rescaled discrete energies coincides with the one
defined using critical Besov–Lipschitz space with comparable seminorms. Furthermore,
we describe the scaling constant ρ(p) in Theorem 1.1 in terms of the critical scaling
exponent for Bs

p,∞.

Theorem 1.4 (Self-similar Sobolev space is a Korevaar-Schoen space). Let (K, d,m)
be the Sierpiński carpet. Let Fp, |·|Fp , ρ(p) be the Sobolev space, seminorm and scaling

constant respectively as given in Theorem 1.1. Set dw(p) := log(8ρ(p))
log 3

and

Jp,r(f) :=

ˆ
K

 
Bd(x,r)

|f(x)− f(y)|pm(dy)m(dx) for each f ∈ Lp(K,m) and r > 0.

Then, there exists C ≥ 1 such that

C−1|f|pFp ≤ lim inf
r↓0

r−dw(p)Jp,r(f) ≤ sup
r>0

r−dw(p)Jp,r(f) ≤ C|f|pFp for all f ∈ Lp(K,m),

and dw(p)/p = sp. In particular, Fp(K, d,m) = B
dw(p)/p
p,∞ (K, d,m) and

sup
r>0

r−dw(p)Jp,r(f) ≤ C2 lim inf
r↓0

r−dw(p)Jp,r(f) for all f ∈ Lp(K,m). (1.4)
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This result was previously obtained under the additional assumption p > dimARC(K, d).
The above result answers a question of F. Baudoin as he asks if (1.4) is true for the
Sierpiński carpet [Bau22+]. Recently, Yang also proves (1.4) for generalized Sierpiński
carpets in the case p > dimARC [Yan+, Theorem 2.8]. If (1.4) were true, then [Bau22+] ob-
tains number of useful consequences such as Sobolev embeddings and Gagliardo-Nirenberg
inequalities. Our notation dw(p) in Theorem 1.4 is inspired by the notion of walk dimen-
sion studied for p = 2 in the context of diffusion on fractals [KM23]. Similar to that
setting, dw(p) also plays a role as the exponent governing Poincaré inequality and capac-
ity bounds as shown in the following theorem.

Theorem 1.5 (Poincaré inequality and capacity upper bound). Let p ∈ (1,∞) and let
(K, d,m) be the Sierpiński carpet. Let Ep,Fp be the p-energy and Sobolev space in Theorem

1.1. Let dw(p) = log(8ρ(p))
log 3

be as defined in Theorem 1.4 and let Γp〈 · 〉 denote the p-energy
measure constructed in Theorem 1.2. Then there exist C,A ≥ 1 such that for all x ∈ K,
r > 0 and f ∈ Fp, we have

ˆ
Bd(x,r)

∣∣f − fBd(x,r)

∣∣p dm ≤ Crdw(p)

ˆ
Bd(x,Ar)

dΓp〈f〉,

and

inf
{
Ep(f)

∣∣ f ∈ Fp ∩ C(K), f
∣∣
Bd(x,r)

≡ 1, supp[f ] ⊆ Bd(x, 2r)
}
≤ C

m(Bd(x, r))

rdw(p)
,

where fBd(x,r) := 1
m(Bd(x,r))

´
Bd(x,r)

f dm.

Theorems 1.1, 1.4 and 1.5 suggest that the Sobolev space we construct is canonical
since two different approaches lead to the same Sobolev space and natural analogies
of Poincaré inequality and capacity upper bound hold in this framework. The most
widely used definition of Sobolev space on a metric measure space relies on the notion
of upper gradient introduced by Heinonen and Koskela [HK98]. Two different definitions
of Sobolev space (sometimes called the Newton-Sobolev space) based on upper gradient
were proposed by Shanmugalingam [Sha00] and Cheeger [Che99] but these two definitions
lead to the same Sobolev space on any metric measure space [HKST, Theorem 10.1.1].
The Newton-Soboev space N1,p(K, d,m) for the Sierpiński carpet is known to be trivial,
that is, N1,p(K, d,m) = Lp(K,m) with equal norms, because the minimal weak upper
gradient of any function is 0. We refer to Remark 9.5 for further details and references.
The triviality of Sobolev space based on upper gradient suggest the need for an alternate
method to construct Sobolev spaces on fractals such as the one considered in this work.

An important motivation for our work is quasisymmetric uniformization and the re-
lated attainment problem for Ahlfors regular conformal dimension. A recent work pre-
dicts that Sobolev spaces and energy measures are relevant to the attainment problem
for Ahlfors regular conformal dimension [KM23, p.395-396]. Our work confirms this pre-
diction. To describe our results in this direction, we recall the relevant definitions of
conformal gauge and Ahlfors regular conformal dimension. Ahlfors regular conformal di-
mension is a slight variant of Pansu’s conformal dimension [Pan] and first appeared in
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[BP03, BK05]. Conformal dimension of boundary of hyperbolic groups and Julia sets
of complex dynamical systems are widely studied. We refer the reader to [MT] for a
comprehensive account of conformal dimension.

Definition 1.6 (Conformal gauge). Let (X, d) be a metric space and θ be another metric
on X. We say that d is quasisymmetric to θ, if there exists a homeomorphism η : [0,∞)→
[0,∞) such that

θ(x, y)

θ(x, z)
≤ η

(
d(x, y)

d(x, z)

)
for all triples of points x, y, z ∈ X, x 6= z.

The conformal gauge of a metric space (X, d) is defined as

J (X, d) := {θ : X ×X → [0,∞) | θ is a metric on X, d is quasisymmetric to θ}. (1.5)

A Borel measure µ on (X, d) is said to be p-Ahlfors regular if there exists C ≥ 1 such
that

C−1rp ≤ µ(Bd(x, r)) ≤ Crp for all x ∈ X, 0 < r ≤ diam(X, d).

The Ahlfors regular conformal dimension is defined as

dimARC(X, d) = inf{p > 0 | θ ∈ J (X, d), there is a p-Ahlfors regular measure µ on (X, θ)}.

The infimum in the definition of dimARC(X, d) need not be attained in general [BK05,
§6]. The attainment problem for Ahlfors regular conformal dimension asks if the infi-
mum in the definition of dimARC(X, d) is attained by a ‘optimal’ metric and measure.
Quasisymmetric uniformization problem asks if there is a metric in the conformal gauge
isometric to a model space with more desirable properties. These two problems are often
related. For instance, it is a well-known open problem to determine whether or not the
conformal gauge of the standard Sierpiński carpet contains a Loewner metric [HKST, p.
408], [Kle, Question 8.3] (we recall the definition of Loewner metric in Definition 9.10).
Another related question is to determine if the Ahlfors regular conformal dimension of
the Sierpiński carpet is attained [BK05, Problem 6.2]. As pointed out by Cheeger and
Eriksson-Bique, these two questions are essentially the same due to the combinatorial
Loewner property of the Sierpiński carpet [BK13, Theorem 4.1], [CE, §1.6].

As a motivation for the attainment problem for Ahlfors regular conformal dimension,
we recall a long-standing conjecture in geometric group theory, namely Cannon’s conjec-
ture. It asserts that any Gromov hyperbolic group G whose boundary at infinity ∂∞G
is homeomorphic to S2 admits an action on the hyperbolic 3-space H3 that is isomet-
ric, properly discontinuous and cocompact. Bonk and Kleiner show Cannon’s conjecture
under the additional assumption that the Ahlfors regular conformal dimension of the
boundary at infinity ∂∞G is attained [BK05]. Thus Cannon’s conjecture is reduced to an
attainment problem for the Ahlfors regular conformal dimension of ∂∞G. We refer the
reader to ICM 2006 proceedings of Bonk for further context and details [Bon].

Another related motivation for the attainment problem for Ahlfors regular conformal
dimension is to better understand Loewner spaces. Since Loewner spaces enjoy desirable
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properties, it is useful to know if a given metric space contains a Loewner metric in its con-
formal gauge. To this end, Kleiner formulated a combinatorial version of Loewner property
that is necessary for such a Loewner metric to exist and is easier to check. Bourdon and
Kleiner verify combinatorial Loewner property for a number of examples including the
Sierpiński carpet [BK13]. Kleiner conjectured that the combinatorial Loewner property
for a self-similar space is equivalent to the existence of Loewner metric in the conformal
gauge [Kle, Conjecture 7.5]. Due to an observation of Cheeger and Eriksson-Bique [CE,
§1.6], Kleiner’s conjecture can be rephrased as a conjecture about the attainment prob-
lem as follows: combinatorial Loewner property for a self-similar space implies that the
Ahlfors regular conformal dimension is attained. We refer to the ICM 2006 proceedings
of Kleiner for further details and background [Kle].

As partial progress towards the attainment problem for Ahlfors regular conformal
dimension on the Sierpiński carpet, we show that if an optimal measure attaining the
Ahlfors regular conformal dimension exists then this measure is necessarily a bounded
perturbation of the p-energy measure of some function in our (1, p)-Sobolev space, where
p is the Ahlfors regular conformal dimension. This result confirms the relevance of energy
measures to the attainment problem for Ahlfors regular conformal dimension as predicted
earlier in [KM23, p.395-396]. Furthermore, if the Ahlfors regular conformal dimension is
attained we identify our Sobolev space Fp with Newton-Sobolev space of the attaining
metric measure spaceN1,p(X, θ, µ) (see Definition 9.4 for the precise definition). Moreover,
the attaining measure is essentially equal to the energy measure Γp〈h〉 for some function
h ∈ C(K) ∩ Fp(K, d,m).

Theorem 1.7. Let (K, d,m) denote the Sierpiński carpet and let p = dimARC(K, d).
Suppose that there exists θ ∈ J (K, d) and a measure µ on K attaining the Ahlfors regular
conformal dimension; that is, µ is a p-Ahlfors regular measure on (K, θ). Let Fp =
Fp(K, d,m), Ep and Γp〈 · 〉 denote the Sobolev space, p-energy and p-energy measure as
given in Theorem 1.2. Then we have the following:

(i) The spaces Fp(K, d,m) and N1,p(K, θ, µ) are equal with comparable norms, semi-
norms, and energy measure. More precisely, it holds that C(K) ∩ Fp(K, d,m) =
C(K)∩N1,p(K, θ, µ), there exist a bijective linear map ι : Fp(K, d,m)→ N1,p(K, θ, µ)
and C1 > 1 such that ι(f) = f for any f ∈ C(K) ∩ Fp(K, d,m) = C(K) ∩
N1,p(K, θ, µ)1 and

C−1
1 Γp〈f〉(B) ≤

ˆ
B

gpι(f) dµ ≤ C1Γp〈f〉(B)

for any Borel set B ⊂ K, f ∈ Fp(K, d,m), where gpι(f) denotes the minimal p-weak

upper gradient of ι(f). In particular, C−1
1 Ep(f) ≤

´
K
gpι(f) dµ ≤ C1Ep(f) for all

f ∈ Fp(K, d,m). Furthermore, the corresponding norms are comparable; that is,

C−1 ‖f‖Fp(K,d,m) ≤ ‖ι(f)‖N1,p(K,θ,µ) ≤ C ‖f‖Fp(K,d,m) for all f ∈ Fp(K, d,m).

1More precisely, the equivalence class containing f in Fp(K, d,m) is mapped to the equivalence class
containing f in N1,p(K, θ, µ).
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(ii) There exist h ∈ Fp(K, d,m) ∩ C(K) and C2 ∈ (0,∞) such that

C−1
2 Γp〈h〉(B) ≤ µ(B) ≤ C2Γp〈h〉(B) for any Borel set B ⊂ K.

In particular, Γp〈h〉 is a p-Ahlfors regular measure on (K, θ).

Let us briefly explain how Theorem 1.7 could be potentially used to solve the at-
tainment problem. Although the attainment problem requires us to find optimal metrics
and measures, it is well-known that the metrics and measures determine each other (see
Lemmas 9.14 and 9.12). Therefore it suffices to look for optimal measure and use Lemma
9.12 to construct the corresponding metric. By Theorem 1.7, it suffices to look for op-
timal measures among energy measures of continuous functions. We conjecture that it
suffices to look for optimal measure among energy measures of p-harmonic functions (see
Conjecture 10.8). One could then hope to find a ‘good’ function whose energy measure is
optimal or rule out the existence of such function by a careful analysis of energy measures.
In fact, Theorem 1.7(ii) was inspired by a similar result for the attainment problem for
conformal walk dimension [KM23, Theorem 6.16]. Such a result was successfully used to
solve a similar attainment problem in [KM23].

More generally, we believe that Sobolev spaces and energy measures are relevant to
similar quasisymmetric uniformization problems and the attainment problem for Ahlfors
regular conformal dimension on other ‘self-similar spaces’ such as boundaries of hyperbolic
groups and Julia sets in conformal dynamics. It would be interesting to construct Sobolev
space, energy measures and prove analogues of Theorem 1.7 for fractals arising from
hyperbolic groups and conformal dynamics [Bon, Kle]. Another obvious question is to
use Theorem 1.7 to solve the attainment problem. This motivates further study of energy
measures and p-harmonic functions.

Although we discussed three approaches towards defining Sobolev space based on
discrete energies, Korevaar-Schoen energies, and upper gradients, there are several omis-
sions. Among them, we mention Sobolev spaces constructed using two-point estimates
by Haj lasz (Haj lasz–Sobolev space) [Haj96], Poincaré inequalities by Haj lasz–Koskela
(Poincaré-Sobolev space) [HK95, HK00], and using weak Lp-estimates of gradient on hy-
perbolic fillings by Bonk–Saksman [BS18]. It would be interesting to understand if these
spaces or their variants are related to our Sobolev spaces constructed using discrete ener-
gies.

1.1 Overview for the rest of the paper.

In §2, we introduce basic notions concerning capacity, modulus and volume growth of
graphs.

In §3, we introduce variants of the ball Loewner property due to Bonk and Kleiner
and of Loewner-type modulus lower bounds between connected sets. The main result
(Theorem 3.2) shows that lower bounds of modulus between balls imply lower bounds of
modulus between any pair of connected sets.
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In §4, we use the lower bounds of modulus from §3 to obtain a discrete Poincaré
inequality. The proof of the Poincaré inequality in Theorem 4.2 follows an idea of Heinonen
and Koskela [HK98, Proof of Theorem 5.12].

In §5, we show that discrete Poincaré inequality along with capacity upper bounds
on graphs imply elliptic Harnack inequality for p-harmonic functions on graphs. The
Harnack inequality is then used to prove existence of Hölder continuous cutoff functions
with controlled energy.

In §6, we introduce a framework describing the approximation of a metric space by
a sequence of graphs. We then define the Sobolev space using discrete graph energies
under the assumption that the sequence of graphs satisfy uniform Poincaré inequality
and capacity upper bounds. We obtain many basic properties of this Sobolev space such
as completeness, separability, reflexivity, and the existence of a dense set of continuous
functions in the Sobolev space.

In §7, we identify our Sobolev space as the Korevaar-Schoen space with comparable
energies. We express the critial exponent for Besov–Lipschitz space in terms of the scaling
exponent for discrete energies.

In §8, we apply the results from previous sections to the planar Sierpiński carpet.
To this end, we check the assumptions imposed on the graph approximations for the
construction of the Sobolev space in §6 and pre-self-similar condition imposed to construct
a self-similar p-energy. We also describe the construction of the energy measure associated
to a self-similar p-energy and obtain its basic properties.

In §9, we show that any optimal measure for Ahlfors regular conformal dimension
on the Sierpiński carpet must necessarily be comparable to a energy measure. If the
Ahlfors regular conformal dimension is attained we identify the Newton-Sobolev space of
the attaining space with our Sobolev space.

In §10, we collect some conjectures and open problems related to our work.

Many of the proofs that rely on small modifications to known methods have been
omitted but an interested reader can find more complete proofs on arXiv [MS+].

Notations. In this paper, we use the following notation and conventions.

(1) N := {n ∈ Z | n > 0} and Z≥0 := N ∪ {0}.
(2) For a set A, we write #A to denote the cardinality of A.

(3) Let X be a non-empty set. For disjoint subsets A and B of X, we use AtB to denote
the disjoint union of A and B.

(4) For a ∈ R, define sgn(a) := 1(0,∞)(a)− 1(−∞,0)(a).

(5) For a, b ∈ R, we write a ∨ b = max{a, b} and a ∧ b = min{a, b}. Set a+ = a ∨ 0 and
a− = a ∧ 0 for any a ∈ R. We also use these notations for real-valued functions.

(6) For a ∈ R, define dae, bac ∈ Z by

dae = max{n ∈ Z | n ≤ a} and bac = min{n ∈ Z | a ≤ n}.
(7) For arbitrary countable set V , define RV = {f | f : V → R}, `+(V ) = [0,+∞)V =
{f | f : V → [0,+∞)} and `+

c (V ) = {f ∈ [0,+∞)V | # supp[f ] < +∞}, where
supp[f ] := {x ∈ V | f(x) 6= ∅}.
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(8) Let (X, d) be a metric space. The open ball with center x ∈ X and radius r > 0 is
denoted by Bd(x, r), that is, Bd(x, r) := {y ∈ X | d(x, y) < r}. If the metric d is clear
in context, then we write B(x, r) for short. We write B(x,R) for {y ∈ X | d(x, y) ≤
r}. For a metric ball B, let rad(B) denote the radius of B. For λ ≥ 0 and a ball
B = B(x,R), define λB = B(x, λR).

(9) Let (X, d) be a metric space. For A ⊆ X, the diameter of A with respect to d is defined
as diam(A, d) := supx,y∈A d(x, y). We also use diamd(A) to denote diam(A, d). If no
confusion can occur, we omit the metric d in these notations.

(10) Let (X,A , µ) be a measure space. For f ∈ L1
loc(X,µ) and A ∈ A with µ(A) < +∞,

we use
ffl
A
f dµ to denote the averaged integral of f over A, i.e.

 
A

f dµ =
1

µ(A)

ˆ
A

f(x)µ(dx).

We also write fA or (f)A to denote
ffl
A
f dµ if the underlying measure µ is clear.

(11) Let (X,A , µ) be a measure space and let 1 ≤ p ≤ ∞. For f ∈ Lp(X,µ), we use
‖f‖p to denote the Lp-norm of f . In addition, for any A ∈ A , define

‖f‖p,A := ‖f1A‖p =

(ˆ
A

|f(x)|p µ(dx)

)1/p

.

(12) Let X be a topological space. We use B(X) (resp. B+(X)) to denote the set of
[−∞,∞]-valued (resp. [0,∞]-valued) Borel measurable functions on X. (Note that
each element in B(X) or B+(X) is defined on every points of X.)

2 Preliminaries

2.1 Basic facts and terminologies of graphs

Throughout this section, let G = (V,E) be a locally finite connected simple non-directed
graph, i.e. G = (V,E) is a simple connected graph, where V is a countable set (the set of
vertices) and E ⊆

{
{x, y}

∣∣ x, y ∈ V, x 6= y
}

(the set of edges), satisfying

degG(x) := #{y ∈ V | {x, y} ∈ E} < +∞ for all x ∈ V .

We always consider G as a metric space equipped with the graph distance d = dG. In this
paper, we suppose that G has bounded degree, i.e. deg(G) := supx∈V degG(x) < +∞.

A sequence of vertices θ = [x0, . . . , xn] for some n ∈ N is said to be a (finite) path in
G if xi ∈ V and {xi, xi+1} ∈ E for each i ∈ {0, . . . , n − 1}. We frequently regard a path
θ as a subset {xi}ni=0 of V . Define the length of θ = [x0, . . . , xn] by lenG(θ) := n. A finite
path θ = [x0, . . . , xn] is said to be simple if there is no loops, i.e. xi 6= xj for any distinct
i, j ∈ {0, . . . , n}. Note that our definition excludes the case where a one point set {x}
becomes a path (since G has no self-loops). In particular, len(θ) ∈ N for a finite path θ.
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For any subset A ⊆ V , we define

E(A) :=
{
{x, y} ∈ E

∣∣ x, y ∈ A}.
A subset A ⊆ V is called a connected subset of V (with respect to G) if d(A,E(A))(x, y) <∞
for all x, y ∈ A.

For arbitrary A ⊆ V , define

∂iA = {x ∈ A | there exists y ∈ V \ A such that {x, y} ∈ E},

∂A = {x ∈ V \ A | there exists y ∈ A such that {x, y} ∈ E},

and A = A ∪ ∂A. The set ∂iA (resp. ∂A) is called the interior (resp. exterior) boundary
of A in G. The set A is a kind of closure of A in G.

2.2 Combinatorial p-modulus of path families

We recall the notion of combinatorial modulus of discrete path families on a graph and a
few basic properties. For a path θ in G = (V,E) and ρ ∈ `+(V ), define the ρ-length of θ,
Lρ(θ), by

Lρ(θ) =
∑
v∈θ

ρ(v).

For arbitrary path family Θ on G, define the ρ-length of Θ by Lρ(Θ) := infθ∈Θ Lρ(θ). The
set of admissible functions Adm(Θ) for Θ is given by

Adm(Θ) = {ρ ∈ `+(V ) | Lρ(Θ) ≥ 1}.

Definition 2.1. Let Θ be a family of paths in G and let p > 0. The (combinatorial)
p-modulus ModGp (Θ) of Θ is

ModGp (Θ) = inf
ρ∈Adm(Θ)

‖ρ‖p`p(V ) = inf
ρ∈Adm(Θ)

∑
v∈V

ρ(v)p.

We also use Modp(Θ) to denote ModGp (Θ) when no confusion can occur.

Remark 2.2. For a path family Θ, define V [Θ] := {v ∈ V | v ∈ θ′ for some θ′ ∈ Θ}. We
easily see that ρ ∈ Adm(Θ) implies ρ1V [Θ] ∈ Adm(Θ). This observation yields ModGp (Θ) =
infρ∈Adm(Θ) ‖ρ‖pp,V [Θ].

The following properties of p-modulus is well-known.

Lemma 2.3 (e.g. [HKST, Section 5.2]). Let p > 0.

(i) ModGp (∅) = 0.

(ii) If path families Θi (i = 1, 2) satisfy Θ1 ⊆ Θ2, then ModGp (Θ1) ⊆ ModGp (Θ2).



Sobolev spaces on the Sierpiński carpet 15

(iii) For any sequence of path families {Θn}n∈N,

ModGp

(⋃
n∈N

Θn

)
≤

∞∑
n=1

ModGp (Θn).

(iv) Let Θ,Θ# be families of paths. If all path θ ∈ Θ has a sub-path θ# ∈ Θ# (i.e.
θ# ⊆ θ), then ModGp (Θ) ≤ ModGp (Θ#).

If p > 1, then by the strict convexity of `p, there exists a unique ρ ∈ Adm(Θ) such
that ModGp (Θ) =

∑
v∈V ρ(v)p.

For subsets Ai ⊆ V (i = 0, 1, 2) with A0 ∪ A1 ⊆ A2, define

Path(A0, A1;A2) =

{
[x0, . . . , xn]

∣∣∣∣ n ∈ N, {xi, xi+1} ∈ E for any i = 0, . . . , n− 1,
xi ∈ A2 (i = 0, . . . , n), x0 ∈ A0, xn ∈ A1

}
,

and we write Modp(A0, A1;A2) for Modp
(
Path(A0, A1;A2)

)
. We use Path(A0, A1) and

Modp(A0, A1) to denote Path(A0, A1;V ) and Modp(A0, A1;V ) respectively. If we need to
specify the underlying graph G, we will use the notation PathG(A0, A1;A2).

The following lemma is used to obtain lower bounds on modulus. Roughly speaking,
modulus lower bound of a curve family is equivalent to existence of shortcuts. This
property is used in [BK05] and a direct consequence of the definition of modulus (and
Hölder’s inequality) as observed in [BK13, Lemma 2.7].

Lemma 2.4. Let p > 0. Let Θ be a family of paths in G and let c > 0. If Modp(Θ) ≥ c,
then for any ε > 0 and ρ ∈ `+(V ) there exists a path θ ∈ Θ such that

Lρ(θ) ≤ (1 + ε)c−1/p ‖ρ‖p,V [Θ] . (2.1)

Conversely, if for any ρ ∈ `+(V ) there exists a path θ ∈ Θ such that Lρ(θ) ≤ c−1/p ‖ρ‖p,
then Modp(Θ) ≥ c. In particular, if p ≥ 1, L ∈ N and there exists θ ∈ Θ such that
len(θ) ≤ L, then

ModGp (Θ) ≥ L1−p. (2.2)

2.3 Discrete p-energy, p-Laplacian and associated capacity

For f ∈ RV , the length of discrete gradient of f , |∇f| : E → [0,+∞), is given by

|∇f|
(
{x, y}

)
= |f(y)− f(x)| for {x, y} ∈ E.

We abbreviate |∇f|
(
{x, y}

)
as |∇f|(x, y) for each {x, y} ∈ E.

Definition 2.5. Let p > 0 and let A ⊆ V . For f, g ∈ RV , define

EGp,A(f ; g) :=
∑

{x,y}∈E(A)

sgn(f(y)− f(x))|f(y)− f(x)|p−1(g(y)− g(x)).



16 M. Murugan and R. Shimizu

The p-energy of f on A is given by EGp,A(f) = EGp,A(f ; f), i.e.

EGp,A(f) :=
∑

{x,y}∈E(A)

|∇f|(x, y)p =
∑

{x,y}∈E(A)

|f(x)− f(y)|p.

We write EGp (f ; g) and EGp (f) for EGp,V (f ; g) and EGp,V (f) respectively. We omit the under-
lying graph G in these notations if no confusion can occur.

We recall basic properties of discrete p-energy, which are immediate from the definition.

Lemma 2.6. Let p > 0 and A ⊆ V .

(a) EGp,A(f ∧ g) ∨ EGp,A(f ∨ g) ≤ EGp,A(f) + EGp,A(g) for any f, g ∈ RA.

(b) EGp,A(f · g) ≤ (2p−1 ∨ 1)
(
‖g‖p`∞(A) EGp,A(f) + ‖f‖p`∞(A) EGp,A(g)

)
for any f, g ∈ RA.

Next we recall the definition of discrete p-Laplacian using a discrete version of inte-
gration by parts. Let 〈·, ·〉`2(V,deg) denote the inner product of `2(V, deg)

Definition 2.7. Let p > 0. The p-Laplacian ∆G
p : RV → RV on G is defined by, for

f ∈ RV and x ∈ V ,(
∆G
p f
)
(x) =

1

deg(x)

∑
y∈V ;

(x,y)∈E

sgn(f(y)− f(x))|f(y)− f(x)|p−1. (2.3)

A function f ∈ RV is said to be p-superharmonic (resp. p-subharmonic) at x ∈ V if
∆G
p f(x) ≤ 0 (resp. ∆G

p f(x) ≥ 0). In addition, f is said to be p-harmonic at x ∈ V if
∆G
p f(x) = 0. If A ⊆ V and ∆G

p f(x) = 0 for every x ∈ A, then f is said to be p-harmonic
in A. p-superharmonic, p-subharmonic functions in A are defined in similar ways.

The following lemma describes a well-known property of p-superharmonic (resp. p-
subharmonic) functions, namely the minimum (resp. maximum) principle.

Lemma 2.8 ([HS97a, Theorem 3.14] or [MY92, Theorem 7.5]). Let A be a non-empty
connected subset of G. Let f ∈ RV be p-superharmonic (resp. p-subharmonic) in A.

(a) If there exists x ∈ A such that f(x) = minz∈A f(z) (resp. f(x) = maxz∈A f(z)),
then f is constant on A.

(b) If A is finite, then min∂A f = minA f (resp. max∂A f = maxA f).

The discrete p-capacity plays an important role in the first part of this paper.

Definition 2.9. Let p > 0 and let Ai ⊆ V (i = 0, 1, 2) with A0 ∪ A1 ⊆ A2. Define the
p-capacity between A0 and A1 in A2 by

capGp (A0, A1;A2) = inf
{
EGp,A2

(f)
∣∣ f ∈ RV , f = 0 on A0 and f = 1 on A1

}
.

We write capGp (A0, A1) for capGp (A0, A1;V ). The underlying graph G is omitted in these
notations if no confusion can occur.
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The following monotonicity of p-capacity is immediate from the definition.

Lemma 2.10. Let p > 0 and let Ai ⊆ V (i = 0, 1, 2). If A′i ⊆ Ai (i = 0, 1), then

capGp (A′0, A
′
1;A2) ≤ capGp (A0, A1;A2)

Typical p-harmonic functions are given as equilibrium potential of p-capacity:

Lemma 2.11 ([HS97a, Theorems 3.5 and 3.11]). Let p > 1. Let A0, A1 ⊆ V and let A2 be
non-empty connected subset of V with A0∩A1 = ∅ and A0∪A1 ⊆ A2. There exists a unique
function (called equilibrium potential) ϕ : A2 → [0, 1] such that ϕ|Ai ≡ i for i = 0, 1 and
EGp,A2

(ϕ) = capGp (A0, A1;A2). Furthermore, ϕ is p-harmonic in A2 \ (A0 ∪ A1).

On bounded degree graphs, the notions of modulus and capacity between sets are
comparable as observed by He and Schramm [HS95, Theorem 8.1].

Lemma 2.12 (e.g.[Kig20, Proposition 4.8.4]). Let p > 0. Then there exists C ≥ 1
depending only on p, deg(G) such that the following statement is true: for any Ai ⊆
V (i = 0, 1, 2) with A0 ∪ A1 ⊆ A2,

C−1capGp (A0, A1;A2) ≤ ModGp (A0, A1;A2) ≤ CcapGp (A0, A1;A2). (2.4)

2.4 Volume growth conditions

We recall doubling properties and Ahlfors regularity on graphs and metric spaces.

Definition 2.13. A metric space (X, d) is said to be metric doubling if there exists
ND ∈ N such that any ball Bd(x, r) can be covered by at most ND balls with radii r/2.
A Borel measure m on X is said to be volume doubling (VD for short) with respect to d
if there exists CD ≥ 1 such that

0 < m(Bd(x, 2r)) ≤ CDm(Bd(x, r)) <∞ for all x ∈ X, r > 0. (VD)

A graph G = (V,E) is volume doubling if VD holds with respect to the graph distance
and the counting measure.

Definition 2.14. Let df > 0. A metric space (X, d) is said to be df-Ahlfors regular
(AR(df) for short) if there exist CAR ≥ 1 and a Borel measure m on X with

C−1
ARr

df ≤ m(Bd(x, r)) ≤ CARr
df for any x ∈ X and r ∈ (0, diam(X, d)). (AR(df))

(X, d) is said to be Ahlfors regular if it satisfies AR(df) for some df > 0. We shall say
that a graph G = (V,E) is df-Ahlfors regular if the condition above defining AR(df) holds
with respect to the graph distance and the counting measure for all x ∈ V and for all
r ∈ (1, diam(V )).

We recall a few elementary consequences of these definitions.
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Remark 2.15. Let (X, d) be a metric space.

(1) If there exists a volume doubling measure m on (X, d), then (X, d) is metric doubling
whose doubling constant ND depends only on the doubling constant CD of m. [Hei,
Chapter 13]

(2) If a Borel measure m on X satisfies AR(df) for some df > 0, then m is volume dou-
bling whose doubling constant CD depends only on CAR and df > 0. Furthermore,
AR(df) implies that the Hausdorff dimension of (X, d) is df .

We recall the following consequence of the volume doubling property.

Lemma 2.16. Let (X, d) be a metric space and let m be a Borel measure on X satisfying
VD. Then there exists α > 0 depending only on the doubling constant CD such that

m(Bd(x,R))

m(Bd(y, r))
≤ C2

D

(
d(x, y) +R

r

)α
for any x, y ∈ X and 1 ≤ r ≤ R <∞. (VD(α))

In particular,

m(Bd(x,R)) ≤ CDR
α for any x ∈ X and 1 ≤ R < diam(X, d). (2.5)

Since increasing α does not affect the validity of VD(α), we assume that α ≥ 1 for
much of this work.

3 Loewner-type lower bounds for p-modulus

Throughout this section, let p ≥ 1 and let G = (V,E) be a locally finite connected simple
non-directed graph.

We introduce the following Loewner-type lower bounds on modulus between balls.
The case with exponent ζ = 0 was introduced by Bonk and Kleiner [BK05, Proposition
3.1]. This was extended by Bourdon and Kleiner [BK13, Proposition 2.9] to a discrete
setting.

Definition 3.1. Let ζ ∈ R. A graph G satisfies p-combinatorial ball Loewner condition
with exponent ζ (BCLp(ζ) for short) if there exists A ≥ 1 such that the following hold:
for any κ > 0 there exist cBCL(κ) > 0 and LBCL(κ) > 0 such that

ModGp ({θ ∈ Path(B1, B2) | diam θ ≤ LBCL(κ)R}) ≥ cBCL(κ)Rζ (BCLp(ζ))

whenever R ∈ [1, diam(G)/A) and Bi (i = 1, 2) are balls with radii R satisfying
dist(B1, B2) ≤ κR.

In this section, we discuss BCLp(ζ) and prove a key estimate (Theorem 3.2) in this
paper. The setting of this section is given by the following condition:

The underlying graph G satisfies BCLp(ζ) and 1− p ≤ ζ < 1. (BCLlow
p (ζ))
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We are interested in the case where ζ is the ‘largest’ possible value. Since BCLlow
p (1− p)

is always true by (2.2), there is not much loss of generality in the assumption ζ ≥ 1 − p
but the inequality ζ < 1 need not be true in general but holds in many ‘low dimensional
settings’ such as the Sierpiński carpet.

Under BCLlow
p (ζ), we can show a generalized lower bound of p-modulus as in the

next theorem, which is one of the main results in this section. It states that Loewner-
type lower bounds on modulus between balls imply analogous lower bound on modulus
between any pair of connected sets. This result plays important roles in the proofs of
Poincare inequality in §4 and elliptic Harnack inequality in §5. The following theorem
can be viewed as an extension of a result of Bonk and Kleiner from ζ = 0 to more general
exponent ζ [BK05, Proposition 3.1], [BK13, Proposition 2.9].

Theorem 3.2. Assume that G is bounded degree graph that satisfies p-combinatorial ball
Loewner condition BCLlow

p (ζ) with exponent ζ ∈ [1−p, 1), where p ≥ 1. Let κ0 > 0. Then
there exist c, L > 0 depending only on the constants associated to the assumptions such
that the following holds: If Fi (i = 1, 2) are disjoint connected subsets of V that satisfy

dist(F1, F2)

diamF1 ∧ diamF2

≤ κ0,

then
ModGp ({θ ∈ Path(F1, F2) | diam θ ≤ LR0}) ≥ cRζ

0, (3.1)

where R0 := 2 dist(F1, F2) ∧ 1
2

diamF1 ∧ 1
2

diamF2.

Similar to [BK05, BK13], the idea behind its proof is to show the existence of a shortcut
with respect to an arbitrary function ρ ∈ `+(V ) and use Lemma 2.4. The following lemma
is a key ingredient, which is a discrete analogue of [BK05, Lemma 3.7] (see also [BK13,
Lemma 2.10]). We omit its proof because it is essentially the same as [BK05, Lemma 3.7].

Lemma 3.3. Suppose that G = (V,E) satisfies BCLp(ζ). For any λ ∈ (0, 1/8), let
Lλ := LBCL

(
9

2λ

)
+ 7

8
. Let (B,F1, F2) be a triple such that B = B(x,R) for some x ∈ V

and R ≥ 16 and Fi (i = 1, 2) are connected subset of V . If the triple (B,F1, F2) satisfies

Fi ∩
1

4
B 6= ∅ and Fi \B 6= ∅ (i = 1, 2), (3.2)

then for any ρ ∈ `+(V ) there exist xi ∈ Fi (i = 1, 2) satisfying the following properties:

(i) For each i = 1, 2, xi ∈ B(x, 3R/4) and d(x, x1) ∧ d(x, x2) ≤ 3R/8. Furthermore,
Bi := B(xi, λR) satisfies 1

8λ
Bi ⊆ 7

8
B and B1 ∩B2 = ∅.

(ii) There exists a constant Cshr > 0 (we can take Cshr = 128) such that ‖ρ‖pp,Bi ≤
Cshr(λ ∨R−1) ‖ρ‖pp,B for each i = 1, 2.

(iii) There exists θ ∈ Path
(

1
4
B1,

1
4
B2

)
such that θ ⊆ LλB, diam θ ≤ LBCL

(
9

2λ

)
R and

Lρ(θ) ≤ Cp,λ(λR)−ζ/p ‖ρ‖p,LλB ,

where Cp,λ > 0 is a constant depending only on p, ζ, λ and cBCL

(
9

2λ

)
.
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(iv) Fi ∩ 1
4
Bi, θ ∩ 1

4
Bi, Fi \Bi and θ \Bi (i = 1, 2) are non-empty.

Let us sketch to the proof of main result (Theorem 3.2) using Lemma 3.3.

Sketch of the proof of Theorem 3.2. Since the proof is essentially same as the proofs of
[BK05, Proposition 3.1] and [BK13, Proposition 2.9], we only sketch the argument.

Let ρ ∈ `+(V ). By Lemma 2.4, it suffices to show the existence of a path θ with

diam(θ) ≤ LR0 and Lρ(θ) . R
−ζ/p
0 ‖ρ‖p.

First we choose balls B1 and B2 centered at F1 and F2 respectively with radii λR0. A
use of Lemma 2.4 and the ball combinatorial Loewner condition implies that there exists
Lρ-shortcuts between balls B1 and B2, say of radius λR0/4 where λ < 1/8 centered at
the two connected sets (see Lemma 3.3). The two gaps at scale λR0 are now inductively
filled by paths between suitably chosen balls creating four gaps at scale λ2R0. Note that
the Lemma 3.3 can be inductively applied to 2k gaps at scale λkR0 as long as λkR0 > 16
since the condition (3.2) is guaranteed by Lemma 3.3(iv). The balls are chosen so that
the ρ-mass decays linearly with the radius (cf. [BK05, Lemma 3.5] and Lemma 3.3(ii)).
Continuing inductively, we obtain Lρ-shortcuts that the total length of gaps at scale λkR
with λkR0 & 1 is of the order (Cλ)k(1−ζ)/pR−ζ/p, where Cλ < 1. If λkR0 ≤ 16, we use
(2.2) in Lemma 2.4 to fill the gaps at the smallest scale. The ρ-length of this shortcut

can therefore be bounded by a geometric series
∑∞

k=0(Cλ)k(1−ζ)/pR
−ζ/p
0 . This geometric

series converges and provides the desired shortcut if ζ < 1. �

We also frequently use the following consequence of Theorem 3.2.

Corollary 3.4. Assume that G is bounded degree graph that satisfies p-combinatorial ball
Loewner condition BCLlow

p (ζ) with exponent ζ ∈ [1− p, 1), where p ≥ 1. There exist c > 0
and L ≥ 1 depending only on the constants associated with the assumptions such that if
Fi (i = 1, 2) are connected subsets of V satisfying #Fi ≥ 2, Fi ∩ B 6= ∅ and Fi \ 4B 6= ∅
for some ball B with radius R > 0, then

ModGp (F1, F2; 4LB) ≥ c(R ∨ 1)ζ . (3.3)

Proof. We first consider the case R ≥ 2. Notice that V \ 4B 6= ∅. Since Fi is connected,

we can find a connected subset F̃i of Fi satisfying the following conditions (i)-(iii):

(i) F̃1 ⊆ F1 ∩
(
2B \B

)
and F̃2 ⊆ F2 ∩

(
4B \ 3B

)
.

(ii) F̃1 ∩B 6= ∅ and F̃2 ∩ 3B 6= ∅.

(iii) F̃1 \ 2B 6= ∅ and F̃2 \ 4B 6= ∅.

Then we immediately see that 3R ≥ diam F̃1 ≥ diam F̃2 = d4Re − d3Re ≥ 1
2
R and

8R ≥ dist
(
F̃1, F̃2

)
≥ d3Re − d2Re ≥ 1

2
R.
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Hence, by applying Theorem 3.2 for F̃i, there exist c, L > 0 depending only on the
constants associated with the assumptions such that

Modp

({
θ ∈ Path

(
F̃1, F̃2

) ∣∣ diam θ ≤ LR
})
≥ cRζ .

By Lemma 2.3(ii),

ModGp ({θ ∈ Path(F1, F2)
∣∣ θ ⊆ (L+ 1)B}) ≥ ModGp

({
θ ∈ Path

(
F̃1, F̃2

) ∣∣ diam θ ≤ LR
})
,

which implies our assertion in this case.

Next we consider the case R ≤ 2. Let L > 0 be the same as in the previous paragraph.
Then, by (2.2) in Lemma 2.4, we have

ModGp ({θ ∈ Path(F1, F2)
∣∣ θ ⊆ (L+ 4)B})

≥ ModGp ({θ ∈ Path(F1, F2)
∣∣ θ is a shortest path})

≥ 41−p = 41−p(R ∨ 1)−ζ · (R ∨ 1)ζ ≥ 41−p(2−1 ∧ 1
)
(R ∨ 1)ζ ,

where we used (R ∨ 1)−ζ ≥ (R ∨ 1)−1 ∧ 1p−1 and R ≤ 2 in the last inequality. �

4 Discrete (p, p)-Poincaré inequality

Throughout this section, let p ≥ 1 and let G = (V,E) be a locally finite connected simple
non-directed graph.

The goal of this section is to show that the ‘low-dimensional’ p-ball combinatorial
Loewner type property BCLlow

p (ζ) implies a Poincaré inequality. We shall give the defini-
tion of (weak) (p, p)-Poincaré inequality in our setting.

Definition 4.1. Let β > 0. A graph G satisfies (p, p)-Poincaré inequality of order β
(PIp(β) for short) if there exist CPI, API ≥ 1 such that for any x ∈ V , R ≥ 1 and f ∈ RV ,∑

y∈B(x,R)

∣∣f(y)− fB(x,R)

∣∣p ≤ CPIR
βEGp,B(x,APIR)(f). (PIp(β))

The main result in this section (Theorem 4.2) shows that the (p, p)-Poincaré inequality
follows from the the combinatorial ball Loewner-type property BCLlow

p (ζ) and VD. This
result and its proof are inspired by a similar theorem of Heinonen and Koskela [HK98,
Theorem 5.12]. Although the result in [HK98] corresponds to the case ζ = 0 the proof
there works when ζ < 1.

Theorem 4.2. Let G = (V,E) be a graph satisfying VD(α) and BCLlow
p (ζ), where α ≥ 1

and ζ ∈ [1 − p, 1). Then G satisfies PIp(β), where β = α − ζ, API = 2 and CPI depends
only on the constants associated with the assumptions.
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The proof of Theorem 4.2 is done in two steps. In the first step, we introduce a two-
point estimate that is a sufficient condition for the Poincaré inequality (see Definition 4.3
and Lemma 4.5). In the second step, we show that the combinatorial ball Loewner-type
property BCLlow

p (ζ) implies the two-point estimate (Lemma 4.6).

The following definition gives a discrete generalization of pointwise estimates (see
[HK00, (15)] or [HK98, (5.16)] for example).

Definition 4.3. Let β > 0. The graph G satisfies the p-two-point estimate of order β
(TPp(β) for short) if there exists CTP > 0 such that for any z ∈ V , R ≥ 1, f ∈ RV and
x, y ∈ B(z, C−1

TPR),

|f(x)− f(y)|p ≤ CTPR
β

(
max
r∈(0,R)

EGp,B(x,r)(f)

#B(x, r)
+ max

r∈(0,R)

EGp,B(y,r)(f)

#B(x, r)

)
. (TPp(β))

It is easy to see that VD(α), where α ≥ 1, implies TPp(α + p− 1).

A well-known telescoping sum argument show that Poincaré inequality implies the two
point estimate. This follows from a straighforward modification of the proof of [HK98,
Lemma 5.15] or a discrete version of that argument in the special case p = 2 in [Mur20,
Lemma 2.4]. We omit its proof as we will not use the lemma below.

Lemma 4.4. Let G = (V,E) be a graph satisfying VD and PIp(β) for some β > 0. Then
G satisfies TPp(β).

The following lemma is a converse of the previous lemma, which can be shown by
following [HK98, Lemma 5.15] with minor modifications. Let us recall the notion of
median. For f ∈ RV and A, a median of f on A is a number a ∈ R such that

#{w ∈ A | f(z) ≥ a} ∧#{w ∈ A | f(z) ≤ a} ≥ 1

2
#A.

We write med(f, A) to denote the set of medians of f on A. Note that med(f, A) 6= ∅.

Lemma 4.5. Let G = (V,E) be a graph satisfying VD and TPp(β) for some β > 0. Then
there exist C > 0 and A > 0 depending only on p, CD, deg(G), CTP such that∑

B(x,R)

|f − a|p ≤ CRβEGp,B(x,AR)(f), (4.1)

for any x ∈ V , R ≥ 1, f ∈ RV , a ∈ med
(
f,B(x,R)

)
. In particular, G satisfies PIp(β).

Finally we prove PIp(α − ζ) for a graph G satisfying BCLlow
p (ζ) and VD(α) with

exponent α ≥ 1. By virtue of Lemma 4.5, it is enough to show the following lemma.

Lemma 4.6. Let G = (V,E) be a graph satisfying VD(α) and BCLlow
p (ζ). Then G

satisfies TPp(α− ζ) and the associated constant CTP depends only on constants involved
in the assumptions.
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Sketch of the proof. The proof is an adaptation of [HK98, Proof of Lemma 5.17] which
we briefly recall. This is a proof by contradiction. Suppose to the contrary that there is
a function |f(x)− f(y)| = 1 such that

max
r∈(0,CR)

EGp,B(x,r)(f)

#B(x, r)
+ max

r∈(0,CR)

EGp,B(y,r)(f)

#B(y, r)
≤ εR−β, (4.2)

where R = d(x, y), C > 2 and ε > 0 is small enough. Set ρ(v) := maxe∈E;v∈e |∇f|(e),
v ∈ V , and β = α− ζ > 0.

Pick a geodesic path γ from x to y. By Lemma 2.4, (4.2) and Theorem 3.2, for C2 > 1
and 1 < r < C2r < R/2, there exists a curve θr joining B(z, r)∩γ to B(z, C2r)

c∩γ where
z ∈ {x, y} such that

Lρ(θr) . ε1/p(r/R)β/p.

By choosing r’s along a geometric sequence of scales K−jR, j ∈ N and joining shortcuts
θK−jR and θK−j−1R again by using Lemma 2.4, (4.2) and Theorem 3.2 yields a Lρ-shortcut
θ connecting x and y such that

Lρ(θ) . ε1/p
∞∑
j=0

K−jβ/p ≤ C3ε
1/p

where C3 only depends on the constants associated with the assumptions. By the triangle
inequality Lρ(θ) ≥ |f(x)− f(y)| = 1 and hence we obtain the desired contradiction if
ε < C−p3 . �

Proof of Theorem 4.2. Combining Lemmas 4.5 and 4.6, we obtain Theorem 4.2. �

5 Discrete elliptic Harnack inequality

This section is devoted to Harnack type inequalities for discrete p-harmonic functions.
Such estimates are crucial to establish that the Sobolev space we construct has a dense
set of continuous functions.

Throughout this section, let p ∈ (1,∞) and let G = (V,E) be a locally finite connected
simple non-directed graph.

5.1 EHI for discrete p-harmonic functions

The Poincaré inequality introduced in Definition 4.1 implies a lower bound on capacity
across annulus. Let us introduce a matching capacity upper bound which serves to identify
the exponent β introduced in Definition 4.1 as the best possible one.
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Definition 5.1. Let β > 0. A graph G satisfies capp,≤(β) if there exist Ccap > 0 and
Acap ≥ 1 such that for any x ∈ V and R ∈ [1, diam(G)/Acap),

capGp
(
B(x,R), B(x, 2R)c

)
≤ Ccap

#B(x,R)

Rβ
. (capp,≤(β))

The following generalization of capp,≤(β) is well-known and done by a standard cov-
ering argument using the metric doubling property.

Lemma 5.2. Let df ≥ 1, β > 0 and let G = (V,E) satisfy AR(df) and capp,≤(β). For
any δ ∈ (0, 1) there exists Ccap(δ) > 0 depending only on δ and the constants associated
with the assumptions such that for any x ∈ V and R ≥ δ−1,

capGp
(
B(x, δR), B(x,R)c

)
≤ Ccap(δ)

#B(x, δR)

Rβ
.

To prove Harnack type inequality, the log-Caccioppoli inequality (e.g. [HS97b, 2.12
Corollary]) is a standard technique. The proof for the case p = 2 in [KZ92, (7.5) Lemma]
extends easily to the general case p ∈ (1,∞)

Lemma 5.3 (Log-Caccioppoli inequality). Let p ∈ (1,∞). Let A ⊆ V and ϕ : V → [0, 1]
with supp[ϕ] ⊆ A. If h : V → (0,∞) is p-superharmonic in A, then for some constant
Cp > 0 depending only on p,∑

{x,y}∈E(A)

(ϕ(x)p ∧ ϕ(y)p)|log h(x)− log h(y)|p ≤ CpEGp (ϕ). (5.1)

The main result of this section is the following elliptic Harnack inequality.

Theorem 5.4. Let p ∈ (1,∞), df ≥ 1 and β > 0. Assume that G satisfies AR(df),
BCLlow

p (df−β) and capp,≤(β). Then there exist δH ∈ (0, 1) and CH ≥ 1 depending only on
the constants associated with the assumptions such that, for any x ∈ V and R ≥ 1 with
B(x,R) 6= V , if h : V → [0,∞) is p-harmonic in B(x,R), then

max
B(x,δHR)

h ≤ CH min
B(x,δHR)

h. (5.2)

Proof. Fix δH ∈
(
0, (4L)−1

)
, where L is the constant appeared in Corollary 3.4. By

Lemma 2.3, we can assume that L ≥ 2 without loss of generality. Let ε > 0 and set
hε := h+ ε. Note that hε is also p-harmonic on B := B(x,R). Define

m := min
B(x,δHR)

hε and M := max
B(x,δHR)

hε.

If R ≤ 4L, then B(x, δHR) = {x} and thus m = M . Hence it is enough to consider
the case R ≥ 4L. In this case, we always have R − δHR > 4L − 1 > 2, in particular
B(x,R) \B(x, δHR) 6= ∅. Using the maximum/minimum principles (Lemma 2.8), we can
find paths θmin, θmax in G satisfying the following conditions (i) and (ii).
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(i) θmin ⊆ {hε ≤ m} and θmax ⊆ {hε ≥M};

(ii) θmin, θmax ∈ Path
(
∂iB(x, δHR), ∂iB(x,R);B(x,R)

)
.

Since B(x, 4δHR) ⊆ B(x, 1
2
B) by L ≥ 2, it follows from Corollary 3.4 that there exists

c > 0 depending only on the constants associated with the assumptions such that

ModGp (θmin, θmax; δB) ≥ cRdf−β. (5.3)

In order to show (5.2), it suffices to consider the case m < M . Define h′ε =
1

logM−logm
(log hε − logm) and h∗ε = (h′ε ∨ 0) ∧ 1. Then we easily see that h̃∗ε ∈

Adm(θmin, θmax), where h̃∗ε : V → [0,∞) is defined as

h̃∗ε(x) := max
y∈V ;{x,y}∈E

|h∗ε(x)− h∗ε(y)| for x ∈ V .

Noting that m ≥ ε > 0, we have

ModGp (θmin, θmax; δB) ≤ CEGp,δB
(
h̃∗ε
)
≤ C deg(G)

(
log

M

m

)−p
EGp,δB(log hε), (5.4)

where C ≥ 1 is the constant in Lemma 2.12.

Let ϕ be the equilibrium potential of capGp (δB,Bc) such that ϕ
∣∣
δB
≡ 1 and ϕ

∣∣
Bc
≡

0. Since hε is positive and p-harmonic function in B, by applying the log-Caccioppoli
inequality (Lemma 5.3) for the tuple (h, ϕ), we obtain

EGp,δB(log hε) ≤ CpcapGp (δB,Bc). (5.5)

From (5.3), (5.4), (5.5), capp,≤(β), Lemma 5.2 and (2.5), we obtain

cRdf−β ≤ CpCcap(δ) · CARδ
df deg(G)

(
log

M

m

)−p
Rdf−β,

which implies

log
M

m
= log

maxδHB h+ ε

minδHB h+ ε
≤
(
c−1CpCcap(4LδH) · CAR(4LδH)df deg(G)

)1/p

:= logCH.

Hence,

max
δHB

h+ ε ≤ CH

(
min
δHB

h+ ε

)
.

Since ε > 0 is arbitrary, (5.2) holds. �

A standard argument using Moser’s oscillation lemma immediately yields the following
interior Hölder regularity of harmonic functions (see [Sal02, §2.3.2] or [Bar, Proposition
1.45]).

Corollary 5.5. Let p ∈ (1,∞), df ≥ 1 and β > 0. Assume that G satisfies AR(df),
BCLlow

p (df−β) and capp,≤(β). For any λ ∈ (0, 1) there exist CHöl, θHöl > 0 depending only
on the constants associated with the assumptions such that for any non-negative function
h ∈ RV which is p-harmonic in a ball B with radius R ≥ 1,

|h(x)− h(y)| ≤ CHöl

(
dG(x, y)

R

)θHöl

osc
B
h, for all x, y ∈ λB. (5.6)
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5.2 Hölder continuous cutoff functions with controlled energy

In this subsection, we construct globally Hölder continuous cutoff functions with con-
trolled energy. Although energy minimizers for capacity are p-harmonic, the local Hölder
regularity given by Corollary 5.5 is not sufficient to conclude the desired global Hölder
regularity asserted in Theorem 5.6. This requires an additional Harnack-type estimate
near boundary.

The following theorem asserts the existence of Hölder continuous cutoff functions with
controlled energy and is the main result in this subsection. This will in turn be used to
show that our Sobolev spaces have a dense set of continuous functions.

Theorem 5.6. Let p ∈ (1,∞), df ≥ 1, β > 0 and K > 1. Assume that G satisfies
AR(df), BCLlow

p (df −β) and capp,≤(β). Then there exist θ∗, C∗ > 0 depending only on the
constants associated to the assumptions such that the following hold: for any z ∈ V and
R ≥ 1 with B(z,KR) 6= V , there exists a function ϕz,R : V → [0, 1] satisfies

ϕz,R
∣∣
B(z,R)

≡ 1, supp
[
ϕz,R

]
⊆ B(z,KR), (5.7)

EGp (ϕz,R) ≤ C∗R
df−β, (5.8)

and

|ϕz,R(x)− ϕz,R(y)| ≤ C∗

(
dG(x, y)

R

)θ∗
for any x, y ∈ V . (5.9)

Proof. Fix δ ∈
(
0, (4L)−1

)
and set δH = 4δL ∈ (0, 1), where L is the constant in Corollary

3.4. Note that δH is also the same constant as in Theorem 5.4. Then we let

δ∗ :=
K − 1

4δH + δ−1
H + 1

∧ K − 1

1 + 6δ−1
H

∧ δ
2
H

10
> 0,

fix ε ∈ [10−1δ∗, δ∗), and set R∗ := ε−1. The case 1 ≤ R ≤ R∗ follows by observing that
the function

ϕz,R(x) :=

(
dKRe − dG(z, x)

dKRe − bRc

)+

∧ 1.

satisfies the desired properties.

Hereafter, we consider the case R ≥ R∗. Define

D := B(z,KR) \

 ⋃
w∈∂iB(z,KR)

B
(
w, 2εδ−1

H R
) ,

and let ϕ = ϕz,R be the equilibrium potential with respect to capGp
(
B(z, R), Dc

)
satisfying

ϕB(z,R) ≡ 1 and supp[ϕ] ⊆ D, which exists by Proposition 2.11. Note that B(z,KR) 6= V
implies ∂iB(z,KR) 6= ∅. For any w ∈ ∂iB(z,KR) and y ∈ B(w, 2εδ−1

H R),

dG(z, y) ≥ dG(z, w)− dG(w, y) > bKRc − 2εδ−1
H R

≥ (K −R−1 − 2εδ−1
H )R ≥ (K − ε− 2εδ−1

H )R,
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which implies B(z,K ′R) ⊆ D, where K ′ := K ′(ε, δH, K) := K − ε− 2εδ−1
H > 1. Here we

used ε ≤ (K − 1)/(1 + 6δ−1
H ) < (K − 1)/(1 + 2δ−1

H ) to ensure that K ′ > 1. By Lemma
2.10, capp,≤(β), AR(df) and Lemma 5.2,

EGp (ϕ) = capGp
(
B(z,R), Dc

)
≤ capGp

(
B(z, R), B(z,K ′R)c

)
≤ C ′Rdf−β,

where C ′ > 0 depends only on the constants associated to the assumptions.

The rest is proving (5.9). It suffices to show the following Hölder regularity on each
balls with radii εR: there exist C, θ > 0 depending only on the constants associated with
the assumptions such that

|ϕ(x)− ϕ(y)| ≤ C

(
dG(x, y)

R

)θ
for all z′ ∈ D and x, y ∈ B(z′, εR). (5.10)

Fix z′ ∈ D and set B∗ := B(z′, 2εR). We consider the following three cases.

Case 1: δ−1
H B∗ ⊆ D \B(z, R). Note that oscV ϕ = 1 and that ϕ is p-harmonic in δ−1

H B∗.

The estimate (5.10) follows from Corollary 5.5.

Case 2: δ−1
H B∗ ∩B(z,R) 6= ∅. Since diam

(
δ−1

H B∗
)
≤ 4εδ−1

H < K ′−1 by ε < (K−1)/(1+

6δ−1
H ), we have from δ−1

H B∗ ∩B(z,R) 6= ∅ that δ−1
H B∗ ⊆ B(z,K ′R) ⊆ D. If B∗ ⊆ B(z,R),

then maxx,y∈B∗ |ϕ(x)− ϕ(y)| = |1− 1| = 0 and thus (5.10) is evident. In the rest of this
part, we suppose B(z,R) \B∗ 6= ∅. Define

m∗ := min
B∗

ϕ and M∗ := max
B∗

ϕ.

Clearly, 0 ≤ m∗ ≤ M∗ ≤ 1. By B(z,KR) 6= V , we note that ∂iδ
−1
H B∗ 6= ∅. Since ϕ is

p-superharmonic in D, by the minimum principle (Lemma 2.8), there exists a path γmin

in G satisfying

γmin ∈ Path(∂iB∗, ∂iδ
−1
H B∗; δ

−1
H B∗) and γmin ⊆ {ϕ ≤ m∗}.

Since

diamB∗ + rad
(
δ−1

H B∗
)
≤
(
4 + δ−1

H

)
εR <

δH

2
·R < R,

where we used ε < δ2
H/10 < δ2

H/(2 + 8δH) to ensure (4 + δ−1
H )ε < 2−1δH, we obtain

z 6∈ δ−1
H B∗. This together with ϕ

∣∣
B(z,R)

≡ maxV ϕ = 1 implies that there exists a path

γmax in G such that

γmax ∈ Path(∂iB∗, ∂iδ
−1
H B∗; δ

−1
H B∗) and γmax ⊆ {ϕ ≥M∗},

where we used the maximum principle (Lemma 2.8) on D \B(z,R) if necessary. Indeed,
for any x0 ∈ ∂iB(z,R) ∩ δ−1

H B∗, there exists a path γ0 ∈ Path({x0}, ∂iδ−1
H B∗; δ

−1
H B∗),

which automatically satisfies γ0 ⊆ {ϕ = 1} ⊆ {ϕ ≥ M∗}. If B∗ ∩ B(z,R) 6= ∅, then
γmax = γ0 is enough. Suppose B∗∩B(z,R) = ∅. Since ϕ is p-harmonic in δ−1

H B∗ \B(z, R),
an application of the maximum principle yields a path γ1 ∈ Path(∂iB∗, ∂B(z, R); δ−1

H B∗)
satisfying γ1 ⊆ {ϕ ≥ M∗}. Let us denote the endpoint of γ1 in ∂B(z,R) by x1. By
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choosing x0 ∈ ∂iB(z,R) ∩ δ−1
H B∗ so that {x0, x1} ∈ E, we obtain the desired path γmax

by concatenating γ0, {x0, x1} and γ1.

Using these paths γmin and γmax, we can cary out the same argument as in the proof of
Theorem 5.4. Indeed, since ϕ is positive and p-superharmonic in D, the log-Caccioppoli
inequality (Lemma 5.3) yields

EGp,B∗(logϕ) ≤ CpcapGp
(
B∗,
(
δ−1

H B∗
)c)
.

Similar to Theorem 5.4, we can obtain maxB∗ ϕ ≤ CH minB∗ ϕ, where CH is the constant
in Theorem 5.4. The desired estimate (5.10) follows from the above Harnack inequality
using the standard Moser’s oscillation lemma argument similar to Corollary 5.5.

Case 3: δ−1
H B∗ ∩Dc 6= ∅. A similar argument as Case 2 considering 1 − ϕ instead of ϕ

gives the desired Hölder regularity (5.10), and the proof is completed. �

6 Sobolev space via a sequence of discrete energies

We consider a sequence of finite graphs that can be regarded as approximations of a metric
space on a sequence of increasingly finer scales. The Sobolev space on a metric space is
then defined using this sequence of discrete energies.

6.1 Approximating a metric space by a sequence of graphs

We introduce our assumptions on a sequence of graphs.

Definition 6.1. Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected simple non-
directed graphs. We say that a family of surjective maps {πn,k : Vn → Vk | 1 ≤ k <
n, (n, k) ∈ N2} is projective if πn,k is surjective for all k < n and

πl,k ◦ πn,l = πn,k, for all k < l < n with k, l, n ∈ N.

Given {Gn}n∈N and a projective family of maps {πn,k : k < n}, we say that a sequence
of probability measures {mn ∈ P(Vn)}n∈N, where P(Vn) denotes the set of probability
measure on Vn, is consistent if

(πn,k)∗mn = mk for all k < n.

Given a sequence of finite connected graphs {Gn}n∈N, a projective family of maps {πn,k |
k < n}, and a consistent family of probability measures {mn}n∈N, we say that a sequence
of functions {fn : Vn → R}n∈N is conditional with respect to {mn}n∈N if

fk(v) =
1

mk(v)

∑
w∈π−1

n,k({v})

fn(w)mn(w) for all k < n, v ∈ Vk. (6.1)
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In the above definition, the graphs Gn can be regarded as approximating a metric
space (K, d) at a sequence of increasingly finer scales, while the measures mn can be
considered to approximate a measure m on K. A conditional sequence of functions can
be considered to approximate a function f on the metric space (K, d).

The sequence of measures {mn}n∈N in the above definition is often assumed to satisfy
the condition given by the following definition.

Definition 6.2. Let {mn ∈ P(Vn)}n∈N be a sequence of probability measures on a family
of finite sets Vn. We say that such a sequence {mn}n∈N is roughly uniform if there exists
Cu ≥ 1 such that

C−1
u mn(v) ≤ 1

#Vn
≤ Cumn(v), for all n ∈ N, v ∈ Vn. (6.2)

We introduce a geometric condition on the sequence of graphs which relates different
graphs in the sequence. Roughly speaking, the following condition states that diam(Gn)
grows like Rn

∗ and π−1
n+k,k(w) are ‘roundish’ in an uniform fashion; that is π−1

n+k,k(w) behave
like balls in the graph Gn+k for all w ∈ Vk.

Definition 6.3. Let R∗ ∈ (1,∞), let {Gn = (Vn, En)}n∈N be a sequence of finite, con-
nected simple non-directed graphs, and let {πn,k : Vn → Vk | 1 ≤ k < n} be a family of
projective maps. We say that the sequence of graphs {Gn}n∈N equipped with the projec-
tive maps {πn,k : Vn → Vk | k < n} is R∗-scaled if there exist A1, A2 ∈ (1,∞) so that the
following holds: for any n, k ∈ N, for all w ∈ Vk, there exists cn(w) ∈ Vn+k such that

Bdn+k
(cn(w), A−1

1 Rn
∗ ) ⊂ π−1

n+k,k(w) ⊂ Bdn+k
(cn(w), A1R

n
∗ ) (6.3)

and

dn+k(cn(w), cn(w′)) ≤ A2R
n
∗ whenever w,w′ ∈ Vk satisfy dk(w,w

′) = 1, (6.4)

where dn denotes the graph distance of Gn.

We next discuss discrete approximations of a metric space. Any compact metric
space can be approximated by a sequence of graphs on increasing finer scales. This idea is
present in various (closely related) notions such as hyperbolic filling [BBS22, BP03, BS18,
BS], K-approximation [BK02], quasi-visual approximation [BM22], generalized dyadic
cubes [HK12, Sas23], and partitions of a metric space indexed by tree [Kig20]. The
following definition describes yet another way in which a sequence of graphs ‘approximate’
a compact metric space.

Definition 6.4 (compatibility). Consider a compact metric space (K, d) and let R∗ ∈
(1,∞), θ ∈ (0, 1]. Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected simple non-
directed graphs and let {πn,k : Vn → Vk | 1 ≤ k < n} be a family of projective maps. Let
dn : Vn × Vn → Z≥0, n ∈ N denote the corresponding graph metrics. We say that {Gn}
along with {πn,k : Vn → Vk | 1 ≤ k < n} is R∗-compatible with (K, d) if there exists a

sequence of maps {pn : Vn → K}n∈N, a collection of Borel set
{
K̃v | v ∈ Vn, n ∈ N

}
and

C ∈ [1,∞) such that the following hold:
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(i) (comparision of metrics)

C−1dn(x, y)

Rn
∗
≤ d(pn(x), pn(y)) ≤ C

dn(x, y)

Rn
∗

(6.5)

for all x, y ∈ Vn and for all n ∈ N.

(ii) (partition) For all n ∈ N, the collection of sets
{
K̃v

}
v∈Vn

form a partition of K; that

is
⋃
v∈Vn K̃v = K and K̃u ∩ K̃w = ∅ for all u,w ∈ Vn with u 6= w.

(iii) (compatibility with projections) For all 1 ≤ k < n and for all v ∈ Vk, we have

K̃v =
⋃

w∈π−1
n,k(v)

K̃w. (6.6)

(iv) (roundness of partition) For all n ∈ N, v ∈ Vn, we have

Bd(pn(v), C−1R−n∗ ) ⊂ K̃v ⊂ Bd(pn(v), CR−n∗ ). (6.7)

Note that (6.5) implies that the points {pn(v) | v ∈ Vn} are C−1R−n∗ -separated and
that diam(Vn, dn) � Rn

∗ .

We introduce a uniform notion of AR(df) for a sequence of graphs.

Definition 6.5. We shall say that the sequence {Gn}n∈N satisfies df-Ahlfors regularity
condition uniformly, U-AR(df) for short, if there exists CAR ≥ 1 such that for all n ∈ N,
x ∈ Vn, R ∈ [1, diam(Gn)],

C−1
ARR

df ≤ #Bdn(x,R) ≤ CARR
df . (U-AR(df))

The following elementary lemma explains the relationship between a metric space and
a sequence of graphs approximating it in the sense of Definition 6.4 and the notions in
Definition 6.1 and 6.2.

Lemma 6.6. Let (K, d) be a compact metric space and let m be a df-Ahlfors regular
probability measure on (K, d). Let {Gn = (Vn, En)}n∈N be a sequence of connected, finite
graphs and let {πn,k : Vn → Vk | 1 ≤ k < n} be a projective family of maps. Suppose that

{Gn)} along with {πn,k | 1 ≤ k < n} is R∗-compatible with (K, d). Let
{
K̃v ∈ B(K)

∣∣ v ∈
Vn, n ∈ N

}
be a collection of Borel sets as given in Definition 6.4. Let

mn(v) := m(K̃v)

for all n ∈ N, v ∈ Vn. Then

(i) The sequence of graphs {Gn} satisfies U-AR(df).

(ii) The family of measures {mn} is roughly uniform, and is consistent with respect to
{πn,k | 1 ≤ k < n}.
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(iii) For any f ∈ L1(K,m), the family of functions Mnf : Vn → R defined by

(Mnf)(v) =
1

m(K̃v)

ˆ
K̃v

f dm, for all n ∈ N, v ∈ Vn, (6.8)

is conditional with respect to {mn} and {πn,k | 1 ≤ k < n}.

The operator Mn converts a function on K to a function on Vn. We would sometimes
like to construct functions on K using functions on Vn by defining

Jnf(·) :=
∑
v∈Vn

f(v)1K̃v(·), for all f : Vn → R, n ∈ N. (6.9)

6.2 Hypotheses on a sequence of graphs

A sequence of graphs approximating a metric space often satisfies some analytic properties
in an uniform manner. To this end, we introduce uniform versions of analytic conditions
such as capp,≤(β), BCLp(ζ), and PIp(β).

Definition 6.7. Let {Gn = (Vn, En)}n∈N be a sequence of graphs and let dn be the graph
metric of Gn. Let p ∈ (1,∞), df > 0, β > 0 and ζ ∈ R.

(1) We shall say that the sequence {Gn}n∈N satisfies p-capacity upper bound with order
β uniformly, U-capp,≤(β) for short, if there exist Ccap > 0 and Acap ≥ 1 such that
for any n ∈ N, x ∈ Vn and R ∈ [1, diam(Gn)/A),

capGnp
(
Bdn(x,R), Bdn(x, 2R)c

)
≤ Ccap

#Bdn(x,R)

Rβ
. (U-capp,≤(β))

(2) We shall say that the sequence {Gn}n∈N satisfies ball combinatorial p-Loewner prop-
erty with order ζ uniformly, U-BCLp(ζ) for short, if there exists A ≥ 1 such that
the following hold: for any κ > 0 there exist cBCL(κ) > 0, LBCL(κ) > 0 such that

ModGn
p ({θ ∈ PathGn(B1, B2) | diam(θ, dn) ≤ LBCL(κ)R}) ≥ cBCL(κ)Rζ

(U-BCLp(ζ))
whenever n ∈ N, R ∈ [1, diam(Gn)/A) and Bi (i = 1, 2) are balls in Gn with radii
R satisfying distdn(B1, B2) ≤ κR. We also say that {Gn}n∈N satisfies U-BCLlow

p (ζ)
if {Gn}n∈N satisfies U-BCLp(ζ) with ζ < 1.

(3) We shall say that the sequence of graphs {Gn}n∈N satisfies p-Poincaré inequality
with order β uniformly, U-PIp(β) for short, if there exist CPI, API ≥ 1 such that for
any n ∈ N, x ∈ Vn, R ≥ 1 and f : Vn → R,∑

y∈Bdn (x,R)

∣∣f(y)− fBdn (x,R)

∣∣p ≤ CPIR
βEGnp,Bdn (x,APIR)(f). (U-PIp(β))

Using the above definition, we can rephrase Theorem 4.2 for a sequence of graphs as
follows.
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Proposition 6.8. Let {Gn = (Vn, En)}n∈N be a sequence of finite connected graphs. Let
p ∈ (1,∞), df ≥ 1 and β > 0. Suppose that {Gn} satisfies U-AR(df) and U-BCLlow

p (df−β).
Then {Gn}n∈N satisfies U-PIp(β) (the associated constants CPI > 0 and API ≥ 1 depend
only on the constants involved in the assumptions).

The following definition gives a uniform notion of the metric doubling property for a
sequence of graphs.

Definition 6.9. Let {Gn = (Vn, En)}n∈N be a sequence of graphs and let dn be the graph
metric of Gn.

(1) Define L∗ := L∗({Gn}n∈N) := supn∈N deg(Gn).

(2) We shall say that {Gn}n∈N is uniformly metric doubling, U-MD for short, if there
exists ND ≥ 2 such that given n ∈ N, x ∈ Vn, R ≥ 1 there exist y1, . . . , yN ∈ Vn
satisfying Bdn(x,R) ⊆

⋃ND

i=1Bdn(yi, R/2).

Then the following property is an easy consequence of Remark 2.15.

Lemma 6.10. Let {Gn}n∈N be a sequence of graphs satisfying U-AR(df) for some df > 0.
Then L∗ <∞ and {Gn}n∈N is U-MD. In addition, the doubling constant ND can be chosen
so that ND depends only on CAR.

In order to state a version of Theorem 5.6 for a sequence of graphs, we introduce the
following definition.

Definition 6.11. Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected graphs.
Let p ∈ (1,∞), β > 0, ϑ ∈ (0, 1]. We say that the sequence of graphs {Gn} satisfies
U-CFp(ϑ, β) if there exists C∗ ∈ (0,∞) so that the following holds: for all n ∈ N, v ∈
Vn, R ≥ 1 there exists ϕv,R : Vn → [0, 1], so that

ϕv,R
∣∣
Bdn (v,R)

≡ 1, supp[ϕv,R] ⊆ Bdn(v, 2R) (6.10)

EGnp (ϕv,R) ≤ C∗
#Bdn(v,R)

Rβ
, (6.11)

|ϕv,R(x)− ϕv,R(y)| ≤ C∗

(
dn(x, y)

R

)ϑ
for all x, y ∈ Vn. (6.12)

The next result provides a family of Hölder continuous cutoff functions whose energies
are controlled in a uniform manner. This is an immediate consequence of Theorem 5.6.

Proposition 6.12. Let {Gn = (Vn, En)}n∈N be a sequence of finite connected graphs. Let
p ∈ (1,∞), df ≥ 1 and β > 0. Suppose that {Gn} satisfies U-AR(df), U-BCLlow

p (df − β)
and U-capp,≤(β). Then {Gn} satisfies U-CFp(ϑ, β) (the associated constants C∗, ϑ > 0
depend only on the constants involved in the assumptions).

We would like to define p-energy as limit of re-scaled discrete energies. The re-scaling
factor for discrete energies is suggested by the following weak monotonicity result for
scaled discrete energies.
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Theorem 6.13. Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected simple non-
directed graphs equipped with the projective maps {πn,k : Vn → Vk; k < n} and let {mn ∈
P(Vn)}n∈N be a consistent sequence of probability measures. Suppose that {Gn} along
with {πn,k; k < n} is R∗-scaled for some R∗ ∈ (1,∞) and the sequence {mn} is roughly
uniform. Let p ∈ (1,∞), df ≥ 1, β > 0 and we further suppose that the sequence {Gn}n∈N
satisfies U-AR(df) and U-PIp(β). There exists CWM ∈ (1,∞) depending only on the
constants associated to the assumptions such that for any conditional sequence of functions
{fn : Vn → R}n∈N with respect to {mn} and {πn,k}, we have

EGkp (fk) ≤ CWMR
l(β−df)
∗ EGk+l

p (fk+l) for all k, l ∈ N. (6.13)

Proof. Let fn : Vn → R, n ∈ N denote an arbitrary conditional sequence of functions as
above. Let A1, A2 ∈ (1,∞) be the constants as given in Definition 6.3, Cu ∈ (1,∞) be the
constant in Definition 6.2. Set A3 = 2A1 +A2. For any v, w ∈ Vk such that dk(v, w) = 1,
we have

π−1
k+l,k(v) ∪ π−1

k+l,k(w) ⊂ Bdk+l
(cl(v), A3R

l
∗) (by (6.3) and (6.4)). (6.14)

There is C1 ∈ [1,∞) depending only on the constants involved in U-AR(df), roughly
uniform, and R∗-scaled properties such that

C−1
1 R−ndf

∗ ≤ mn(v) ≤ C1R
−ndf
∗ for all n ∈ N, v ∈ Vn. (6.15)

For any v, w ∈ Vk such that dk(v, w) = 1 and for all α ∈ R, we have

|fk(v)− fk(w)| ≤ |fk(v)− α|+ |fk(w)− α|

≤

∣∣∣∣∣∣∣
∑

v1∈π−1
k+l,k(v)

fk+l(v1)
mk+l(v1)

mk(v)
− α

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∑

w1∈π−1
k+l,k(w)

fk+l(w1)
mk+l(w1)

mk(w)
− α

∣∣∣∣∣∣∣
≤

∑
v1∈π−1

k+l,k(v)

mk+l(v1)

mk(v)
|fk+l(v1)− α|+

∑
w1∈π−1

k+l,k(w)

mk+l(w1)

mk(w)
|fk+l(w1)− α|

(6.15)

≤ C2
1R
−ldf
∗

 ∑
v1∈π−1

k+l,k(v)

|fk+l(v1)− α|+
∑

w1∈π−1
k+l,k(w)

|fk+l(w1)− α|


(6.14)

≤ 2C2
1R
−ldf
∗

∑
v1∈Bdk+l

(cl(v),A3Rl∗)

|fk+l(v1)− α|

.
1

#Bdk+l
(cl(v), A3Rl

∗)

∑
v1∈Bdk+l

(cl(v),A3Rl∗)

|fk+l(v1)− α|, (6.16)

where in the last line, we used the U-AR(df). Let us choose α = (fk+l)Bdk+l
(cl(v),A3Rl∗)

in
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(6.16) and use Poincaré inequality U-PIp(β) to obtain

|fk(v)− fk(w)|p . 1

#Bdk+l
(cl(v), A3Rl

∗)

∑
v1∈Bdk+l

(cl(v),A3Rl∗)

∣∣∣fk+1(v1)− (fk+1)Bdk+l
(cl(v),A3Rl∗)

∣∣∣p
.

Rlβ
∗

#Bdk+l
(cl(v), A3Rl

∗)
EGk+l

p,Bdk+l
(cl(v),APIA3Rl∗)

(fk+l) (by U-PIp(β))

. Rl(β−df)
∗ EGk+l

p,Bdk+l
(cl(v),APIA3Rl∗)

(fk+l) (6.17)

for any v, w ∈ Vk such that dk(v, w) = 1. Using Lemma 6.10, we obtain

EGkp (fk) =
∑

{v,w}∈Ek

|fk(v)− fk(w)|p
(6.17)

. Rl(β−df)
∗

∑
v∈Vk

EGk+l

p,Bdk+l
(cl(v),APIA3Rl∗)

(fk+l). (6.18)

By (6.3), the points {cl(v) | v ∈ Vk} are 2A−1
1 Rl

∗-separated for all k, l ∈ N. Since {Gn}n∈N
are U-MD by Lemma 6.10, there exists C2 > 1 (depending only on API, A1, A2 and the
constants involved in U-AR(df)) such that∑

v∈Vk

1Bdk+l
(cl(v),APIA3Rl∗)

≤ C2, for all k, l ∈ N. (6.19)

The desired estimate (6.13) follows immediately from (6.18) and (6.19). �

Remark 6.14. In the work [Kig23], the notion of conductive homogeneity plays an impor-
tant role to develop the theory of (1, p)-Sobolev spaces via discretizations. The estimate
(6.17) can be regarded as a variant of this condition.

6.3 Sobolev space and cutoff functions

We now explain our strategy to construct p-energy as a scaling limit of discrete p-energies
in a general setting. The following assumption guarantees that our Sobolev space satisfies
good properties.

Assumption 6.15. Let p ∈ (1,∞), df ∈ [1,∞), β > 0 and ϑ ∈ (0, 1]. Let (K, d)
be a connected compact metric space with #K ≥ 2 and let m be a df-Ahlfors regular
probability measure on (K, d). Let {Gn = (Vn, En)}n∈N be a sequence of finite, connected
simple non-directed graphs and let {πn,k | 1 ≤ k < n} denote a projective family of maps.
There exists R∗ ∈ (1,∞) such that {Gn} along with {πn,k} is R∗-scaled and R∗-compatible
with (K, d). Furthermore, {Gn} satisfies U-PIp(β) and U-CFp(ϑ, β).

The weak monotonicity of discrete energies (Theorem 6.13) suggests the following
definition of Sobolev space.
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Definition 6.16. Under the setting of Assumption 6.15, we define the normalized energy
of f ∈ Lp(K,m) for any n ∈ N and A ⊆ Vn as

Ẽ (n)
p,A(f) := Rn(β−df)

∗ EGnp,A(Mnf), (6.20)

where Mnf is as given in (6.8). For ease of notation, we set Ẽ (n)
p (f) := Ẽ (n)

p,Vn
(f). Define

our (1, p)-Sobolev space Fp(K, d,m) by

Fp(K, d,m) :=

{
f ∈ Lp(K,m)

∣∣∣∣ sup
n∈N
Ẽ (n)
p (f) <∞

}
. (6.21)

We also set |f|Fp(K,d,m) :=
(

supn∈N Ẽ
(n)
p (f)

)1/p

and ‖f‖Fp(K,d,m) := ‖f‖Lp(m) + |f|Fp(K,d,m).

We use Fp instead of Fp(K, d,m) when no confusion can occur.

Hereafter in this section, we always assume that Assumption 6.15 holds. Thanks to
Theorem 6.13 and Lemma 6.6, we have

lim inf
n→∞

Ẽ (n)
p (f) � lim sup

n→∞
Ẽ (n)
p (f) � sup

n∈N
Ẽ (n)
p (f), for all f ∈ Lp(K,m). (6.22)

In particular,

Fp =

{
f ∈ Lp(K,m)

∣∣∣∣ lim inf
n→∞

Ẽ (n)
p (f) <∞

}
=

{
f ∈ Lp(K,m)

∣∣∣∣ lim sup
n→∞

Ẽ (n)
p (f) <∞

}
.

Some properties of Fp are already mentioned in [Kig23, Section 3.2] in the framework
of weighted partition theory developed in [Kig20]. We summarize the basic properties of
the Sobolev space (Fp, ‖ · ‖Fp) in the following theorem.

Theorem 6.17. Let (K, d) be a connected compact metric space with a df-Ahlfors regular
probability measure m and let {Gn = (Vn, En)}n∈N be a sequence of finite connected graphs
satisfying Assumption 6.15. Let (Fp, ‖ · ‖Fp) denote the normed linear space in Definition

6.16. Then (Fp, ‖ · ‖Fp) satisfies the following properties.

(i) (Fp, ‖ · ‖Fp) is a Banach space.

(ii) (Fp, ‖ · ‖Fp) admits an equivalent uniformly convex norm. In particular, (Fp, ‖ · ‖Fp)
is a reflexive Banach space.

(iii) The Banach space (Fp, ‖ · ‖Fp) is separable.

(iv) Fp ∩ C(K) is dense in C(K) with respect to the uniform norm.

(v) Fp ∩ C(K) is dense in the Banach space (Fp, ‖ · ‖Fp).

The combination of properties (iv) and (v) is referred to as regularity in the theory
of Dirichlet forms [FOT, p. 6]. The proof of Theorem 6.17 will be completed over this
section and the next. It is easy to show the completeness of Fp.
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Proof of Theorem 6.17(i). This follows from [Kig23, Lemma 3.24]. �

Next, we will prove reflexivity and separability of the Banach space Fp. The reflexivity
of such a function space is proved by the second-named author in [Shi+] by showing the
existence a comparable uniformly convex norm. To construct a uniformly convex norm
on Fp which is equivalent to ‖ · ‖Fp , we need the notion of Γ-convergence; see [Dal] for
details. We first recall the definition.

Definition 6.18 ([Dal, Definition 4.1 and Proposition 8.1]). Let X be a first-countable
topological space and let F : X → R ∪ {±∞}. A sequence of functionals {Fn : X →
R ∪ {±∞}}n∈N Γ-converges to F if the following conditions hold for any x ∈ X:

(i) (liminf inequality) If xn → x in X, then F (x) ≤ lim infn→∞ Fn(xn).

(ii) (limsup inequality) There exists a sequence {xn}n∈N in X such that

xn → x in X and lim sup
n→∞

Fn(xn) ≤ F (x). (6.23)

A sequence {xn}n∈N satisfying (6.23) is called a recovery sequence of {Fn}n∈N at x.

The following compactness result is useful to construct Γ-limits.

Proposition 6.19 ([Dal, Theorem 8.5]). Suppose that X is a topological space with a
countable base. Then any sequence of functionals {Fn : X → R ∪ {±∞}}n∈N has a Γ-
convergent subsequence.

Now we can establish reflexivity.

Proof of Theorem 6.17(ii). This is essentially the same as in [Shi+, Theorem 5.9], so we
briefly outline the proof. By Proposition 6.19, we have a Γ-cluster point Ep of the sequence

of functionals
{
Ẽ (n)
p

}
n∈N on Lp(K,m). It is easy to show that Ep( · )1/p is a semi-norm on

Fp. The liminf inequality implies Ep( · )1/p ≤ |·|Fp . A combination of limsup inequality

and weak monotonicity (Theorem 6.13) implies the converse estimate Ep( · )1/p & |·|Fp .
Hence |||f ||| :=

(
‖f‖pLp + Ep(f)

)1/p
is a norm on Fp, which is equivalent to ‖ · ‖Fp . Noting

that ||| · ||| is a Γ-cluster point of ‖ · ‖p,n :=
(
‖ · ‖pLp + Ẽ (n)

p ( · )
)1/p

, which can be regarded

as the Lp-norm on K t En, we easily obtain p-Clarkson’s inequality of ||| · |||:{
|||f + g|||p/(p−1) + |||f − g|||p/(p−1) ≤ 2

(
|||f |||p + |||g|||p)

)1/(p−1)
if p ≤ 2,

|||f + g|||p + |||f − g|||p ≤ 2
(
|||f |||p/(p−1) + |||g|||p/(p−1))p−1

if p ≥ 2.
(6.24)

Then (Fp, ||| · |||) is a uniform convex Banach space [Cla36, p. 403], so the Milman–Pettis
theorem implies the reflexivity of Fp. �
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In [Shi+, Theorem 5.10], the separability of Fp has shown by using its reflexivity in
the situation that Fp is continuously embedded into C(K) (cf. [Kig23, Theorem 3.22] or
[Shi+, Theorem 5.1]). The proof of [Shi+, Theorem 5.10] essentially relies on such an
embedding. Here, we will adopt another simple way to show the separability by using an
idea in [AHM23].

Proof of Theorem 6.17(iii). The Banach space Fp is reflexive by Theorem 6.17(ii), and
Lp(K,m) is separable since K is separable. Clearly, the identity map i : Fp → Lp(K,m)
is a bounded linear injective map, so Fp is separable by [AHM23, Proposition 4.1]. �

We will next show the density of Fp ∩ C(K) in C(K) with respect to the uniform
norm. To show such the density, a standard idea is to use Stone–Weierstrass theorem by
showing that Fp∩C(K) is an algebra that separates points of K. We recall Arzelá–Ascoli
type theorem for (possibly) discontinuous functions in order to construct a function in
Fp∩C(K) that separates two distinct points (a cutoff function). The proof that Fp∩C(K)
is an algebra will be done in the next subsection.

Lemma 6.20. Let (X, d) be a totally bounded metric space. Let un : X → R, n ∈ N be a
sequence of functions. Assume that there exist a non-decreasing function η : [0,∞) →
[0,∞) and a sequence {δn}n∈N of non-negative numbers such that limt↓0 η(t) = 0,
limn→∞ δn = 0, supn∈N,x∈X |un(x)| <∞ and

|un(x)− un(y)| ≤ η(d(x, y)) + δn for all x, y ∈ X and n ∈ N. (6.25)

Then there exist a subsequence {unk}k∈N and u ∈ C(X) with

|u(x)− u(y)| ≤ η(d(x, y)) for all x, y ∈ X,

such that supx∈X |unk(x)− u(x)| → 0 as k →∞.

Proof. This is a simplified version of [Kig23, Lemma D.1]. Indeed, the case (Y, dY ) =
(R, |·|) in [Kig23, Lemma D.1] is enough to obtain the required statement. �

The next proposition constructs cutoff functions with controlled energy in Fp ∩C(K).
We use the following useful notation. For A ⊆ K, we define

Vn(A) :=
{
w ∈ Vn

∣∣ K̃w ∩ A 6= ∅
}
. (6.26)

Proposition 6.21. There exists C ∈ (1,∞) depending only on the constants associated
with Assumption 6.15 such that for any r > 0, x ∈ K such that Bd(x, 2r) 6= K, we have
a function ψx,r ∈ Fp ∩ C(K) such that ψx,r

∣∣
Bd(x,r)

= 1, supp[ψx,r] ⊆ Bd(x, 2r) and

sup
n∈N
Ẽ (n)
p (ψx,r) ≤ Crdf−β.
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Proof. Let {K̃v | v ∈ Vn, n ∈ N}, C ∈ (1,∞) be as given in Definition 6.4. By (6.5) and
(6.7), we have

K̃w ⊂ Bd(x, r + 2CR−n∗ + CRR−n∗ ) for any w ∈
⋃
v∈Vn(Bd(x,r))Bdn(v,R). (6.27)

We choose Rn > 0 so that CRnR
−n
∗ = r/2 and a maximal Rn/2-separated subset N of

Vn(Bd(x, r)) with respect to the metric dn, so that
⋃
w∈N Bdn(w,Rn/2) ⊃ Vn(Bd(x, r)).

Since {pn(w) | w ∈ N} is C−1(Rn/2)R−n∗ -separated and satisfies {pn(w)}w∈N ⊂ Bd(x, r+
CR−n∗ ). Therefore by the df-Ahlfors regularity of m, we obtain

#N .

(
r + cR−n∗
RnR

−n
∗

)df

.

(
RnR

−n
∗ +R−n∗
RnR

−n
∗

)df

. 1 (6.28)

for all n large enough so that Rn ≥ 1.

For n large enough so that 2CR−n∗ < r/2, we have Rn ≥ 2 and K̃w ⊂ Bd(x, 2r)
for any w ∈

⋃
v∈Vn(Bd(x,r))Bdn(v,Rn) (by (6.27)). Therefore by applying U-CFp(ϑ, β),

for each w ∈ N , there exists ϕw,Rn/2 : Vn → [0, 1] such that ϕw,Rn/2
∣∣
Bdn (w,Rn/2)

≡ 1,

supp[ϕw,Rn/2] ⊆ Bdn(w,Rn),
EGnp (ϕw,Rn/2) . Rdf−β

n ,

and ϕw,Rn/2 satisfies the Hölder regularity condition (6.12). Hence by (6.27) and (6.28),
the function ϕn : Vn → R defined by

ϕn := max
w∈N

ϕw,Rn/2

satisfies Jnϕn
∣∣
Bd(x,r)

≡ 1, suppm[Jnϕn] ⊆ Bd(x, 2r),

ϕn ≡ 1 on Vn(Bd(x, r)), EGnp (ϕn) . Rdf−β
n . rdf−βRn(df−β)

∗ , (6.29)

and

|ϕn(v1)− ϕn(v2)| .
(
dn(v1, v2)

Rn

)ϑ
, for all v1, v2 ∈ Vn, (6.30)

for all n ∈ N so that 2CR−n∗ < r/2. To estimate the energy, we used the elementary
inequality EGnp (maxw∈N ϕw,Rn/2) ≤

∑
w∈N EGnp (ϕw,Rn/2) (see Lemma 2.6(a)). By Lemma

6.20, (6.30), (6.5), and (6.7), there exists a subsequence {Jnkϕnk}k of {Jnϕn}n which
converges uniformly to a function ψx,r ∈ C(K). Then it is clear that ψx,r

∣∣
Bd(x,r)

≡ 1

and supp[ψx,r] ⊆ Bd(x, 2r). Using weak monotonicity (Theorem 6.13) and dominated
convergence theorem, we obtain

Ẽ (n)
p (ψx,r) = Rn(β−df)

∗ EGnp (Mnψx,r) = lim
nk→∞

Rn(β−df)
∗ EGnp (MnJnkϕnk)

(6.13)

. lim inf
nk→∞

Rnk(β−df)
∗ EGnkp (ϕnk)

(6.29)

. rdf−β.

Therefore ψx,r ∈ Fp ∩ C(K) and it satisfies the desired bound on energy. �
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6.4 Scaling limit of discrete energies and regularity

In the rest of this section, we suppose that Assumption 6.15 holds as in the previous
subsection. In this setting, we will construct an ‘improved’ p-energy type functionals on
(K, d,m), which verifies that Fp ∩ C(K) is an algebra.

Theorem 6.22. There exist a constant C ≥ 1 (depending only on the constants associated
with Assumption 6.15) and EΓ

p : Fp → [0,∞) such that the following hold:

(i) EΓ
p ( · )1/p is a semi-norm on Fp satisfying C−1|f|Fp ≤ E

Γ
p (f)1/p ≤ |f|Fp for all f ∈ Fp.

Moreover, it satisfies p-Clarkson’s inequality: for any f, g ∈ Fp,{
EΓ
p (f + g)1/(p−1) + EΓ

p (f − g)1/(p−1) ≤ 2
(
EΓ
p (f) + EΓ

p (g)
)1/(p−1)

if p ≤ 2,

EΓ
p (f + g) + EΓ

p (f − g) ≤ 2
(
EΓ
p (f)1/(p−1) + EΓ

p (g)1/(p−1)
)p−1

if p ≥ 2,

In particular, EΓ
p ( · )1/p is uniformly convex.

(ii) For any f ∈ Fp and 1-Lipschitz function ϕ ∈ C(R), we have ϕ ◦ f ∈ Fp and
EΓ
p (ϕ ◦ f) ≤ EΓ

p (f).

(iii) If f, g ∈ Fp ∩ L∞(K,m), then f · g ∈ Fp and

EΓ
p (f · g) ≤ 2p−1

(
‖g‖pL∞ E

Γ
p (f) + ‖f‖pL∞ E

Γ
p (g)

)
.

(iv) EΓ
p is lower semi-continuous on Lp(K,m). (Here we regard EΓ

p as a [0,∞]-valued
functional by defining EΓ

p (f) :=∞ for f ∈ Lp(K,m) \ Fp.)

(v) Let T : (K,B(K),m)→ (K,B(K),m) be a measure preserving transformation, i.e.,
T is Borel measurable and m(T−1(A)) = m(A) for any Borel set A of K. Then
f ◦ T ∈ Fp for any f ∈ Fp and EΓ

p (f ◦ T ) = EΓ
p (f).

Proof. Let EΓ
p = Ep be a Γ-cluster point of

{
Ẽ (n)
p

}
n∈N as the proof of Theorem 6.17(ii).

Then the properties in (i) except for p-Clarkson’s inequality are already shown, and p-
Clarkson’s inequality of EΓ

p follows from a similar argument as in Theorem 6.17(ii).

(ii) Once we know ‖f − fn‖Lp → 0 as n→∞ for any f ∈ Lp(K,m) and fn := Jn
(
Mnf

)
,

where Jn : RVn → L0(K,m) be the operator defined in (6.9), a straightforward modifica-
tion of [Kig23, Theorem 3.21(b)] proves the assertion. So we will prove ‖f − fn‖Lp → 0
as n → ∞. Note that |Mnf(z)|p ≤

ffl
K̃z
|f|p dm for all z ∈ Vn by Jensen’s inequality, and

hence ‖fn‖Lp ≤ ‖f‖Lp . For x ∈ K, let z ∈ Vn be the unique element such that x ∈ K̃z.
Then, by (6.7),

|fn(x)| = |Mnf(z)| ≤
m
(
Bd(x, 2CR

−n
∗ )
)

m(K̃z)
M |f|(x),

where C ≥ 1 is the constant in (6.7) and M : Lp(K,m) → Lp(K,m) is the Hardy–
Littlwood maximal operator : M f(x) = supr>0

ffl
Bd(x,r)

f(y)m(dy) for f ∈ Lp(K,m). Since
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m is Ahlfors regular, we have ‖M f‖Lp . ‖f‖Lp for any f ∈ Lp(K,m) (see [HKST,
Theorem 3.5.6] for example) and, by (6.7),

sup
n∈N,z∈Vn,x∈Kz

m(Bd(x, 2CR
−n
∗ ))

m(K̃z)
<∞. (6.31)

Thus each fn is dominated by C ′M |f| ∈ Lp(K,m) for some constant C ′ > 0.

We next show m-a.e. convergence of {fn}n∈N. Since m is Ahlfors regular, the Lebesgue
differentiation theorem on (K, d,m) holds (see [HKST, Section 3.4] for example), i.e., the
set Lf (Lebesgue points of f) defined by

Lf :=

{
x ∈ K

∣∣∣∣∣ lim
r↓0

 
Bd(x,r)

|f(x)− f(y)|m(dy) = 0

}
is a Borel set and m(K \Lf ) = 0. Let x ∈ Lf and let z ∈ Vn be the unique element such

that x ∈ K̃z. Then we see that

|f(x)− fn(x)| ≤
 
K̃z

|f(x)− f(y)|m(dy) ≤ m(Bd(x, 2CR
−n
∗ ))

m(K̃z)

 
Bd(x,2CR−n∗ )

|f(x)− f(y)|m(dy).

By (6.31), we have limn→∞ |f(x)− fn(x)| = 0 for all x ∈ Lf . The dominated convergence
theorem implies ‖f − fn‖Lp → 0.

(iii) Let {fk}k, {gk}k be recovery sequences at f, g ∈ Fp ∩ L∞(K,m). Then we see that

EΓ
p (f · g) ≤ lim inf

k→∞
Ẽ (nk)
p (Mnkf ·Mnkg)

≤ 2p−1
(
‖g‖pL∞ lim

k→∞
Ẽ (nk)
p (Mnkf) + ‖f‖pL∞ lim

k→∞
Ẽ (nk)
p (Mnkg)

)
(by Lemma 2.6 (b))

≤ 2p−1
(
‖g‖pL∞ E

Γ
p (f) + ‖f‖pL∞ E

Γ
p (g)

)
.

(iv) This follows from an elementary fact on the Γ-convergence [Dal, Proposition 6.8].

(v) Let f ∈ Fp and let {fk}k be a recovery sequence at f . Since Mng = Mn(g ◦ T ) for
any n ∈ N and g ∈ Lp(K,m), we have f ◦ T ∈ Fp. Note that ‖f ◦ T − fk ◦ T‖Lp =
‖f − fk‖Lp → 0. Then

EΓ
p (f ◦ T ) ≤ lim inf

k→∞
Ẽ (nk)
p (Mnk(fk ◦ T )) = lim inf

k→∞
Ẽ (nk)
p (Mnkfk) ≤ EΓ

p (f).

The converse EΓ
p (f) ≤ EΓ

p (f ◦T ) can be shown by considering a recovery sequence at f ◦T .
We complete the proof. �

Combining Proposition 6.21 and Theorem 6.22(iii), we can show the density of Fp ∩
C(K) in C(K). The density of Fp ∩ C(K) in Fp requires a long preparation and will be
shown in Section 7.

Proof of Theorem 6.17(iv). By Proposition 6.21, Fp ∩ C(K) separates points of K. We
note that, by Theorem 6.22(iii), Fp ∩ C(K) is a sub-algebra of C(K). So by Stone-
Weierstrass theorem, Fp ∩ C(K) is dense in C(K) with respect to the uniform norm. �
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6.5 Poincaré type inequalities and partition of unity

In this subsection, we prove Poincaré type inequality and provide a partition of unity with
low energies.

Since we are yet to construct measures that play the role of “|∇f|p dm”, we express
Poincaré inequality using re-scaled discrete p-energies. The following lemma allows us to
obtain a version of Poincaré inequality from U-PIp(β).

Lemma 6.23. There exists C > 0 (depending only on p and the doubling constant of m)
such that the following holds: for any x ∈ K, r > 0 and f ∈ Lp(K,m),

 
Bd(x,r)

∣∣f(x)− fBd(x,r)

∣∣pm(dx) ≤ C lim inf
n→∞

1

m
(
K̃

(n)
x,r

) ∑
w∈Vn(Bd(x,r))

∣∣∣Mnf(w)− f
K̃

(n)
x,r

∣∣∣pm(K̃w

)
,

where we set K̃
(n)
x,r =

⋃
w∈Vn(Bd(x,r)) K̃w (n ∈ N) for ease of notation.

Proof. Let x ∈ K, r > 0 and f ∈ Lp(K,m). For each n ∈ N, define fn := Jn(Mnf),
where Jn : RVn → L0(K,m) is as given by (6.9). For all n ∈ N large enough so that

K̃
(n)
x,r ⊆ Bd(x, 2r), we have

1

m
(
K̃

(n)
x,r

) ∑
w∈Vn(Bd(x,r))

∣∣∣Mnf(w)− f
K̃

(n)
x,r

∣∣∣pm(K̃w

)
=

1

m
(
K̃

(n)
x,r

) ∑
w∈Vn(Bd(x,r))

ˆ
K̃w

∣∣∣fn − fK̃(n)
x,r

∣∣∣p dm
&
 
Bd(x,r)

∣∣∣fn − fK̃(n)
x,r

∣∣∣p dm
&
 
Bd(x,r)

∣∣fn − (fn)Bd(x,r)

∣∣p dm,
where we used the volume doubling property of m in the second line, and [BB, Lemma
4.17] in the last line. Since ‖f − fn‖Lp → 0 by the same argument as in Theorem 6.22,
the dominated convergence theorem yields

lim
n→∞

 
Bd(x,r)

∣∣fn − (fn)Bd(x,r)

∣∣p dm =

 
Bd(x,r)

∣∣f − fBd(x,r)

∣∣p dm,
which proves our assertion. �

Now we prove a (p, p)-Poincaré-like inequality.

Lemma 6.24. There exist C > 0 and A ≥ 1 (depending only on the constants associated
with Assumption 6.15) such that for all x ∈ K, r > 0 and f ∈ Lp(K,m),

ˆ
Bd(x,r)

∣∣f − fBd(x,r)

∣∣p dm ≤ Crβ lim inf
n→∞

Ẽ (n)
p,Vn(Bd(x,Ar))(f). (6.32)
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Proof. Let x ∈ K, r > 0 and f ∈ Fp. Let K̃
(n)
x,r be the same as in the previous lemma

for each n ∈ N. Let C ≥ 1 be the constant in Definition 6.4 and choose Rn > 0 so that
RnR

−n
∗ = 2Cr. Note that Rn ↑ +∞ as n → ∞. Since

{
K̃w

}
w∈Vn

is a partition of K,

there exists a unique cn ∈ Vn(Bd(x, r)) such that x ∈ K̃cn . For all w ∈ Vn(Bd(x, r)), by

(6.5), (6.7), and picking a point y ∈ Bd(x, r) ∩ K̃v,

dn(cn, w) ≤ CRn
∗d(pn(cn), pn(w)) ≤ CRn

∗
(
d(x, pn(cn)) + d(x, y) + d(y, pn(v))

)
< CRn

∗
(
CR−n∗ + r + CR−n∗

)
= 2C2 +

Rn

2
.

Hence we have Vn(Bd(x, r)) ⊆ Bdn(cn, Rn) for all large enough n ∈ N. By U-PIp(β), for
all large n ∈ N,

1

m
(
K̃

(n)
x,r

) ∑
w∈Vn(Bd(x,r))

∣∣Mnf(w)− (Mnf)Bdn (wn,Rn)

∣∣pm(K̃w

)
≤ 1

m(Bd(x, r))

∑
v∈Bdn (cn,Rn)

∣∣Mnf(w)− (Mnf)Bdn (wn,Rn)

∣∣pm(K̃w

)
. r−dfR−ndf

∗

∑
v∈Bdn (cn,Rn)

∣∣Mnf(w)− (Mnf)Bdn (wn,Rn)

∣∣p
. r−dfR−ndf

∗ Rβ
nEGnp,Bdn (cn,APIRn)(Mnf) . r−df+βRn(β−df)

∗ EGnp,Bdn (cn,APIRn)(Mnf).

For any v ∈ Bdn(cn, APIRn), by (6.5) and (6.7),

K̃v ⊆ Bd

(
x, 2CR−n∗ + CAPIRnR

−n
∗
)
⊆ Bd

(
x, (2C2API + 1)r

)
,

for all large n ∈ N so that 2CR−n∗ ≤ r. Let A′PI := 2C2API + 1. Combining with [BB,
Lemma 4.17], we obtain

1

m
(
K̃

(n)
x,r

) ∑
w∈Vn(Bd(x,r))

∣∣∣Mnf(w)− f
K̃

(n)
x,r

∣∣∣pm(K̃w

)
. r−df+βẼ (n)

p,Vn(Bd(x,A′PIr))
(f).

Letting n→∞ and using Lemma 6.23 completes the proof. �

We next provide a partition of unity with low energies without proofs. The following
proposition is an immediate consequence of Theorem 6.22 (i) and (ii). (See [MR, I-Exercise
4.16] in the case p = 2.)

Lemma 6.25. (i) For any f ∈ Fp and h ∈ {|f|, f+, f−}, we have EΓ
p (h) ≤ EΓ

p (f).
Furthermore, there exists Cp ≥ 1 depending only on p such that

EΓ
p (f ∧ g) + EΓ

p (f ∨ g) ≤ Cp
(
EΓ
p (f) + EΓ

p (g)
)

for all f, g ∈ Fp. (6.33)

(ii) Let c,M > 0 and let f, g ∈ Fp be non-negative functions such that f + g ≥ c and
f ≤M . Then there exists Dc,M depending only on p, c,M such that

EΓ
p

(
f

f + g

)
≤ Dc,M

(
EΓ
p (f) + EΓ

p (g)
)
. (6.34)
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Using Proposition 6.21, Lemma 6.25 and following a standard argument (see for in-
stance, [Mur20, Lemma 2.5] in the case p = 2), we obtain a partition of unity with
controlled energy.

Lemma 6.26. Let ε ∈ (0, 1) and let V be a maximal ε-net of (K, d). Then there exists a
family of functions {ψz}z∈V that satisfies the following properties:

(i)
∑

z∈V ψz ≡ 1;

(ii) For any z ∈ V , we have ψz ∈ Fp ∩ C(K) with 0 ≤ ψz ≤ 1, ψz
∣∣
Bd(z,ε/4)

≡ 1 and

supp[ψz] ⊆ Bd(z, 5ε/4);

(iii) If z ∈ V and z′ ∈ V \ {z}, then ψz′
∣∣
Bd(z,ε/4)

≡ 0.

(iv) There exists C ≥ 1 (depending only on the constants associated with Assumption
6.15) such that |ψz|pFp ≤ Cεdf−β for all z ∈ V .

7 Comparison with Korevaar–Schoen energies

In this section, we describe the Sobolev space Fp in terms of fractional Korevaar–Schoen
energies. The associated function spaces are also called Lispchitz–Besov spaces. For
Dirichlet forms on fractals endowed with nice heat kernel estimates, such characterizations
are well-known; cf. [GHL03, Jon96, Kum00, PP99].

In this section, we will always assume that the metric measure space (K, d,m) satisfies
Assumption 6.15. For r > 0 and A ∈ B(K), define Jp,r( · ;A) : Lp(K,m)→ [0,∞) by

Jp,r(f ;A) :=

ˆ
A

 
Bd(x,r)

|f(x)− f(y)|pm(dy)m(dx) for each f ∈ Lp(K,m).

We write Jp,r(f) for Jp,r(f ;K) for ease of notation. The following main result in this sec-
tion claims that our (1, p)-Sobolev space Fp coincides with the critical fractional Korevaar-

Schoen space B
β/p
p,∞ in this setting (recall Definition 1.3), where β > 0 is the exponent in

Assumption 6.15.

Theorem 7.1. Let (K, d,m) be a metric measure space satisfying Assumption 6.15. Then
there exists C ≥ 1 (depending only on the constants associated with Assumption 6.15) such
that

C−1|f|pFp ≤ lim inf
r↓0

r−βJp,r(f) ≤ sup
r>0

r−βJp,r(f) ≤ C|f|pFp for any f ∈ Lp(K,m). (7.1)

In particular, Fp = B
β/p
p,∞ and supr>0 r

−βJp,r(f) ≤ C2 limr↓0 r
−βJp,r(f) for any f ∈

Lp(K,m). Moreover, β/p = sp, where sp is the critical exponent defined in (1.3).

The proof of Theorem 7.1 will be divided into two parts. We start by showing
supr>0 r

−βJp,r(f) . |f|Fp using the Poincaré inequality in Lemma 6.24.
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Lemma 7.2. There exists C > 0 (depending only on the constants associated with As-
sumption 6.15) such that for all Borel set U of K and f ∈ Lp(K,m),

lim sup
r↓0

r−βJp,r(f ;U) ≤ C lim sup
r↓0

lim inf
n→∞

Ẽ (n)
p,Vn(Ur)

(f), (7.2)

where Ur denotes the r-neighborhood of U , i.e., Ur =
⋃
y∈U Bd(y, r) for each r > 0.

Moreover, it holds that supr>0 r
−βJp,r(f) ≤ C|f|pFp.

Proof. Let r > 0 and let Nr ⊆ U be a maximal r-net of U with respect to the metric d.
Note that Bd(x, r) ⊆ Bd(y, 2r) for y ∈ Nr and x ∈ Bd(y, r). We see that

r−βJp,r(f ;U) ≤
∑
y∈Nr

r−βJp,r(f ;Bd(y, r))

.
∑
y∈Nr

ˆ
Bd(y,2r)

 
Bd(y,2r)

|f(x)− f(y)|p

rβ
m(dy)m(dx) (by VD)

.
∑
y∈Nr

ˆ
Bd(y,2r)

 
Bd(y,2r)

{∣∣f(x)− fBd(y,2r)

∣∣p
rβ

+

∣∣f(y)− fBd(v,2r)

∣∣p
rβ

}
m(dy)m(dx)

.
∑
y∈Nr

lim inf
n→∞

Ẽ (n)
p,Vn(Bd(y,2Ar))(f). (by Lemma 6.24) (7.3)

For any y ∈ Nr and w ∈ Vn(Bd(y, 2Ar)), it is immediate that w ∈ Vn(U2Ar). The overlap
of
{
Vn(Bd(y, 2Ar))

}
y∈Nr

can be controlled in the following manner. Let y ∈ Nr and let

n ∈ N be large enough so that CR−n∗ < r, where C ≥ 1 is the constant in Definition 6.4.
Then we easily see that {pn(w)}w∈Vn(Bd(y,2Ar)) ⊆ Bd(y, (2A+ 1)r). In particular, we have

max
w∈Vn

#
{
y ∈ Nr

∣∣ w ∈ Vn(Bd(y, 2Ar))
}
≤ sup

x∈K
#
{
y ∈ Nr

∣∣ x ∈ Bd(y, (2A+ 1)r)
}
. 1,

(7.4)

where we used the metric doubling property in the last inequality.

Let us go back to the estimate on
∑

y∈Nr limn→∞ Ẽ
(n)
p,Vn(Bd(y,2Ar))(f). By (7.4),∑

y∈Nr

lim
n→∞

Ẽ (n)
p,Vn(Bd(y,2Ar))(f) ≤ lim

n→∞

∑
y∈Nr

Ẽ (n)
p,Vn(Bd(y,2Ar))(f) . lim

n→∞
Ẽ (n)
p,Vn(U2Ar)

(f). (7.5)

Combining with (7.3) and taking the limsup as r ↓ 0 proves (7.2).

In the case U = K, by considering |f|pFp instead of limn→∞ Ẽ
(n)
p,Vn(U2Ar)

(f) in (7.5), we

immediately get r−βJp,r(f) . |f|pFp , which completes the proof. �

Next we move to the converse bound: lim infr↓0 r
−βJp,r(f) & |f|pFp . Our approach is

similar to [Bau22+, Theorem 5.2] but we give a local version as well.
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Lemma 7.3. There exists C > 0 (depending only on the constants associated with As-
sumption 6.15) such that the following hold. For all U ⊆ K and f ∈ Fp,

lim sup
n→∞

Ẽ (n)
p,Vn(U)(f) ≤ C lim

δ↓0
lim inf
r↓0

r−βJp,r(f ;Uδ), (7.6)

where Uδ denotes the δ-neighborhood of U . Furthermore, for any f ∈ Lp(K,m),

|f|pFp ≤ C lim inf
r↓0

r−βJp,r(f). (7.7)

Proof. Let r ∈ (0, 1) and fix a maximal r-net Nr(U) ⊆ U of U . Let Nr be a maximal
r-net of (K, d) such that Nr(U) ⊆ Nr. We first observe that, by (6.5) and (6.7), for large
enough n ∈ N,

K̃v ∪ K̃w ⊆ Bd(z, 5r/4) whenever z ∈ K, {v, w} ∈ En and v ∈ Vn(Bd(z, r)) .

Therefore, for all large n ∈ N and f ∈ Lp(K,m),

Ẽ (n)
p,Vn(U)(f) ≤

∑
z∈Nr(U)

Ẽ (n)
p,Vn(Bd(z,5r/4))(f).

Let {ψz,r}z∈Nr satisfy the conditions (i)-(iv) in Lemma 6.26. To estimate Ẽ (n)
p,Vn(Bd(z,5r/4))(f),

we introduce a linear operator Ar : Lp(K,m)→ Lp(K,m) as

Arf :=
∑
z∈Nr

fBd(z,r/4)ψz,r, f ∈ Lp(K,m).

Note that Arf ∈ Fp ∩ C(K). It is easy to show that ‖Arf − f‖Lp → 0 as r → 0 for every
f ∈ Lp(K,m) and supr>0 ‖Ar‖Lp→Lp <∞. For z ∈ Nr and x ∈ Bd(z, 3r/2), we observe

Arf(x) = fBd(z,r/4) +
∑

w∈Nr∩Bd(z,11r/4)

(
fBd(w,r/4) − fBd(z,r/4)

)
ψw,r(x).

Since Nr is a r-net, there exists M ∈ N depending only on the doubling constant such that
#
(
Nr∩Bd(w, 11r/4)

)
≤M for any w ∈ Nr. Also, since

⋃
w∈Vn(Bd(z,5r/4)) K̃w ⊆ Bd(z, 3r/2)

for all large n ∈ N, we see that

Mn(Arf) = fBd(z,r/4) +
∑

w∈Nr∩Bd(z,11r/4)

(
fBd(w,r/4)− fBd(z,r/4)

)
Mnψw,r on Vn

(
Bd(z, 5r/4)

)
.

Hence we have

Ẽ (n)
p,Vn(Bd(z,5r/4))(Arf) = Ẽ (n)

p,Vn(Bd(z,5r/4))

 ∑
w∈Nr∩Bd(z,11r/4)

(
fBd(w,r/4) − fBd(z,r/4)

)
Mnψw,r


≤Mp−1

∑
w∈Nr∩Bd(z,11r/4)

∣∣fBd(w,r/4) − fBd(z,r/4)

∣∣pẼ (n)
p,Vn(Bd(z,5r/4))(ψw,r)

. rdf−β
∑

w∈Nr∩Bd(z,11r/4)

∣∣fBd(w,r/4) − fBd(z,r/4)

∣∣p. (7.8)
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For z, w ∈ Nr with w ∈ Bd(z, 11r/4), by Hölder’s inequality and the Ahlfors regularity of
m, we easily obtain

rdf
∣∣fBd(w,r/4) − fBd(z,r/4)

∣∣p . ˆ
Bd(w,3r)

 
Bd(x,9r)

|f(x)− f(y)|pm(dy)m(dx),

which together with (7.8) yields

Ẽ (n)
p,Vn(Bd(z,5r/4))(Arf)

. r−β
∑

w∈Nr∩Bd(z,11r/4)

ˆ
Bd(w,3r)

 
Bd(x,9r)

|f(x)− f(y)|pm(dy)m(dx). (7.9)

Let us fix δ > 0. Then, for all small enough r > 0 and z ∈ Nr(U), we have⋃
w∈Nr∩Bd(z,11r/4)Bd(w, 3r) ⊆ Uδ. Summing (7.9) over z ∈ Nr(U), we obtain

Ẽ (n)
p,Vn(U)(Arf) ≤

∑
z∈Nr(U)

Ẽ (n)
p,Vn(Bd(z,5r/4))(Arf)

. r−β
ˆ
Uδ

 
Bd(x,9r)

|f(x)− f(y)|pm(dy)m(dx) . (9r)−βJp,9r(f ;Uδ), (7.10)

where we used the metric doubling property in order to control the overlap of {Bd(w, 3r) |
w ∈ Nr ∩Bd(z, 11r/4)} in the second inequality. Note that (7.10) holds for large enough
n ∈ N so that R−n∗ < εr, where ε > 0 is fixed.

To show (7.6), we may and shall assume that lim infr↓0 r
−βJp,r(f ;Uδ) <∞. Pick a se-

quence {rk}k∈N such that rk ↓ 0 as k →∞ and limk→∞ r
−β
k Jp,rk(f ;Uδ) = limr↓0 r

−βJp,r(f ;Uδ).

If f ∈ Fp, then (7.10) with U = K and Lemma 7.2 tell us that
∣∣Ark/9f∣∣pFp . r−βk Jp,rk(f) .

|f|pFp <∞. In particular, {Ark/9f}k∈N is bounded in Fp. Hence, by taking a subsequence,
we can assume that fk := Ark/9f converges weakly in Fp to some function f∞ ∈ Fp. Since
Fp is continuously embedded in Lp(K,m), we have f∞ = f . By Mazur’s lemma (see, e.g.,
[HKST, page 19]) and (7.10), we obtain (7.6).

By setting U = K in (7.6) and using (6.22), we obtain (7.7).

�

We now prove the main result (Theorem 7.1) of this section.

Proof of Theorem 7.1. The desired comparability follows from Lemmas 7.2 and 7.3, so
we show β/p = sp. Since Fp = B

β/p
p,∞, the bound β/p ≤ sp is immediate from Theorem

6.17(iv). To prove the converse, let s > β/p and let f ∈ Fp ⊇ Bs
p,∞ such that |f|Fp > 0, i.e.

f ∈ Fp \ R1K . Let An := AR−n∗ /9, where Ar (r > 0) is the same operator as in the proof
of Lemma 7.3. Then, by (7.10) with r = R−n∗ /9 for large enough n ∈ N and Theorem

6.22, we have R
−n(β−sp)
∗ EΓ

p (Anf) . Rnsp
∗ Jp,R−n∗ (f). Since limn→∞ EΓ

p (Anf) & |f|pFp > 0,

by combining with −(β − sp) > 0, we conclude that limr↓0 r
−spJp,r(f) = ∞ for any

f ∈ Fp \ R1K , which proves Bs
p,∞ = R1K . This completes the proof. �
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Finally, we can prove the density of Fp ∩ C(K) in Fp.

Proof of Theorem 6.17(v). Set F̂p := Fp ∩ C(K)
‖ · ‖Fp . The inclusion F̂p ⊆ Fp is obvious.

So, it suffices to prove Fp ⊆ F̂p.
By Theorem 7.1, we know that Fp = B

β/p
p,∞. Let f ∈ Fp and let Ar (r > 0) be

the operators defined in the proof of Lemma 7.3. Then Arf ∈ Fp ∩ C(K) ⊆ F̂p. By
(7.10) with U = K, we have |Arf|pFp . supr>0 r

−βJp,r(f) . |f|pFp < ∞. Combining with

‖Arf‖Lp . ‖f‖Lp , we conclude that {Arf}r>0 is bounded in Fp. Let {Arkf}k∈N be a
convergent subsequence of {Arf}r>0 with respect to the weak topology of Fp. Applying
Mazur’s lemma, we obtain

f ∈
{

convex combinations of {Arkf}k∈N
}‖ · ‖Fp ⊆ Fp ∩ C(K)

‖ · ‖Fp = F̂p,

which completes the proof of Theorem 6.17. �

8 Sobolev spaces on the Sierpiński carpet

The aim of this section is to prove the first four main results in the introduction: Theorems
1.1, 1.4 1.2 and 1.5. Some results (e.g. constructions of self-similar energies and energy
measures under suitable hypotheses) can be extended to a general setting, but we focus
on the case of planar standard Sierpiński carpet for the sake of simplicity and refer to
[MS+] for such generalizations.

First, recall the definition of the Sierpiński carpet and basic notions on self-similar
sets (see [Kig01, Chapter 1] for further background).

Definition 8.1 (Planar Sierpiński carpet). (1) Let a∗ = 3, N∗ = 8, S = {1, . . . , N∗}
and define qi ∈ R2, i ∈ S as

q1 = (−1,−1) = −q5, q2 = (0,−1) = −q6,

q3 = (1,−1) = −q7, q4 = (1, 0) = −q8.

Let fi : R2 → R2, i ∈ S denote the similitude fi(x) = a−1
∗ (x − qi) + qi. Let K be

the unique non-empty compact subset such that K =
⋃
i∈S fi(K) and set Fi = fi

∣∣
K

.
Let d denote the normalized Euclidean metric on K so that diam(K, d) = 1. The
tuple (K,S, {Fi}i∈S) is called the planar standard Sierpiński carpet (PSC for short).
Let m be the self-similar probability measure with uniform weight, that is, m =
N−1
∗
∑

i∈Sm ◦ F
−1
i .

(2) Let `L := {−1}× [−1, 1], `T := [−1, 1]×{1}, `R := {1}× [−1, 1] and `B := [−1, 1]×
{−1}. Define V0 := ∂[−1, 1]2 = `L ∪ `T ∪ `R ∪ `B.

(3) Let D4 be the dihedral group of order 8 (the symmetry of the square), i.e.

D4 = {Rk, Sk | k = 0, 1, 2, 3},
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where

Rk =

[
cos kπ

2
− sin kπ

2

sin kπ
2

cos kπ
2

]
and Sk =

[
cos kπ

2
sin kπ

2

sin kπ
2
− cos kπ

2

]
.

Then it is clear that Φ(K) = K for all Φ ∈ D4.

Definition 8.2 (Words and shift space). Let S, {Fi}i∈S be as given in Definition 8.1.
For convention, we set S0 := {φ}, where φ is an element called the empty word. Let
Wn := Sn for each n ∈ Z≥0 and define W∗ :=

⋃
n≥0Wn. For w = w1w2 · · ·wn ∈ Wn, define

Fw := Fw1 ◦ Fw2 ◦ · · · ◦ Fwn , Kw := Fw(K) and |w| := n. Let Σ be the one-sided shift
space of symbols S, that is, Σ = {ω = ω1ω2ω3 · · · | ωi ∈ S for any i ∈ N}. We endow Σ
with the product topology which makes it a compact metrizable space [Kig01, Theorem
1.2.2]. Define the shift map σ : Σ → Σ by σ(ω1ω2 · · · ) = ω2ω3 · · · for each ω1ω2 · · · ∈ Σ.
The branches of σ are denoted by σi (i ∈ S), i.e. σi : Σ→ Σ is defined as σi(ω1ω2 · · · ) =
iω1ω2 · · · for each i ∈ S and ω1ω2 · · · ∈ Σ. For ω = ω1ω2 · · · ∈ Σ and k ∈ Z≥0, we define
[ω]k = ω1 · · ·ωk ∈ Sk. Similarly, define [w]k = w1 · · ·wk ∈ Wk for any w = w1 · · ·wn ∈ Wn

with n ≥ k. For w ∈ Wn and m ∈ N, let Σw := σw(Σ) = {ω ∈ Σ | [ω]n = w} and
Sm(w) :=

{
v ∈ Wn+m

∣∣ [v]n = w
}

. We use S(w) to denote S1(w) for simplicity. Let
χ : Σ → K be the continuous surjection satisfying {χ(ω)} =

⋂
n≥0K[ω]n for all ω ∈ Σ

[Kig01, Proposition 1.3.3].

Hereafter, we let (K,S, {Fi}i∈S) be PSC, d be the normalized metric, and m be the
self-similar probability measure on K as given in Definition 8.1. Note that Kv ∩ Kw =
Fv(V0) ∩ Fw(V0) for any v 6= w ∈ W∗ with |v| = |w| [Kig01, Proposition 1.3.5(2)]. Let us

fix a family of Borel sets
{
K̃w

}
w∈W∗

satisfying intR2 Kw ⊆ K̃w ⊆ Kw for any w ∈ W∗ and

K̃v ∩ K̃w = ∅ for any v 6= w ∈ W∗ with |v| = |w|. Consider the approximating graphs
{Gn = (Vn, En)}n∈N given by

Vn := Wn = Sn, En :=
{
{v, w} ∈ Vn × Vn

∣∣ v 6= w,Kv ∩Kw 6= ∅
}
,

and that Mn : Lp(K,m)→ RVn in (6.8) is defined as

Mnf(w) =

 
K̃w

f dm for f ∈ Lp(K,m) and w ∈ Wn.

For A ⊆ K and n ∈ Z≥0, define Wn[A] := {w ∈ Wn | Kw ∩ A 6= ∅}.

8.1 Construction of a self-similar energy: Theorems 1.1 and 1.4

To carry out the strategy in Section 6, a crucial step is to verify Assumption 6.15 for
PSC. Besides, we have to check pre-self-similar condition (see Theorem 8.3(c) below) in
order to get a self-similar p-energy by applying a known result of Kigami [Kig00]. So the
following theorem is an important preparation whose proof is divided into several steps.

Theorem 8.3. PSC satisfies Assumption 6.15 for all p ∈ (1,∞), that is,
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(a) (K, d,m) is df-Ahlfors regular, where df := logN∗/ log a∗ = log 8/ log 3. In addition,
the sequence of graphs {Gn = (Vn, En)}n∈N equipped with the projective map πn,k (1 ≤
k < n), which is defined as πn,k(w) := [w]k (w ∈ Vn), is a∗-scaled and a∗-compatible
with (K, d).

(b) The sequence {Gn}n∈N satisfies U-PIp(dw(p)) and U-CFp(ϑ, dw(p)) for some ϑ ∈
(0, 1], where dw(p) = logN∗ρ(p)/ log a∗ and ρ(p) ∈ (0,∞) is given later (see (8.4)).

Moreover, the following pre-self-similar condition holds:

(c) f ◦ Fi ∈ Fp for all i ∈ S and f ∈ Fp. Furthermore,

Fp ∩ C(K) = {f ∈ C(K) | f ◦ Fi ∈ Fp for all i ∈ S}, (8.1)

and the semi-norm |f|Fp =
(
a
n(dw(p)−df)
∗ EGnp (Mnf)

)1/p

satisfies the following: there

exists C ≥ 1 such that for all n ∈ N and f ∈ Fp,

C−1|f|pFp ≤ ρ(p)n
∑
w∈Wn

|f ◦ Fw|pFp ≤ C|f|pFp . (8.2)

We note that the estimate (8.2) follows from properties (iii) and (viii) in Theorem 1.1.
Therefore (8.2) is necessary for the conclusion of Theorem 1.1.

We start by observing the geometry of PSC, namely Theorem 8.3(a). The next propo-
sition gives a collection of geometric properties of PSC.

Proposition 8.4. (i) For all n ∈ Z≥0 and distinct v, w ∈ Wn, we have m(Kw) = N−n∗
and m(Kv ∩Kw) = 0.

(ii) There exists C ≥ 1 (depending only on a∗) such that the following hold: for all
n ∈ Z≥0 and w ∈ Wn, there exists x ∈ Kw satisfying

Bd(x,C
−1a−n∗ ) ⊆ Kw ⊆ Bd(x,Ca

−n
∗ ).

In particular, (6.7) holds.

(iii) There exists CAR depending only on a∗ and N∗ such that

C−1
ARr

df ≤ m(Bd(x, r)) ≤ CARr
df for all x ∈ K, r ∈ (0, 1],

i.e., (K, d,m) is df-Ahlfors regular.

(iv) {Gn}n∈N equipped with the projective maps {πn,k | n, k ∈ N, k < n} is a∗-scaled.

(v) {Gn}n∈N equipped with the projective maps {πn,k | n, k ∈ N, k < n} is a∗-compatible.

(vi) For any Φ ∈ D4, there exists a bijection τΦ : W∗ → W∗ such that |τΦ(w)| = |w| and
Φ
(
Kw

)
= KτΦ(w) for any w ∈ W∗. Moreover, UΦ,w := F−1

τΦ(w) ◦ Φ ◦ Fw ∈ D4.

In particular, Theorem 8.3(a) holds.
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Proof. The properties (ii), (vi) are easy and (iii) is a consequence of (i), (ii). So we will
prove (i), (iv) and (v).

(i) This follows from V0 6= K and [Kig09, Theorem 1.2.7].

(iv) Recall that dn denotes the graph distance of Gn. Let n,m ∈ N and w ∈ Wm.
Let cn(w) = w15n−1 ∈ Vn+m. Then it is clear that Bdn+m

(
cn(w), an−1

∗
)
⊆ π−1

n+m,m(w).
Since we can easily see that diam

(
π−1
n+m,m(w), dn+m

)
≤ 2an∗ , we obtain π−1

n+m,m(w) ⊆
Bdn+m

(
cn(w), 3an∗

)
. Hence we have (6.3) with A1 = 3 ∨ a∗. Also, the bound on the

diameter of π−1
n+m,m( · ) implies (6.4) with A2 = 4. This completes the proof.

(v) Note that the conditions in Definition 6.4(ii), (iii) are already verified. Let pn(v) =
Fv
(
F1(1, 1)

)
∈ Kv for n ∈ N and v ∈ Vn. Then the condition in Definition 6.4(iv) is

evident. So we will prove the Hölder comparison (6.5). Let v, w ∈ Vn with v 6= w. Pick a
path [z(0), . . . , z(l)] in Gn such that {z(0), z(l)} = {v, w} and l ≤ dn(v, w). Then

d(pn(v), pn(w)) ≤ diam

(
l⋃

j=0

Kz(j), d

)
≤ 2la−n∗ ,

which implies the upper bound in (6.5) with C = 2.

The desired lower bound requires a geometric observation. Let πi : R2 → R (i = 1, 2)
denote the projection map of R2 onto i-th coordinate, i.e. πi(x1, x2) = xi for (x1, x2) ∈ R2.
Then we observe that

|π1(pn(v))− π1(pn(w))| ∨ |π2(pn(v))− π2(pn(w))| ≥ dn(v, w)

2
· 2a−n−1

∗ ,

which implies d(pn(v), pn(w)) ≥ (2
√

2a∗)
−1dn(v, w)a−n∗ . Therefore, (6.5) holds with C =

2
√

2a∗. �

We next move to Theorem 8.3(b). Thanks to Propositions 6.8 and 6.12, checking
U-capp,≤(dw(p)) and U-BCLlow

p (df − dw(p)) is enough for this purpose. The planarity is
crucial to ensure df − dw(p) < 1 for any p ∈ (1,∞). We start with the definition of dw(p)
which is the quantity called p-walk dimension of PSC (see Definition 8.7). This value is
closely related with the sub-multiplicative and super-multiplicative inequalities of discrete
p-capacities due to Bourdon and Kleiner.

Theorem 8.5 ([BK13, Lemma 4.4]). Let p ∈ [1,∞). Define

C(n)
p := sup

m∈N,w∈Vm
capGn+m

p

(
π−1
n+m,m(w), Vn+m \ π−1

n+m,m(Bdm(w, 2))
)
. (8.3)

Then there exists C ≥ 1 (depending only on p, L∗) such that

C−1 · C(n)
p C(m)

p ≤ C(n+m)
p ≤ C · C(n)

p C(m)
p for all n,m ∈ N.

In particular, the limit

lim
n→∞

(
C(n)
p

)−1/n
=: ρ(p) ∈ (0,∞) (8.4)
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exists, and
C−1ρ(p)−n ≤ C(n)

p ≤ Cρ(p)−n for all n ∈ N. (8.5)

We call ρ(p) the p-scaling factor of PSC.

Remark 8.6. The work [BK13] uses a slightly different version of C(n)
p . The value of Mn

in [BK13, Lemma 4.4] is uniformly comparable with C(n)
p (cf. Lemma 2.12 and [BK13,

last line in p. 66]).

Definition 8.7. Let p ≥ 1. Define

dw(p) :=
log (N∗ρ(p))

log a∗
. (8.6)

We call dw(p) the p-walk dimension of PSC.

The next proposition is a collection of properties concerning ‘analytic conditions’.

Proposition 8.8. (i) df − dw(p) < 1 for all p ∈ [1,∞).

(ii) The sequence {Gn}n∈N satisfies U-capp,≤(dw(p)) for all p ∈ [1,∞).

(iii) The sequence {Gn}n∈N satisfies U-BCLp(df − dw(p)) for all p ∈ (1,∞).

Proof. (i) Since df < 2 and dw(p) ≥ p (see [Shi+, Proposition 3.5] or [Kig20, Lemma
4.6.15]), we have df − dw(p) < 2− p ≤ 1 for all p ≥ 1.

(ii) By virtue of a similar argument to the last part in Lemma 5.2, it is enough to
estimate discrete p-capacities for large enough R, say R ≥ 2a∗ + 1. Let n ∈ N, x ∈ Vn
and R ∈ [2a∗ + 1, diam(Gn)). Let n(R) ∈ Z be the unique integer such that

2an(R)
∗ < R ≤ 2an(R)+1

∗ .

Then 1 ≤ n(R) < n since R > 2a∗ and R ≤ 2an∗ .

For each w ∈ Vn(R), let ϕw : Vn → [0, 1] satisfy ϕw
∣∣
Sn−n(R)(w)

≡ 1, supp[ϕw] ⊆⋃
v∈Vn(R);dn(R)(v,w)≤1 S

n−n(R)(v) and EGnp (ϕw) = capGn+m
p

(
Sn−n(R)(w), Vn\Sn−n(R)(Bdn(R)

(w, 2))
)
.

Let N (x,R) :=
{
w ∈ Vn(R)

∣∣ Bdn(x,R) ∩ Sn−n(R)(w) 6= ∅
}

. Since Gn is metric doubling
and its doubling constant depends only on a,N∗, we easily see that #N (x,R) . 1, where
the bound also depends only on a,N∗. Let ϕ :=

∑
w∈N (x,R) ϕw. Then ϕ

∣∣
Bdn (x,R)

≡ 1,

supp[ϕ] ⊆ Bdn(x, 2R) and EGnp (ϕ) ≤ (#N (x, r))p−1C(n)
p . ρ(p)−n. Since ρ(p)−n =

a
n(df−dw(p))
∗ . #Bdn(x,R)/Rdw(p), we obtain U-capp,≤(dw(p)).

(iii) Thanks to Theorem 8.5, we easily have ModGn
p

(
Wn[`1],Wn[`2]

)
� ρ(p)−n, n ∈ N.

This estimate together with a similar argument as in the proof of [Kig23, Theorem 4.8]
implies that the following is true: For any p ≥ 1 and L ≥ 1, there exists c > 0 (depending
only on p, L, L∗) such that for any k, n ∈ N and v, w ∈ Vn with dn(v, w) ≤ L,

ModGn+k
p

(
{θ ∈ Path(Sk(v), Sk(w);Gk+n) | diam(θ, dk+n) ≤ 2Lak∗}

)
≥ cρ(p)−k. (8.7)

Since each cell Sk(z) can be compared to a discrete ball by virtue of (6.3), we can easily
obtain U-BCLp(df − dw(p)) from the uniform bound (8.7). �
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Proof of Theorem 8.3(a) and (b). (a) is proved in Proposition 8.4. (b) follows from
Propositions 8.8, 6.8 and 6.12. In particular, Assumption 6.15 holds. �

Since we have checked Assumption 6.15 for PSC, we can apply Theorem 6.22 and get a
p-energy EΓ

p on PSC. We next show the pre-self-similar condition (Theorem 8.3(c)), which
is important to improve EΓ

p , by using unfolding argument inspired by [Hin13, Subsection
5.1]. This argument is long, so we divide it into several steps. First, we prove the following
easy bound:

ρ(p)n
∑
w∈Wn

|f ◦ Fw|pFp . |f|
p
Fp for all f ∈ Lp(K,m). (8.8)

Here we regard |·|Fp as a [0,∞]-valued functional defined on Lp(K,m), which satisfies

|f|Fp <∞ if and only if f ∈ Fp.

Proof of (8.8). Since m is the self-similar measure with the equal weights, we have Mn(f ◦
Fw)(v) = Mn+mf(wv) for n,m ∈ N and w ∈ Vm, v ∈ Vn. Therefore,

ρ(p)n
∑
w∈Wn

ẼGmp (f ◦ Fw) =
∑
w∈Wn

ẼGn+m

p,Sm(w)(f) ≤ ẼGn+m
p (f),

which together with the weak monotonicity (Theorem 6.13) implies (8.8). �

The reverse inequality is much harder. By adapting the argument in [Hin13, §5.1], we
will show

|f|pFp . ρ(p)n
∑
w∈Wn

|f ◦ Fw|pFp for all f ∈ FSp , (8.9)

where we set FSp := {f ∈ C(K) | f ◦ Fi ∈ Fp ∩ C(K) for all i ∈ S}.
The following folding maps play a key role. For details, we refer to [BBKT, Section

2.2] or [Kig23, Section 4.3].

Definition 8.9 (Folding maps and unfolding operators). (1) For n ∈ N, let ϕ̂n : R →
[0,∞) be the periodic function with period 4a−n∗ such that

ϕ̂n(t) =

{
t+ 1 for t ∈ [−1,−1 + 2a−n∗ ],

−t− 1 + 4a−n∗ for t ∈ [−1 + 2a−n∗ ,−1 + 4a−n∗ ].

Define ϕ(n) : [−1, 1]2 → [0, 2a−n∗ ]2 by

ϕ[n](x, y) :=
(
ϕ̂n(x), ϕ̂n(y)

)
for (x, y) ∈ [−1, 1]2.

For w ∈ Vn, define ϕw : K → Kw by

ϕw(x) :=
(
ϕ[n]
∣∣
Kw

)−1 (
ϕ[n](x)

)
for x ∈ K.
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(2) Let E#
n :=

{
{v, w} ∈ En

∣∣ #(Kv ∩Kw) ≥ 2
}

. For {v, w} ∈ E#
n , let `v,w := Kv ∩Kw

and let Hv,w be the line containing `v,w. Then Hv,w splits R2 into the two closed half
spaces, which are denoted by Gv,w and Gw,v and satisfy Kv ⊆ Gv,w and Kw ⊆ Gw,v.
We remark that the order of v and w is important in the notations Gv,w, Gw,v.

(3) For f ∈ Lp(K,m) and w ∈ Wn, define Ξw(f) := f ◦ ϕw. The map Ξw is called an
unfolding operator. For {v, w} ∈ E#

n , define Ξv,w(f) := Ξv(f)1Gv,w .

To provide a quantitative (localized) energy estimate for Ξz(f) by following [Hin13],
we make the help of Korevaar–Schoen type bounds given in Section 7. Recall that, by
Theorem 7.1, there exists C ≥ 1 such that, for all f ∈ Lp(K,m),

C−1|f|pFp ≤ lim
r↓0

r−(df+dw(p))Jp,r(f) ≤ C|f|pFp . (8.10)

Let us introduce some notations for simplicity. For f ∈ Lp(K,m), δ > 0, and A1, A2 ∈
B(K), define

Ep,δ(f ;A1, A2) := δ−(df+dw(p))

¨
{(x,y)∈A1×A2|d(x,y)<δ}

|f(x)− f(y)|pm(dx)m(dy).

We also write Ep,δ(f ;A) and Ep,δ(f) for Ep,δ(f ;A,A) and Ep,δ(f ;K) respectively. Since
m is the self-similar measure with the weight (a−df

∗ , . . . , a−df
∗ ), we have

Ep,δ(f ;Kw) = ρ(p)nEp,an∗ δ(f ◦ Fw) for any w ∈ Wn.

Note that ρ(p)na
−n(df+dw(p))
∗ = a−2ndf

∗ .

The following estimate on localized energies of Ξz(f) is a key ingredient, which corre-
sponds to [Hin13, Corollary 5.4].

Lemma 8.10. Let n ∈ N, z ∈ Wn, δ > 0 and f ∈ Lp(K,m). Then, for any {v, w} ∈ En,

Ep,δ
(
Ξz(f);Kv, Kw

)
≤ Ep,δ

(
Ξz(f);Kv

)
≤ ρ(p)nEp,an∗ δ(f ◦ Fz).

In particular, there exists C > 0 such that

|Ξz(f)|pFp ≤ C(#Wn)ρ(p)n|f ◦ Fz|pFp for all f ∈ Lp(K,m), n ∈ N and z ∈ Wn.

Proof. Using [BBKT, (2.22)] with ν = m|Kv and following [Hin13, Lemma 5.3], we have
that, for v, z ∈ Wn,

Ep,δ
(
Ξz(f);Kv

)
= Ep,δ(f ;Kz) = ρ(p)nEp,an∗ δ(f ◦ Fz),

and
Ep,δ

(
Ξz(f);Kv, Kw

)
≤ Ep,δ

(
Ξz(f);Kv

)
.

Next we give an estimate for |Ξz(f)|Fp . Let n ∈ N and z ∈ Wn. For small enough δ > 0,

Ep,δ(Ξz(f)) =
∑
v∈Wn

Ep,δ(Ξz(f);Kv) +
∑

{v,w}∈En

Ep,δ(Ξz(f);Kv, Kw).
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Therefore, we have Ep,δ(Ξz(f)) ≤ (1 + L∗)ρ(p)n
∑

v∈Wn
Ep,an∗ δ(f ◦ Fz), which implies

lim
δ↓0

Ep,δ(Ξz(f)) . ρ(p)n lim
δ↓0

Ep,δ(f ◦ Fz)(#Wn).

Combining with (8.10), we obtain the desired conclusion. �

We also need the following approximation.

Lemma 8.11. Let F be a non-empty subset of K. Suppose that f ∈ Fp ∩ C(K) satisfies
f(x) = 0 for all x ∈ F . Then there exist fn ∈ Fp∩C(K) (n ∈ N) such that supp[fn] ⊆ K\F
for all n ∈ N and fn converges in Fp to f as n→∞.

Proof. We first consider the case that f is non-negative, i.e., let us suppose that f ∈
Fp ∩ C(K) satisfies f

∣∣
F

= 0 and f ≥ 0. Since f is uniformly continuous, for any n ∈ N
there exists rn > 0 such that f(x) < n−1 for all x ∈ Fn :=

⋃
x∈F Bd(x, rn). Define

fn ∈ Fp ∩ C(K) by fn =
(
f − n−1

)
∨ 0. Then we immediately have fn(x) = 0 for

x ∈ Fn and supp[fn] ⊆ K \ F . Furthermore, by Theorem 6.22(ii) (or (8.10)), we have
|fn|Fp ≤ C|f|Fp for any n ∈ N, where C is independent of f and n. It is also clear

that supx∈K |f(x)− fn(x)| → 0 as n → ∞ and hence ‖f − fn‖Lp → 0. Since {fn}n≥1 is
a bounded sequence in Fp, there exists a subsequence {fnk}k≥1 such that fnk converges
weakly in Fp to f as k →∞. Applying Mazur’s lemma, there exists gn ∈ Fp∩C(K) (n ≥ 1)
such that supp[gn] ⊆ K \ F and ‖f − gn‖Fp → 0, which proves our assertion.

For general f ∈ Fp∩C(K) satisfying f
∣∣
F

= 0, we obtain the assertion by applying the
above result for f±. �

Next we prove a Fatou type lemma for localized Korevaar–Schoen energies.

Lemma 8.12. Let f, fk ∈ Fp, k ∈ N, such that fk converges in Lp(K,m) to f as k →∞.
Suppose supk∈N |fk|Fp <∞. Then, for any n ∈ N and {v, w} ∈ En,

lim sup
δ↓0

Ep,δ(f ;Kv, Kw) ≤ lim inf
n→∞

lim sup
δ↓0

Ep,δ(fn;Kv, Kw).

Proof. First, we prove the following claim: for any g, gk ∈ Fp, k ∈ N, such that
limk→∞ |g − gk|Fp = 0, we have

lim
k→∞

lim
δ↓0

Ep,δ(gk;Kv, Kw) = lim
δ↓0

Ep,δ(g;Kv, Kw). (8.11)

This is immediate since∣∣∣∣limδ↓0 Ep,δ(g;Kv, Kw)1/p − lim
δ↓0

Ep,δ(gk;Kv, Kw)1/p

∣∣∣∣ ≤ lim
δ↓0

Ep,δ(g − gn;Kv, Kw)1/p

≤ lim
δ↓0

Ep,δ(g − gk)1/p . |g − gk|Fp .
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The rest of the proof is a standard argument using Mazur’s lemma. Let fk ∈ Fp, k ∈ N
be a sequence converging in Lp to some f ∈ Fp. By extracting a subsequence {fk′}k′ if
necessary, we can assume that

lim
k′→∞

lim
δ↓0

Ep,δ(fk′ ;Kv, Kw) = lim
k→∞

lim
δ↓0

Ep,δ(fk;Kv, Kw).

Since Fp is reflexive, there exists a subsequence, which is also denoted by {fk′}k′ , such
that fk′ converges weakly in Fp to f . By Mazur’s lemma, there exist finite subset Ij ⊆
[j,∞) ∩ N, j ∈ N, and{

λ
(j)
k′

∣∣∣∣ λ(j)
k′ ≥ 0 for k′ ∈ Ij and

∑
k′∈Ij

λ
(j)
k′ = 1

}
j∈N

such that gj :=
∑

k′∈Ij λ
(j)
k′ fk′ ∈ Fp (j ∈ N) satisfies ‖f − gj‖Fp → 0 as j → ∞. By the

triangle inequality of Lp-norm, we see that

lim
δ↓0

Ep,δ(gj;Kv, Kw)1/p ≤
∑
k′∈Ij

λ
(j)
k′ lim

δ↓0
Ep,δ(fk′ ;Kv, Kw)1/p.

Letting j →∞ and using (8.11), we obtain

lim
δ↓0

Ep,δ(f ;Kv, Kw)1/p ≤ lim
k′→∞

lim
δ↓0

Ep,δ(fk′ ;Kv, Kw)1/p,

proving our assertion. �

Now we can estimate the unfolding map Ξv,w(f) for {v, w} ∈ E#
n .

Lemma 8.13. Let n ∈ N, {v, w} ∈ E#
n and f ∈ FSp . If f

∣∣
`v,w

= 0 and z ∈ Wn satisfies

Kz ⊆ Gw,v, then limδ↓0Ep,δ
(
Ξv,w(f);Kv, Kz

)
= 0.

Proof. This lemma corresponds to a weaker version of [Hin13, Lemma 5.6]. Let n ∈ N
and {v, w} ∈ E#

n . Let f ∈ FSp satisfy f
∣∣
`v,w

= 0. Note that Ξv(f) ∈ Fp∩C(K) by Lemma

8.10. Applying Lemma 8.11 for Ξv(f), we obtain a sequence fk ∈ Fp ∩ C(K), k ∈ N
such that supp[fk] ⊆ K \ `v,w and fk converges in Fp to Ξv(f). Set gk := Ξv(fk) and
hk := Ξv,w(fk) for k ≥ 1. For δ < distd(Hv,w, supp[gk]), we see that

Ep,δ(hk) = Ep,δ(gk;K ∩Gv,w) ≤ Ep,δ(gk).

Combining with Lemma 8.10 and (8.10), we obtain

|hk|pFp . lim
δ↓0

Ep,δ(hk) ≤ lim
δ↓0

Ep,δ(gk) ≤ C(#Wn)ρ(p)n|fk ◦ Fv|pFp ,

which together with (8.8) implies that {hk}k≥1 is bounded in Fp. Note that hk converges
in Lp(K,m) to Ξv,w(f) as k → ∞. Hence, by Lemma 8.12, for all z ∈ Vn such that
Kz ⊆ Gw,v,

lim
δ↓0

Ep,δ(Ξv,w(f);Kv, Kz) ≤ lim
k→∞

lim
δ↓0

Ep,δ(hk;Kv, Kz).
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If δ < distd(Hv,w, supp[gk]), then we have Ep,δ(hk;Kv, Kz) = 0. Therefore, we obtain
limδ↓0Ep,δ(Ξv,w(f);Kv, Kz) = 0. This completes the proof. �

Finally, we can prove the bound (8.9) and complete the proof of Theorem 8.3(c).

Proof of Theorem 8.3(c). The estimate (8.8) is already proved. In particular, Fp = {f ∈
Fp | f ◦ Fi ∈ Fp for all i ∈ S}. To prove (8.9), let f ∈ FSp . Let us fix n ∈ N. Then, for
small enough δ > 0, we observe that

Ep,δ(f) =
∑
w∈Wn

Ep,δ(f ;Kw) +
∑

{v,w}∈En

Ep,δ(f ;Kv, Kw). (8.12)

We obtain upper bounds for Ep,δ(f ;Kv, Kw) by dividing into the following two cases.

Case 1: {v, w} ∈ E#
n ; Define hi ∈ C(K), i ∈ {0, 1}, by

h0 := Ξv(f) and h1 := Ξw,v(f − h0).

It is easy to see that f
∣∣
Kv∪Kw

= (h0 + h1)
∣∣
Kv∪Kw

and that (f − h0)
∣∣
`v,w

= 0. Since

h0 ∈ Fp ∩ C(K) by Lemma 8.10 and f ∈ FSp , it is also immediate that f − h0 ∈ FSp .
Hence, by Lemmas 8.10 and 8.13,

lim
δ↓0

Ep,δ(f ;Kv, Kw) ≤ 2p−1 lim
δ↓0

(
Ep,δ(h0;Kv, Kw) + Ep,δ(h1;Kv, Kw)

)
≤ 2p−1ρ(p)n lim

δ↓0
Ep,δ(f ◦ Fv).

Case 2: {v, w} ∈ En \ E#
n ; Clearly, there exists z(i) ∈ Wn, i ∈ {1, 2, 3}, such that

{z(1), z(3)} = {v, w}, {z(i), z(i + 1)} ∈ E#
n for i ∈ {1, 2} and Kz(i) 6⊆ Gz(j),z(2) for

{i, j} = {1, 3}. Now we define hi ∈ C(K), i ∈ {0, 1, 2}, by

h0 := Ξz(2)(f), h1 := Ξz(1),z(2)(f − h0) and h2 := Ξz(3),z(2)(f − h0).

Then we have f
∣∣
∪3
i=1Kz(i)

= (h0 + h1 + h2)
∣∣
∪3
i=1Kz(i)

and (f − h0)
∣∣
`z(1),z(2)∪`z(2),z(3)

= 0.

Hence, by Lemmas 8.10 and 8.13,

lim
δ↓0

Ep,δ(f ;Kv, Kw) ≤ 3p−1 lim
δ↓0

2∑
j=0

Ep,δ(hj;Kv, Kw) ≤ 3p−1ρ(p)n lim
δ↓0

Ep,δ
(
f ◦ Fz(2)

)
.

From (8.12) and above observations, we obtain

lim
δ↓0

Ep,δ(f) ≤ (1 + L2
∗)ρ(p)n

∑
v∈Wn

lim
δ↓0

Ep,δ(f ◦ Fv),

which together with (8.10) proves (8.9). Note that (8.9) implies FSp = Fp ∩ C(K). We
finish the proof of Theorem 8.3. �
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We are now ready to prove the first four main results stated in the introduction.

Proof of Theorem 1.1. Theorem 8.3 implies Assumptions 6.15. Therefore by Theorem
6.17 we obtain the conclusions (i) and (ii).

The existence of a self-similar energy with the desired properties follows from [Kig00,
Theorem 1.5]. We will explain how to apply [Kig00, Theorem 1.5] in our setting. Define

Up :=

{
E : Fp → [0,∞)

∣∣∣∣ E1/p is a seminorm on Fp, there exist c1, c2 > 0
such that c1|f|Fp ≤ E(f)1/p ≤ c2|f|Fp for any f ∈ Fp

}
,

which is equipped with the pointwise convergence topology, i.e., {En}n∈N ⊆ Up converges
to E ∈ Up if and only if limn→∞En(f) = E(f) for any f ∈ Fp. In addition, we consider
a partial order ≤ of Up defined by, for E1, E2 ∈ Up,

E1 ≤ E2 if and only if E1(f) ≤ E2(f) for every f ∈ Fp.

Then, by Theorem 6.17, Up is an ordered topological cone in the sense of [Kig00, Defini-
tions 1.1 and 1.2]. Next we define S : Up → Up by

SE(f) := ρ(p)
∑
i∈S

E(f ◦ Fi), E ∈ Up, f ∈ Fp.

Then S is continuous, order-preserving, homogeneous and super-additive [Kig00, Defini-
tion 1.4]. (S is also sub-additive.) Moreover, by (8.2), there exists C ≥ 1 such that

C−1|f|pFp ≤ S
nEΓ

p (f) = ρ(p)n
∑
w∈Wn

EΓ
p (f ◦ Fw) ≤ C|f|pFp for any f ∈ Fp and n ∈ N,

where EΓ
p ∈ Up is given by Theorem 6.22. In particular, {SnEΓ

p }n∈N is bounded in the
sense of [Kig00, Theorem 1.5].

We define subsets of Up by

UCla
p :=

{
E ∈ Up

∣∣ E satisfies p-Clarkson’s inequality
}
,

U lip
p :=

{
E ∈ Up

∣∣ E(ϕ ◦ f) ≤ E(f) for any f ∈ Fp and 1-Lipschitz function ϕ
}
,

U sym
p :=

{
E ∈ Up

∣∣ E(f ◦ Φ) = E(f) for any f ∈ Fp and Φ ∈ D4

}
,

and U∗p := UCla
p ∩U lip

p ∩U sym
p . It is easy to show that U∗p is a closed sub-cone of Up satisfying

S(U∗p ) ⊆ U∗p . Now we apply [Kig00, Theorem 1.5] by choosing U, T, u, V in the notation
of [Kig00, Theorem 1.5] as Up,S, EΓ

p ,U∗p respectively. Then we get a fixed point Ep ∈ U∗p
of S since EΓ

p ∈ U∗p by Theorem 6.22. In particular, Ep has the desired self-similarity (1.2)
and satisfies the properties (iii), (iv), (v), (viii), (ix).

The strong locality (vii) is an easy consequence of the self-similarity (viii) (see
[Shi+, Subsection 6.2]). The estimate in (vi) follows from applying Lemma 6.24 with
r = 2 diam(K, d). The proof is completed. �

Proof of Theorem 1.4. As mentioned earlier, Assumption 6.15 follows from Theorem 8.3.
The desired conclusion then follows from any application of Theorem 7.1. �
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8.2 Associated energy measures: Theorem 1.2 and 1.5

We next focus on the object called energy measure associated with our self-similar p-
energy. Hereafter, we let Ep be a p-energy as given in Theorem 1.1. Then we can introduce
measures by using the self-similarity of Ep as done in [Shi+, Section 7] (see [Hin05, Lemma

4.1] for the case p = 2). Let f ∈ Fp and n ∈ Z≥0. Define a finite measure m
(n)
p 〈f〉 on Wn

by setting m
(n)
p 〈f〉({w}) := ρwEp(f ◦Fw) for each w ∈ Wn. Due to the following equalities:∑
v∈S(w)

m(n+1)
p 〈f〉({v}) = ρw

∑
i∈S

ρiEp
(
(f ◦ Fw) ◦ Fi

)
= m(n)

p 〈f〉({w}),

we can use Kolmogorov’s extension theorem (see [Dud, Theorem 12.1.2] for example) to
get a finite Borel measure mp〈f〉 on Σ = SN such that

mp〈f〉(Σw) = ρwEp(f ◦ Fw) for any n ∈ Z≥0 and w ∈ Wn.

Clearly, mp〈f〉(Σ) = Ep(f).

Now we define a measure Γp〈f〉 on K as Γp〈f〉 := χ∗(mp〈f〉), where χ is the map in
Definition 8.2. Note that Γp〈f〉 is a finite Borel-regular measure on K (see [Dud, Theorem
7.1.3] for example). We shall say that Γp〈f〉 is the Ep-energy measure of f .

The following lemma gives behaviors of ‘p-energy on each cells’.

Lemma 8.14. For any f ∈ Fp, w ∈ W∗ and n ∈ Z≥0,

ρ(p)nEp(f ◦ Fw) ≤ Γp〈f〉(Kw) ≤ ρ(p)n
∑

v∈Wn[Kw]

Ep(f ◦ Fv).

Proof. The lower bound is immediate from Σw ⊆ χ−1(Kw). The upper bound follows
from χ−1(Kw) ⊆

⋃
v∈Wn[Kw] Σv. �

The following proposition is a collection of basic properties of energy measures.

Proposition 8.15. (a) Let f ∈ Fp. Then Γp〈f〉 ≡ 0 if and only if f is constant.

(b) For any f, g ∈ Fp and A ∈ B(K),

Γp〈f + g〉(A)1/p ≤ Γp〈f〉(A)1/p + Γp〈g〉(A)1/p. (8.13)

(c) If f ∈ Fp and ϕ ∈ C(R) is 1-Lipschitz, then Γp〈ϕ ◦ f〉(A) ≤ Γp〈f〉(A) for any
A ∈ B(K).

(d) For any n ∈ N and f ∈ Fp,

Γp〈f〉 = ρ(p)n
∑
w∈Wn

(Fw)∗Γp〈f ◦ Fw〉, (8.14)

that is, Γp〈f〉(A) = ρ(p)n
∑

w∈Wn
Γp〈f ◦ Fw〉

(
F−1
w (A)

)
for all A ∈ B(K).
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(e) For any Φ ∈ D4 and f ∈ Fp, we have Φ∗
(
Γp〈f〉

)
= Γp〈f ◦ Φ〉.

Proof. (a) It is clear from Γp〈f〉(K) = Ep(f) and (1.1).

(b) It suffices to show (8.13) when A is a closed set of K since Γp〈f+g〉 is Borel regular.
For n ∈ N, define Cn := {w ∈ Wn | Σw∩χ−1(A) 6= ∅} and ΣCn := {ω ∈ Σ(S) | [ω]n ∈ Cn}.
Then

{
ΣCn

}
n≥1

is a decreasing sequence satisfying
⋂
n∈N ΣCn = χ−1(A) (see the proof of

[Hin05, Lemma 4.1]). By the triangle inequality,(∑
w∈Cn

Ep
(
(f + g) ◦ Fw

))1/p

≤

(∑
w∈Cn

(
Ep(f ◦ Fw)1/p + Ep(g ◦ Fw)1/p

)p)1/p

≤

(∑
w∈Cn

Ep(f ◦ Fw)

)1/p

+

(∑
w∈Cn

Ep(g ◦ Fw)

)1/p

,

which proves mp〈f+g〉
(
ΣCn

)1/p ≤ mp〈f〉
(
ΣCn

)1/p
+mp〈g〉

(
ΣCn

)1/p
. Letting n→∞ yields

(8.13) for any closed set A.

(c) Similar to (b), we can prove ρ(p)n
∑

w∈A Ep
(
(ϕ ◦ f) ◦Fw

)
≤ ρ(p)n

∑
w∈A Ep

(
f ◦Fw

)
for any n ∈ N and A ⊆ Wn. A similar approximation argument in (b) proves the assertion.

(d) The proof is exactly the same as in [Shi+, Theorem 7.5].

(e) By the Borel regularity, it suffices to show the case that A is a closed set of K.
Let f ∈ Fp and Φ ∈ D4. For each n ∈ N, define Cn :=

{
w ∈ Wn

∣∣ Σw ∩ χ−1(A) 6= ∅
}

,
Cn,Φ :=

{
w ∈ Wn

∣∣ Σw ∩ χ−1(Φ(A)) 6= ∅
}

, ΣCn :=
{
ω ∈ Σ

∣∣ [ω]n ∈ Cn
}

and ΣCn,Φ :={
ω ∈ Σ

∣∣ [ω]n ∈ Cn,Φ
}

. Then τΦ|Cn gives a bijection between Cn and Cn,Φ. Hence

mp〈f ◦ Φ〉
(
ΣCn

)
= ρ(p)n

∑
w∈Cn

Ep
(
f ◦ (Φ ◦ Fw)

)
= ρ(p)n

∑
w∈Cn

Ep
(
(f ◦ FτΦ(w)) ◦ UΦ,w

)
= ρ(p)n

∑
w∈Cn

Ep
(
f ◦ FτΦ(w)

)
= ρ(p)n

∑
v∈Cn,Φ

Ep(f ◦ Fv) = mp〈f〉
(
ΣCn,Φ

)
.

Letting n → ∞, we obtain Γp〈f ◦ Φ〉(A) = Φ∗
(
Γp〈f〉

)
(A) since

⋂
n∈N ΣCn = χ−1(A) and⋂

n∈N ΣCn,Φ = χ−1(Φ−1(A)). Hence we obtain Φ∗
(
Γp〈f〉

)
(A) = Γp〈f ◦Φ〉(A) for any closed

set A of K. �

Let us move to the chain rule of energy measures. The following ‘weak locality’ of
energy measures corresponds to the condition (H5) in [BV05], which is a consequence of
the self-similarity of energies.

Lemma 8.16. Let U be an open subset of K. If f, g ∈ Fp satisfy f = g m-a.e. on U ,
then Γp〈f〉(U) = Γp〈g〉(U).

Proof. By the inner regularity of Γp〈f〉 and Γp〈g〉, it suffices to show Γp〈f〉(A) = Γp〈g〉(A)
for any closed subset A of U . Pick δ ∈ (0, distd(A,K \ U)) and N ∈ N so that a−n∗ < δ
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for any n ≥ N . For n ∈ N, define Cn := {w ∈ Vn | Σw ∩ χ−1(A) 6= ∅}. Since f ◦ Fw =
g ◦ Fw (m-a.e. on K) for any w ∈ Cn with n ≥ N , we have

mp〈f〉(ΣCn) = ρ(p)n
∑
w∈Cn

Ep(f ◦ Fw) = ρ(p)n
∑
w∈Cn

Ep(g ◦ Fw) = mp〈g〉(ΣCn).

Letting n→∞ proves Γp〈f〉(A) = Γp〈g〉(A), which completes the proof. �

Now we show the chain rule for functions in Fp ∩ C(K).

Theorem 8.17 (Chain rule). For any Ψ ∈ C1(R) and f ∈ Fp ∩ C(K),

Γp〈Ψ ◦ f〉(dx) = |Ψ′(f(x))|pΓp〈f〉(dx), (8.15)

that is, Γp〈Ψ ◦ f〉(A) =
´
A
|Ψ′(f(x))|p Γp〈f〉(dx) for any A ∈ B(K).

Proof. The idea is very similar to [BV05, Proposition 4.1]. We present a complete proof
because the framework of [BV05] is slightly different from our setting. Let f ∈ Fp∩C(K),
Ψ ∈ C1(R) and ε > 0. Then there exists δ > 0 such that

|Ψ′(f(x))−Ψ′(f(y))| < ε for any x, y ∈ K with d(x, y) < δ.

Let {xj}j∈J be a family such that xj ∈ K (j ∈ J), #J <∞ and K =
⋃
j∈J Bd(xj, δ). For

j ∈ J , we define Ψj : R→ R by

Ψj(t) =
Ψ(f(xj))

|Ψ′(f(xj))|+ ε
+

ˆ t

f(xj)

[(
Ψ′(s)

|Ψ′(f(xj))|+ ε
∧ 1

)
∨ (−1)

]
ds.

Then, it is clear than Ψj ∈ C1(R) and
∣∣Ψ′j(t)∣∣ ≤ 1 for all t ∈ R. We note that if s ∈ R

satisfies |Ψ′(s)−Ψ′(f(xj))| ≤ ε, then(
Ψ′(s)

|Ψ′(f(xj))|+ ε
∧ 1

)
∨ (−1) =

Ψ′(s)

|Ψ′(f(xj))|+ ε
.

In particular,

Ψj(f(x)) =
Ψ(f(x))

|Ψ′(f(xj))|+ ε
and Ψ′j(f(x)) =

Ψ′(f(x))

|Ψ′(f(xj))|+ ε
for any x ∈ Bd(xj, δ).

Set aj = |Ψ′(f(xj))|+ ε for simplicity. By Lemma 8.16, Proposition 8.15(d) and the outer
regularity of energy measures, for any E ∈ B(K) with E ⊆ Bd(xj, δ), we see that

Γp〈Ψ ◦ f〉(E) = Γp
〈
aj(Ψj ◦ f)

〉
(E) = apjΓp〈Ψj ◦ f〉(E) ≤

(
|Ψ′(f(xj))|+ ε

)p
Γp〈f〉(E).

Therefore, for E ∈ B(K) with E ⊆ Bd(xj, δ),

Γp〈Ψ ◦ f〉(E) ≤
ˆ
E

|Ψ′(f(x))|p Γp〈f〉(dx) +

ˆ
E

[(
|Ψ′(f(xj))|+ ε

)p − |Ψ′(f(x))|p
]

Γp〈f〉(dx)

≤
ˆ
E

|Ψ′(f(x))|p Γp〈f〉(dx) +

ˆ
E

∣∣∣∣∣
ˆ |Ψ′(f(xj))|+ε

|Ψ′(f(x))|
psp−1 ds

∣∣∣∣∣Γp〈f〉(dx)

≤
ˆ
E

|Ψ′(f(x))|p Γp〈f〉(dx) + ε · Cp,Ψ,fΓp〈f〉(E), (8.16)
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where Cp,Ψ,f is a constant depending only on p and supt∈f(K) |Ψ′(t)|.
Now let A ∈ B(K) and let J = {1, . . . , N}. We inductively define Aj by A1 :=

A∩Bd(x1, δ) and Aj+1 :=
(
A∩Bd(xj+1, δ)

)
\Aj so that A =

⊔N
j=1 Aj. By summing (8.16)

with E = Aj over j and letting ε ↓ 0, we obtain

Γp〈Ψ ◦ f〉(A) ≤
ˆ
A

|Ψ′(f(x))|p Γp〈f〉(dx) for any A ∈ B(K). (8.17)

Next, we prove the converse inequality of (8.17). For n ∈ N, we define a closed set Fn
of K by Fn :=

{
x ∈ K

∣∣ |Ψ′(f(x))| ≥ n−1
}

. Note that
⋃
n≥1 Fn = {Ψ′ ◦ f 6= 0}. For each

n ∈ N there exists δn > 0 such that

|Ψ′(f(x))−Ψ′(f(y))| < 1

2n
for any x, y ∈ K with d(x, y) < δn.

Pick ln ∈ N so that maxw∈Wln
diam(Kw, d) < δn. Let

F+
n :=

{
x ∈ K

∣∣ Ψ′(f(x)) ≥ n−1
}

= (Ψ′ ◦ f)−1
([
n−1,∞

))
,

F−n :=
{
x ∈ K

∣∣ Ψ′(f(x)) ≤ −n−1
}

= (Ψ′ ◦ f)−1
((
−∞,−n−1

])
,

and Wln [F±n ] := {w ∈ Wln | Kw ∩ F±n 6= ∅}. Then, we easily see that

Fn = F+
n t F−n ⊆

 ⋃
w∈Wln [F+

n ]

Kw

 ∪
 ⋃
w∈Wln [F−n ]

Kw

 ,

and Ψ′(f(y)) ≥ (2n)−1 (resp. Ψ′(f(y)) ≤ −(2n)−1) for any y ∈
⋃
w∈Wln [F+

n ] Kw (resp.

y ∈
⋃
w∈Wln [F+

n ] Kw). Since f(Kw) is a connected subset of R and both functions f and

Ψ′◦f are uniformly continuous on K, we can pick δ′n > 0 and a collection of open intervals
{Iw}w∈Wln [F±n ] so that

f
(
(Kw)δ′n

)
⊆ Iw and inf

t∈Iw
|Ψ′(t)| > 0 for any w ∈ Wln [F+

n ] tWln [F−n ].

Since Ψ ∈ C1(R), Ψ′ is strictly increasing or strictly decreasing on each Iw. Applying
the inverse function theorem (e.g. [Jost, Theorem 2.7]), we get the inverse functions
Υw : Ψ(Iw)→ R of Ψ. For any w ∈ Wln [F+

n ]tWln [F−n ] and any E ∈ B(K) with E ⊆ Kw,
by Lemma 8.16 and the inequality (8.17) as measures,

ˆ
E

|Ψ′(f(x))|p Γp〈f〉(dx) =

ˆ
E

|Ψ′(f(x))|p Γp〈Υw ◦Ψ ◦ f〉(dx)

≤
ˆ
E

|Υ′w(Ψ(f(x)))|p|Ψ′(f(x))|p Γp〈Ψ ◦ f〉(dx)

=

ˆ
E

dΓp〈Ψ ◦ f〉 = Γp〈Ψ ◦ f〉(E).
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A similar covering argument as in the previous paragraph yields, for any A ∈ B(K),

ˆ
A∩Fn

|Ψ′(f(x))|p Γp〈f〉(dx) ≤ Γp〈Ψ ◦ f〉(A ∩ Fn).

By letting n→∞, we get

ˆ
A

|Ψ′(f(x))|p Γp〈f〉(dx) =

ˆ
A∩{Ψ′◦f 6=0}

|Ψ′(f(x))|p Γp〈f〉(dx)

≤ Γp〈Ψ ◦ f〉(A ∩ {Ψ′ ◦ f 6= 0}) ≤ Γp〈Ψ ◦ f〉(A),

which together with (8.17) implies the assertion. �

As an immediate consequence of Theorem 8.17, we can prove the following theorem
called energy image density property (wee [CF, Theorem 4.3.8] for the case p = 2), whose
proof is essentially the same as in [Shi+, Proposition 7.6].

Corollary 8.18. For any f ∈ Fp ∩ C(K), it holds that the image measure of Γp〈f〉 by f
is absolutely continuous with respect to the one-dimensional Lebesgue measure L 1 on R.
In particular, Γp〈f〉({x}) = 0 for any x ∈ K.

The same proof as [Shi+, Theorem 7.7] implies the following ‘strong locality in a
measure sense’.

Corollary 8.19. Let f, g ∈ Fp ∩ C(K). If (f − g)|A is constant for some Borel set
A ∈ B(K), then Γp〈f〉(A) = Γp〈g〉(A).

Remark 8.20. Theorem 8.17, Corollaries 8.18 and 8.19 are restricted to f ∈ Fp ∩ C(K)
because of the possibility of m ⊥ Γp〈f〉. Indeed, for canonical Dirichlet forms on many
fractals, such a singularity is expected [Hin05, KM20].

Next we prove the following (p, p)-Poincaré inequality in this setting.

Theorem 8.21. There exist CP > 0 and AP ≥ 1 such that for any f ∈ Fp, x ∈ K and
r > 0, ˆ

Bd(x,r)

∣∣f(y)− fBd(x,r)

∣∣pm(dy) ≤ CPr
dw(p)

ˆ
Bd(x,APr)

dΓp〈f〉. (8.18)

Proof. Let m ∈ Z≥0, w = w1 . . . wm ∈ Wm and f ∈ Fp. By the change-of-variable formula,
for any n ∈ N and z ∈ Vn,

Mn(f ◦ Fw)(z) =
1

m(Kz)

ˆ
Kz

(f ◦ Fw)(z) dm =
1

m(Kz)m(Kw)

ˆ
Kwz

f dm = Mn+mf(wz).

Therefore,

Ẽ (n)
p (f◦Fw) = an(dw(p)−df)

∗ EGnp
(
Mn+mf(w •)

)
= a−m(dw(p)−df)

∗ Ẽ (n+m)
p,Sn(w)(f) = ρ(p)−mẼ (n+m)

p,Sn(w)(f),
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where Mn+mf(w •) : Vn → R denotes the function defined as v 7→Mn+mf(wv). In partic-
ular, we obtain

Ẽ (n+m)
p,Sn(w)(f) = ρ(p)mẼ (n)

p (f ◦ Fw) ≤ ρ(p)m|f ◦ Fw|pFp . ρ(p)mEp(f ◦ Fw) ≤ Γp〈f〉(Kw),

(8.19)
where we used Lemma 8.14 in the last inequality

Let x ∈ K, r > 0 and let A ≥ 1 be the constant in Lemma 6.24. Let n0 = n0(r, A) so
that

⋃
w∈Vn(Bd(x,Ar)) Kw ⊆ Bd(x, 2Ar) for any n ≥ n0. Then, for any n ≥ n0,

Ẽ (n)
p,Vn(Bd(x,Ar))(f) ≤

∑
w∈Vn0 (Bd(x,Ar))

Ẽ (n)

p,Sn−n0 (w)
(f)

(8.19)

.
∑

w∈Vn0 (Bd(x,Ar))

Γp〈f〉(Kw)

. Γp〈f〉
(
Bd(x, 2Ar)

)
,

where we used Lemma 6.10 (L∗ < ∞) in the last inequality. Combining with Lemma
6.24, we obtain the desired Poincaré inequality (8.18). �

The next proposition obtains bounds on p-energy measure expressed using the under-
lying metric and measure. By using (8.18) instead of (6.32) in the proof of Lemma 7.2,
we immediately achieve the following ‘local behavior of p-energy in terms of (fractional)
Korevaar–Schoen expression’.

Proposition 8.22. There exists C > 0 such that for all Borel set U of K and f ∈ Fp,
we have

lim sup
r↓0

ˆ
U

 
Bd(x,r)

|f(x)− f(y)|p

rdw(p)
m(dy)m(dx) ≤ CΓp〈f〉(U), (8.20)

and

Γp〈f〉(U) ≤ C lim
δ↓0

lim inf
r↓0

ˆ
Uδ

 
Bd(x,r)

|f(x)− f(y)|p

rdw(p)
m(dy)m(dx). (8.21)

Proof. Let U ⊆ K, δ > 0 and f ∈ Fp. The same argument using a maximal r-net
Nr(⊆ U) of U to get (7.3) yields

ˆ
U

 
Bd(x,r)

|f(x)− f(y)|p

rdw(p)
m(dy)m(dx) .

∑
y∈Nr

Γp〈f〉
(
Bd(y, 2APr)

)
.

Since
∑

y∈Nr 1Bd(y,2APr) . 1U2APr
by the metric doubling property, we obtain (8.20).

Next we show (8.21). By Lemma 7.3, we have

lim sup
n→∞

Ẽ (n)
p,Vn(U)(f) ≤ C0 lim inf

r↓0

ˆ
Uδ

 
Bd(x,r)

|f(x)− f(y)|p

rdw(p)
m(dy)m(dx), (8.22)
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where C0 > 0 is independent of U, δ, f . Let k ∈ N be large enough so that
⋃
w∈Wk[U ] Kw ⊆

Uδ. Then we see that

Γp〈f〉(U) ≤ mp〈f〉

 ⋃
w∈Wk[U ]

Σw

 = ρ(p)k
∑

w∈Wk[U ]

Ep(f ◦ Fw)

. ρ(p)k
∑

w∈Wk[U ]

lim
n→∞

Ẽ (n)
p (f ◦ Fw) =

∑
w∈Wk[U ]

lim
n→∞

Ẽ (n+k)
p,Sn(w)(f).

For w ∈ Wk[U ], we observe that Sn(w) ⊆ Vn+k(Uδ). Therefore,

Γp〈f〉(U) . lim inf
n→∞

∑
w∈Wk[U ]

Ẽ (n+k)
p,Sn(w)(f) ≤ lim sup

n→∞
Ẽ (n)
p,Vn(Uδ)

(f).

Combining with (8.22) for Uδ, we obtain (8.21). �

Remark 8.23. Once we have energy measures and Poincaré inequality, minor modifica-
tions of the proof of [Mur23+, Theorem 2.9] show the following result: for any uniform do-
main U of K in the sense of [Mur23+, Definition 2.3] and f ∈ Fp, we have Γp〈f〉(∂U) = 0.
Note that intR2K = K \ V0 is a uniform domain in this sense.

Finally, we finish the proof of Theorems 1.2 and 1.5.

Proof of Theorem 1.2. The existence of energy measures follows from the construction
described at the beginning of this subsection, which in turn follows from Theorem 1.1.
Properties (ii)-(iv) follow from Propositions 8.15. The assertions in (vi) follow from The-
orem 8.17 and Corollary 8.19.

It remains to prove (i). The property Γp〈f〉(K) = Ep(f) is immediate from the defi-
nition of Γp〈f〉. In order to prove the second assertion, note that for any w ∈ Wn, n ∈
N, f ∈ Fp, by the self-similarity (iv),

Γp〈f〉(Kw) = ρ(p)n
∑

u∈Wn;Ku∩Kw 6=∅

Γp〈f ◦ Fu〉(Ku ∩Kw). (8.23)

If u 6= w and u, v ∈ Wn, then Ku ∩ Kw ⊂ Fu(V0) which has energy measure zero by
Remark 8.23 and the self-similarity (iv). Therefore Γp〈f〉(Kw) = ρ(p)nΓp〈f ◦ Fw〉(Kw) =
ρ(p)nEp(f ◦ Fw) for any w ∈ Wn, n ∈ N, f ∈ Fp. �

Proof of Theorem 1.5. The Poincaré inequality and capacity upper bounds follow from
Theorem 8.21 and Proposition 6.21 respectively after verifying the assumptions using
Theorem 8.3. �
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9 Comparison with the Loewner space: Theorem 1.7

In this section, we obtain partial results towards the attainment problem, namely the last
main result Theorem 1.7.

9.1 Newton-Sobolev space N 1,p

We start by briefly recalling the theory of first-order Sobolev spaces on metric measure
spaces based on the notion of upper gradients. A comprehensive account of this theory
can be found in [HKST] (see also [BB, Hei]).

Hereafter, we let (X, θ, µ) be a metric measure space in the sense of [HKST], i.e.,
(X, θ) is a separable metric space and µ is a locally finite Borel-regular (outer) measure
on X. In addition, we always assume that µ(O) > 0 for any non-empty open set O.

We first recall the notion of modulus of curve families.

Definition 9.1 (Modulus of curve families). Let p ∈ (0,∞) and let Γ be a subset of Γrect,
where Γrect denotes the set of rectifiable curves in (X, θ). A non-negative Borel function
ρ ∈ B+(X) is said to be admissible for Γ if infγ∈Γ

´
γ
ρ ds ≥ 1, where

´
γ
ρ ds is the usual

curve integral (see [HKST, Section 5.1]). The p-modulus of Γ is defined as

Modp(Γ) = inf
{
‖ρ‖pLp(µ)

∣∣ ρ is admissible for Γ
}
.

We shall say that a property of curves holds for Modp-a.e. curve if the p-modulus of the
set of curves for which the property fails to holds is zero.

The corresponding properties to the discrete case in Lemma 2.3 are also true for p-
modulus on (X, θ, µ) [HKST, Section 5.2]. The next notion of minimal p-weak upper
gradient of a function u plays the role of ‘|∇u|’. The notion of weak upper gradients was
introduced in [HK98], where it was called ‘very weak gradients’.

Definition 9.2 (Upper gradients). Let p ∈ (0,∞), u : X → R and g ∈ B+(X). (Here,
both u and g is defined on every points of X.) The Borel function g is called a p-weak
upper gradient of u if

|u(x)− u(y)| ≤
ˆ
γ

g ds for Modp-a.e. γ ∈ Γrect, (9.1)

where x, y are endpoints of γ. If (9.1) holds for every compact rectifiable curve, then g is
called an upper gradient of u.

A p-weak upper gradient g of u is said to be a minimal p-weak upper gradient if it
is p-integrable with respect to the measure µ and if g ≤ g′ µ-a.e. in X whenever g′ is a
p-integrable p-weak upper gradient of u. Such the minimal p-weak upper gradient of u is
denoted by gu.

If {g | g is a p-integrable upper gradient of u} 6= ∅, then the existence and uniqueness
(up to a µ-null set) of minimal p-weak upper gradient are established by the direct method
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in calculus of variations [HKST, Theorem 6.3.20 and Lemma 6.2.8]. We also recall that
‖gu‖pLp(µ) is the smallest Lp(X,µ)-norm among all p-integrable p-weak upper gradient of

u. For other basic properties on upper gradients, we refer to [BB, Hei, HKST].

For a locally Lipschitz function u : X → R, we define its lower pointwise Lipschitz
constant function lipu : X → [0,∞) as

lipu(x) := lim inf
r↓0

sup
y∈B(x,r)

|u(y)− u(x)|
r

, (9.2)

which gives a typical example of upper gradients [HKST, Lemmas 6.2.5 and 6.2.6].

Proposition 9.3. If u : X → R is a locally Lipschitz function, then lipu ∈ B+(X) is an
upper gradient of u.

Now we can define the function spaces Ñ1,p and N1,p, which are called Newton-Sobolev
spaces and introduced in [Sha00]. Let p ∈ [1,∞) and let

Ñ1,p(X, θ, µ)

:=

{
u : X → [−∞,∞]

∣∣∣∣∣ u is p-integrable with respect to µ and there
exists a p-integrable p-weak upper gradient g of u

}
, (9.3)

which is clearly a vector space (over R). We equip Ñ1,p(X, θ, µ) with the seminorm
‖ · ‖N1,p(X,θ,µ) given by

‖u‖N1,p(X,θ,µ) = ‖u‖Lp(µ) + ‖gu‖Lp(µ) . (9.4)

To get a normed space, we next consider a quotient space of Ñ1,p(X, θ, µ).

Definition 9.4 (Newton-Sobolev space N1,p). Let p ∈ [1,∞). Two functions f, g ∈
Ñ1,p(X, θ, µ) are said to be equivalent, f ∼N1,p g for short, if ‖f − g‖N1,p(X,θ,µ) = 0. Let

us denote the equivalence class of f by [f ]N1,p . The Newton–Sobolev space N1,p(X, θ, µ) is

defined as the quotient normed space Ñ1,p(X, θ, µ)/ ∼N1,p , whose quotient norm associated
with the semi-norm defined in (9.4) is also denoted by ‖ · ‖N1,p(X,θ,µ). We also use ‖ · ‖N1,p

or ‖ · ‖N1,p(µ) to denote ‖ · ‖N1,p(X,θ,µ).

For any p ∈ [1,∞), N1,p(X, θ, µ) is a Banach space [HKST, Theorem 7.3.6].

Remark 9.5. If (K, d,m) is the Sierpiński carpet given in Definition 8.1, then [HKST,
Proposition 7.1.33] implies that N1,p(K, d,m) is trivial, i.e., N1,p(K, d,m) = Lp(K,m).
This triviality is due to the fact that Modp(Γrect(K, d)) = 0. Such triviality of 1-modulus
is proved by [LP04] and one can find a proof for any p ≥ 1 in [MT, Proposition 4.3.3].

We recall Poincaré inequalities based on the notion of upper gradient.
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Definition 9.6. Let p ∈ [1,∞). The metric measure space (X, θ, µ) is said to satisfy
the (p, p)-Poincaré inequality if there exist CP ∈ (0,∞), AP ∈ [1,∞) such that for any

x ∈ X, r > 0, u ∈ Ñ1,p(X, θ, µ) and for any p-weak upper gradient g of u, we haveˆ
Bθ(x,r)

∣∣u(y)− uBθ(x,r),µ

∣∣p µ(dy) ≤ CPr
p

ˆ
Bθ(x,APr)

gp dµ, ((p, p)-PIug)

where uBθ(x,r),µ =
ffl
Bθ(x,r)

u dµ. In addition, (X, θ, µ) is said to satisfy the (1, p)-Poincaré

inequality (or p-Poincaré inequality for short) if for any x ∈ X, r > 0, u ∈ Ñ1,p(X, θ, µ)
and for any p-weak upper gradient g of u, we have

 
Bθ(x,r)

∣∣u(y)− uBθ(x,r),µ

∣∣µ(dy) ≤ CPr

( 
Bθ(x,APr)

gp dµ

)1/p

. (p-PIug)

Here ‘ug’ stands for upper gradient to distinguish it from Poincaré inequality corre-
sponding to energy measures as shown in Theorem 8.21 or Poincaré inequality on graphs
as shown in Theorem 4.2.

9.2 Lipschitz partition of unity and localized energies

In this subsection, we provide analogue results of Proposition 8.22. We focus on an upper
bound on the “energy measure” gpf dµ because we do not use lower bounds in this paper.

We work in the same settings as in the previous section, i.e., (X, θ, µ) is a separable
metric space and µ is a locally finite Borel-regular (outer) measure on X which is positive
on any non-empty open subset of X. In addition, we let p ∈ (1,∞) throughout this
subsection.

The following Lipschitz partition of unity is a well-known tool to approximate arbitrary
functions in Ñ1,p(X, θ, µ) with Lipschitz functions (see [HKST, pp. 104–105]).

Lemma 9.7. Let (X, θ) be a doubling metric space. Let {xi : i ∈ I} be a maximal r-
separated subset for some r > 0. Then there exists C1 > 0 depending only on the doubling
constant of (X, θ) and a collection of C1/r-Lipschitz functions ϕi : X → [0, 1] such that∑

i∈I ϕi ≡ 1 and supp[ϕi] ⊂ Bθ(xi, 2ri) for all i ∈ I.

The next lemma provides an estimate for upper gradients of discrete convolutions.

Lemma 9.8. Suppose that (X, θ, µ) is volume doubling. Let {xi : i ∈ I} be a maximal
r-separated subset of (X, θ) and let {ϕi}i∈I denote a Lipschitz partition of unity satisfying
the properties described in Lemma 9.7. For a µ-integrable function u : X → R, define
ur : X → R as

ur(x) :=
∑
i∈I

uBθ(xi,r),µϕi(x), where uBθ(xi,r),µ =

 
Bθ(xi,r)

u dµ for all i ∈ I. (9.5)

There exists C > 0 depending only on the doubling constant of µ such that

lipur(x) ≤ Cr−1

 
Bθ(x,4r),µ

∣∣u(z)− uBθ(x,4r),µ

∣∣µ(dz) for all x ∈ X. (9.6)
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Proof. In this proof, we write uBθ(x,r) = uBθ(x,r),µ for simplicity. For any x, y ∈ X with
θ(x, y) < r, we have ϕi(x) ∨ ϕi(y) 6= 0 only if θ(xi, x) < 3r and therefore Bθ(xi, r) ⊂
Bθ(x, 4r) whenever ϕi(x) ∨ ϕi(y) 6= 0. Hence for all x, y ∈ X with θ(x, y) < r, we have

|ur(x)− ur(y)| =

∣∣∣∣∣∑
i∈I

uBθ(xi,r)(ϕi(x)− ϕi(y))

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈I

(
uBθ(xi,r) − uBθ(x,4r)

)
(ϕi(x)− ϕi(y))

∣∣∣∣∣
≤

∑
i∈I,θ(x,xi)<4r

∣∣(uBθ(xi,r) − uBθ(x,4r)

)
(ϕi(x)− ϕi(y))

∣∣
≤ C1r

−1θ(x, y)
∑

i∈I,θ(x,xi)<4r

 
Bθ(xi,r)

∣∣u(z)− uBθ(x,4r)

∣∣µ(dz)

≤ C2r
−1θ(x, y)

 
Bθ(x,4r)

∣∣u(z)− uBθ(x,4r)

∣∣µ(dz).

In the second and third line, we used Lemma 9.7. In the last line, we used the fact that
µ is a doubling measure and that the set of #{i ∈ I | θ(xi, x) < 4r} is bounded by a
constant that depends only on the doubling constant of (X, θ). �

It is well-known that the p-energy of a function in Ñ1,p(X, θ, µ) is bounded from above
by a Koreervaar-Schoen type energy. We say that a function u : X → R is the Korevaar-
Schoen-Sobolev space KS1,p(X, θ, µ) if u ∈ Lp(X,µ) and

lim sup
ε↓0

ˆ
X

ε−p
 
Bθ(x,ε)

|u(y)− u(x)|p µ(dy)µ(dx) <∞.

In the following proposition, we control the Lp-norm of the minimal p-weak upper
gradient on arbitrary sets using a Korevaar-Schoen type energy. The statement and its
proof is a slight extension of that of [HKST, Theorem 10.4.3] which deals with the case
B = X.

Proposition 9.9. Let (X, θ, µ) be volume doubling. There exists C > 0 such that for all

u ∈ KS1,p(X, θ, µ), there exists ũ ∈ Ñ1,p(X, θ, µ) such that ũ = u µ-almost everywhere
and such that its minimal p-weak upper gradient gũ satisfies, for any Borel set B ⊆ X,

ˆ
B

gpũ dµ ≤ C lim sup
ε↓0

ˆ
B

ε−p
 
Bθ(y,ε)

|u(y)− u(x)|p µ(dy)µ(dx). (9.7)

Proof. For each n ∈ N, consider a maximal n−1-separated subset of (X, θ) and the
corresponding Lipschitz partition of unity as given in Lemma 9.7. Let vn := un−1 de-
note the function defined in (9.5). Then by [HKST, Proof of Theorem 10.4.3], we have
limn→∞

´
X
|vn − u|p dµ = 0 and, by Lemma 9.8 and Jensen’s inequality, there exists C1 > 0

depending only on p and the doubling constant of µ such that

lim
n→∞

ˆ
X

lip vn(x)p µ(dx) ≤ C1 lim
ε↓0

ˆ
X

ε−p
 
Bθ(x,ε)

|u(y)− u(x)|p µ(dy)µ(dx) <∞. (9.8)



Sobolev spaces on the Sierpiński carpet 69

Hence {vn}n∈N is bounded in Ñ1,p. Therefore by Mazur’s lemma and [HKST, Proposition

7.3.7, Theorem 7.3.8], there exists ũ ∈ Ñ1,p(X, θ, µ) such that ũ = u µ-a.e. and g ∈ B+(X)
satisfies the following properties. The function g is a p-weak upper gradient of ũ and is a
limit in Lp(X,µ) of a sequence {gj}j∈N such that gj is a convex combination of elements
in the sequence {lip vj}j∈N for all j and for any n ∈ N all but finitely many elements of
gj are finite convex combinations of lip vj with j ≥ n. Hence by Lemma 9.8,

ˆ
B

gpũ dµ ≤
ˆ
B

gp dµ ≤ lim sup
n→∞

ˆ
B

(lip vn)p dµ

≤ C lim sup
ε↓0

ˆ
B

ε−p
 
Bθ(y,ε)

|u(y)− u(x)|p µ(dy)µ(dx),

which completes the proof. �

9.3 Loewner metric and measure

Let us recall the definition of Loewner spaces.

Definition 9.10 (Loewner space). Let p ∈ (1,∞) and let (X, θ, µ) be a metric measure
space such that is metric doubling. The metric measure space (X, θ, µ) is said to be p-
Loewner if µ is p-Ahlfors regular with respect to θ and p-Poincaré inequality p-PIug holds.
If (X, θ, µ) is p-Loewner for some p ∈ (1,∞), then θ is called a Loewner metric and µ is
called a Loewner measure.

The original definition of Loewner spaces due to Heinonen and Koskela [HK98, Defi-
nition 3.1] is based on lower bounds on modulus. However, this gives an equivalent one
by virtue of [HK98, Theorems 5.7 and 5.12]. This celebrated work identified Loewner
spaces as the abstract setting where much of the nice properties of quasiconformal maps
on Euclidean spaces are available.

The next result is an observation due to Cheeger and Eriksson-Bique [CE]. It states
that any metric and measure attaining the Ahlfors regular conformal dimension is a
Loewner space. We recall this short argument as it plays a key role in rest of this section.

Proposition 9.11 ([CE, §1.6]). Let (K, d,m) be the planar Sierpiński carpet in Definition
8.1. Suppose that the Ahlfors regular conformal dimension of (K, d,m) (dimARC for short)
is attained, i.e., there exists a metric θ ∈ J (K, d) equipped with a dimARC-Ahlfors regular
measure µ with respect to θ. Then (K, θ, µ) is a dimARC-Loewner space. Conversely, every
Loewner space attains the Ahlfors regular conformal dimension.

Proof. This result follows from the dimARC-combinatorial Loewner property of PSC, which
is proved in [BK13, Theorem 4.1]. As explained in [CE, §1.6], dimARC-combinatorial
Loewner property along with dimARC-Ahlfors regularity implies dimARC-Loewner property
in the sense of [HK98, (3.2)]. This is due to a result of Häıssinky [Häı09, Proposition B.2]
comparing combinatorial and continuous versions of modulus and a different equivalent
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definition of the Loewner property in Heinonen and Koskela’s celebrated work [HK98,
Definition 3.1, Theorems 5.12 and 5.7]. Heinonen attributes the converse result to Bonk
and Tyson [Hei, Theorem 15.10]. �

Recall from Definition 1.6 that the Ahlfors regular conformal dimension concerns the
existence of a metric θ ∈ J (X, d) and p-Ahlfors regular measure µ on (X, θ). It is well-
known that the measures and metrics satisfying these conditions determine each other;
that is µ can be recovered from θ and θ can be recovered from µ (up to a bounded
multiplicative constant). We recall this fact in Lemmas 9.12 and 9.14.

Lemma 9.12. Let p ∈ (1,∞) and let (X, θ, µ) be a metric measure space. If µ is p-
Ahlfors regular with respect to θ, then there exists C ≥ 1 (depending only on p and the
doubling constant of θ) such that

C−1H p
θ (B) ≤ µ(B) ≤ CH p

θ (B) for all Borel set B ∈ B(X), (9.9)

where H p
θ denotes the p-dimensional Hausdorff measure with respect to the metric θ.

We also note that, by Lemma 9.12, the Ahlfors regularity can be regarded as a property
on metrics (and the corresponding Hausdorff measures).

Conversely, David–Semmes deformation theory ([DS90] for example) allows us to con-
struct a corresponding metric associated to a given Ahlfors regular measure µ that is
bi-Lipschitz equivalent to the original Loewner metric. See also [Hei, Chapter 14] or [MT,
Section 7.1]. To describe this we recall the definition of a maximal semi-metric.

Definition 9.13. A function r : X×X → [0,∞) is said to be a semi-metric, if it satisfies
all the properties of a metric except possibly the property that r(x, y) = 0 implies x = y.

Let h : X×X → [0,∞) be an arbitrary function. Then there exists a unique maximal
semi-metric dh : X×X → [0,∞) such that dh(x, y) ≤ h(x, y) for all x, y ∈ X [BBI, Lemma
3.1.23]. We say that dh is the maximal semi-metric induced by h. More concretely, dh can

be defined as follows. Let h̃(x, y) = min(h(x, y), h(y, x)). Then

dh(x, y) = inf

{
N−1∑
i=0

h̃(xi, xi+1) : N ∈ N, x0 = x, xN = y

}
. (9.10)

To following lemma follows easily from the definitions.

Lemma 9.14. Let p ∈ (1,∞) and let (X, d) be a metric space. If θ ∈ J (X, d) and
µ is a Borel measure on X such that µ is p-Ahlfors regular on (X, θ). Let h(x, y) :=
µ(Bd(x, d(x, y)))1/p for all x, y ∈ X and let dh denote the maximal semi-metric. Then dh
is bi-Lipschitz equivalent to θ, that is, there exists C > 1 such that

C−1θ(x, y) ≤ dh(x, y) ≤ Cθ(x, y) for all x, y ∈ X.

In particular dh ∈ J (X, d) and µ is p-Ahlfors regular on (X, dh).
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In the rest of this paper, we discuss the structures of metrics and measures that attain
the Ahlfors regular conformal dimension of the Sierpiński carpet if exist. In view of
Lemma 9.14, we focus on optimal measures. We introduce the standing framework in the
remaining part:

Assumption 9.15. Let (K, d,m) be the planar Sierpiński carpet in Definition 8.1. Let
df = log 8/ log 3 and p = dimARC(K, d,m). We suppose the attainment of dimARC(K, d,m).
Let θ ∈ J (K, d) and let µ be a Borel-regular measure on K such that µ is p-Ahlfors regular
with respect to θ.

Remark 9.16. By the results of [KL04, Tys00] (see also [MT, Section 4.3] for a review
of related results), we know that

1 < 1 +
log 2

log 3
≤ p = dimARC(K, d,m) < df . (9.11)

By [BK13, Corollary 3.7 and Theorem 4.1] or alternately by [Kig20, Theorem 4.7.6], we
have dw(p) = df .

B. Kleiner [Kle+] observed than any optimal measure µ is mutually singular to the
self-similar measure m. Although we don’t need this fact, it helps us to elucidate that
the comparison of norms on Theorem 1.7(i) does not follow comparison of corresponding
semi-norms as the Lp(m) and Lp(µ) norms are not comparable.

Proposition 9.17 (due to Bruce Kleiner). Under Assumption 9.15, the measures m and
µ are mutually singular.

Proof. This proof by contradiction uses a ‘blow-up’ argument. Assume to the contrary
that µ is not singular to m. Let µ = µa + µs denote the Lebesgue decomposition of µ
with respect to m, where µa � m, µs ⊥ m and µa 6= 0 by assumption. Let f = dµa

dm
. For

m-almost every x ∈ K, we have ([KM20, Proposition A.4])

lim
r↓0

µs(Bd(x, r))

m(Bd(x, r))
= 0 (9.12)

and for m-almost every x ∈ {y ∈ K : f(y) > 0}, we have ([Hei, (2.8)])

lim
r↓0

1

m(Bd(x, r))

ˆ
Bd(x,r)

|f(y)− f(x)|m(dy) = 0. (9.13)

Since µa 6= 0, there exists x ∈ {y ∈ K : f(y) > 0} such that both (9.12) and (9.13) hold.
Pick ω ∈ Σ such that χ(ω) = x and set wn := [ω]n ∈ Wn for all n ∈ N. Define a sequence
of probability measures µn and metrics θn : K ×K → [0,∞) as

µn(A) :=
µ(Fwn(A))

µ(Kwn)
, θn(x, y) :=

θ(Fwn(x), Fwn(y))

diam(Kwn , θ)
, for all n ∈ N,

where θ ∈ J (K, d) is such that µ is p-Ahlfors regular in (K, θ) and p is as given in As-
sumption 9.15. By (9.12) and (9.13), the sequence of measures µn converges to f(x)m
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in the topology of weak convergence. Furthermore, it is easy to verify that there exists
a homeomorphism η : [0,∞) → [0,∞) such that the identity map Id : (K, θn) → (K, d)
is an η-quasisymmetry for all n ∈ N. By the same argument as [KM23, Proof of Propo-
sition 6.18] using Arzela-Ascoli theorem, there exists a subsequence {θnk}k∈N of {θn}n∈N
converging uniformly to θ̃ ∈ C(K ×K). This along with diam(K, θn) = 1 implies that θ̃

is a metric on K, Id : (K, θ̃)→ (K, d) is a η-quasisymmetry and hence θ̃ ∈ J (K, d). This

implies that the measure f(x)m is p-Ahlfors regular in (K, θ̃). Therefore by Lemma 9.14,
we obtain p = df which contradicts (9.11). �

In the next subsection, we compare (K, d,m) and (K, θ, µ). To state a relation between
m and µ, we will use the following notion called minimal energy-dominant measure.

Definition 9.18. Let (Ep,Fp) be as given in Theorem 1.1. A Borel-regular finite measure
ν on K is called minimal energy-dominant measure of (Ep,Fp) if the following conditions
(i) and (ii) hold.

(i) (Domination) For every f ∈ Fp, we have Γp〈f〉 � ν.

(ii) (Minimality) For another Borel-regular finite measure ν ′ satisfying the above ‘dom-
ination’ property, we have ν � ν ′.

In Dirichlet form theory, the existence of such a measure is shown in [Nak85, Lemma
2.2]. The following lemma gives basic results on minimal energy-dominant measure of
(Ep,Fp), whose proofs are straightforward modifications of [Hin10, Lemmas 2.2-2.4].

Lemma 9.19. Let (Ep,Fp) be as given in Theorem 1.1.

(a) Let ν be a Borel-regular finite measure on K and let f, fn ∈ Fp (n ∈ N) such that
Ep(f−fn)→ 0 as n→∞. Suppose that Γp〈fn〉 � ν for all n ∈ N. Then Γp〈f〉 � ν.

(b) Let {fn}n∈N be a dense subset of Fp. Let {an}n∈N be a sequence of positive numbers
such that

∑∞
n=1 anEp(fn) converges. Then ν :=

∑∞
n=1 anΓp〈fn〉 defines a minimal

energy-dominant measure of (Ep,Fp).

(c) Let ν be a minimal energy-dominant measure of (Ep,Fp) and let A ∈ B(K). Then
ν(A) = 0 if and only if Γp〈f〉(A) = 0 for all f ∈ Fp.

9.4 Identifying self-similar and Newtonian Sobolev spaces

In this subsection, we will compare different notions of energies (Ep(f) and
´
K
gpf dµ) and

Sobolev spaces (Fp and N1,p) on the Sierpiński carpet under assuming the attainment
of its Ahlfors regular conformal dimension. Throughout of this subsection, we always
suppose Assumption 9.15.

The following is a two-weight Poincaré type inequality, which is the key ingredient to
compare the two different geometries (self-similar and Loewner).
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Proposition 9.20. Suppose Assumption 9.15. There exist C,A > 1 such that for all
x ∈ K, r > 0, we have

inf
α∈R

ˆ
Bd(x,r)

|f − α|p dm ≤ Crdf

ˆ
Bd(x,Ar)

gpf dµ for all f ∈ N1,p(K, θ, µ) ∩ C(K), (9.14)

inf
α∈R

ˆ
Bθ(x,r)

|f − α|p dµ ≤ CrpΓp〈f〉(Bθ(x,Ar)) for all f ∈ Fp(K, d,m) ∩ C(K). (9.15)

Proof. In this proof, each function in N1,p(K, θ, µ) ∩ C(K) (or Fp(K, d,m) ∩ C(K)) is
considered as a pointwisely defined continuous function on K. Fix p1 ∈ (p,∞). To prove
(9.14), by [Hei, Lemma 4.22] and df-Ahlfors regularity of (K, d,m), it suffices to show the
following weak type estimate: There exist C1, A1 ∈ (1,∞) such that

inf
α∈R

sup
t>0

tp1m ({y ∈ Bd(x, r) : |f(y)− α| > t}) ≤ C1r
df

ˆ
Bd(x,A1r)

gpf dµ (9.16)

for all f ∈ N1,p(K, θ, µ) ∩ C(K), where gf is the minimal p-weak upper gradient of f .

Let AP ∈ [1,∞) denote the constant in (p, p)-PIug as given in Definition 9.6. Since
θ ∈ J (K, d), by [MT, Lemma 1.2.18], there exists A ∈ (1,∞) such that for all x ∈ K, r > 0
, there exists s > 0 satisfying

Bd(x, r) ⊂ Bθ(x, s) ⊂ Bθ(x, (1 + 2AP)s) ⊂ Bd(x,Ar). (9.17)

By (p, p)-PIug and p-Ahlfors regularity of (K, θ, µ), there exists C2 > 1 such that for all

x ∈ K, s > 0, y ∈ Bθ(x, s), f ∈ Ñ1,p(K, θ, µ), we have∣∣∣∣ 
Bθ(y,s)

f dµ−
 
Bθ(x,2s)

f dµ

∣∣∣∣ ≤ 1

µ(Bθ(y, s))

ˆ
Bθ(x,2s)

∣∣∣∣f −  
Bθ(x,2s)

f dµ

∣∣∣∣ dµ
≤ C2

(ˆ
Bθ(x,2APs)

gpf dµ

)1/p

, (9.18)

where gf is the minimal p-weak upper gradient of f . By a similar argument, there exists

C3 > 1 such that for all x ∈ K, s > 0, y ∈ Bθ(x, s), i ∈ Z≥0, f ∈ Ñ1,p(K, θ, µ), we have∣∣∣∣ 
Bθ(y,2−is)

f dµ−
 
Bθ(y,2−i−1s)

f dµ

∣∣∣∣ ≤ C3

(ˆ
Bθ(y,AP2−is)

gpf dµ

)1/p

. (9.19)

Note that (K, θ) is connected since (K, θ) is homeomorphic to (K, d). By the reverse
doubling property [Hei, Exercise 13.1] of m with respect to the metric θ, there exists
c4 ∈ (0, 1) such that for all y ∈ K, s > 0, we have

c4

∞∑
i=0

(
m(Bθ(y, 2

−is))

m(Bθ(y, s))

)1/p1

<
1

2
. (9.20)

In order to show (9.16), for any f ∈ N1,p(K, θ, µ) ∩ C(K), we choose α =
ffl
Bθ(x,2s)

f dµ.

If t ≤ 2C2

(´
Bd(x,Ar)

gpf dµ
)1/p

, the estimate (9.16) follows from the df-Ahlfors regularity
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of (K, d,m). Therefore, it suffices to consider the case t > 2C2

(´
Bd(x,Ar)

gpf dµ
)1/p

. By

(9.17), (9.18), we have

{
y ∈ Bd(x, r) : |f(y)− α| > t

}
⊂

{
y ∈ Bd(x, r) :

∣∣∣∣f(y)−
 
Bθ(y,s)

f dµ

∣∣∣∣ > t/2

}
(9.21)

for all t > 2C2

(´
Bd(x,Ar)

gpf dµ
)1/p

. By (9.21), for any y ∈ Bd(x, r) such that
∣∣∣f(y)−

ffl
Bθ(x,2s)

f dµ
∣∣∣ >

t > 2C2

(´
Bd(x,Ar)

gpf dµ
)1/p

, we have

c4

∞∑
i=0

(
m(Bθ(y, 5AP2−is))

m(Bθ(y, 5APs))

)1/p1

t < t/2 (by (9.20))

<

∣∣∣∣f(y)−
 
Bθ(y,s)

f dµ

∣∣∣∣ (by (9.21))

≤ C3

∞∑
i=0

(ˆ
Bθ(y,AP2−is)

gpf dµ

)1/p

(by (9.19)).

Therefore there exists C5 > 1 such that following property holds: For each y ∈ Bd(x, r)

that satisfies
∣∣∣f(y)−

ffl
Bθ(x,2s)

f dµ
∣∣∣ > t > 2C2

(´
Bd(x,Ar)

gpf dµ
)1/p

, there exists iy ∈ Z≥0

such that

m(Bθ(y, 5AP2−iys)) ≤ C5t
−p1rdf

ˆ
Bθ(y,AP2−iy s)

gpf dµ. (9.22)

By the 5B covering lemma [Hei, Theorem 1.2], there exists a pairwise disjoint collection
of balls {Bθ(yj, AP2−iyj s) | j ∈ J} such that{

y ∈ Bd(x, r) :

∣∣∣∣f(y)−
 
Bθ(x,2s)

f dµ

∣∣∣∣ > t

}
⊆
⋃
j∈J

Bθ(yj, 5AP2−iyj s).

Hence

m

({
y ∈ Bd(x, r) :

∣∣∣∣f(y)−
 
Bθ(x,2s)

f dµ

∣∣∣∣ > t

})
≤
∑
j∈J

m
(
Bθ(yj, 5AP2−iyj s)

)
(9.22)

≤ C5t
−p1rdf

∑
j∈J

ˆ
Bθ(yj ,AP2

−iyj s)

gpf dµ

≤ C5t
−p1rdf

ˆ
Bθ(x,(1+AP)s)

gpf dµ

(9.17)

≤ C5t
−p1rdf

ˆ
Bd(x,Ar)

gpf dµ,

which concludes the proof of (9.16) and therefore (9.14).
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The proof of (9.15) follows from a similar argument where the application of (p, p)-PIug

in (K, θ, µ) is replaced with (8.18) with β = dw(p) = df (see also Remark 9.16), which is
the (p, p)-Poincaré inequality for the self-similar energy on (K, d,m). �

The following result compares energy measures and energies in the Sobolev spaces.

Theorem 9.21. Suppose Assumption 9.15. Then we have

Fp(K, d,m) ∩ C(K) = N1,p(K, θ, µ) ∩ C(K).

We let Cp := Fp(K, d,m)∩ C(K). In addition, there exists C > 1 such that for any Borel
set B ∈ B(K) and for all f ∈ Cp, we have

C−1Γp〈f〉(B) ≤
ˆ
B

gpf dµ ≤ CΓp〈f〉(B), (9.23)

where gf denotes the minimal p-weak upper gradient of f . In particular,

C−1Ep(f) ≤
ˆ
K

gpf dµ ≤ CEp(f) for all f ∈ Cp. (9.24)

Furthermore, there exists C1 > 0 such that

C−1
1 ‖f‖N1,p ≤ ‖f‖Fp ≤ C1 ‖f‖N1,p for all f ∈ Cp. (9.25)

We start with a simpler condition to obtain comparability of measures whose proof is
in Appendix A.

Lemma 9.22. Let (X, d) be a doubling metric space. Let ν1, ν2 be two finite Borel mea-
sures on X satisfying the following property: There exist C1 ∈ (0,∞), A1 ∈ (1,∞) such
that for all x ∈ X, r > 0, we have

ν1(Bd(x, r)) ≤ C1ν2(Bd(x,A1r)).

Then there exists C2 > 0 such that

ν1(B) ≤ C2ν2(B) (9.26)

for all Borel sets B ⊂ X.

Next we compare energy measures on balls for the spacesN1,p(K, θ, µ) and Fp(K, d,m).

Lemma 9.23. Suppose Assumption 9.15. Then the following are true:

(i) We have Fp(K, d,m) ∩ C(K) ⊆ N1,p(K, θ, µ) ∩ C(K). Moreover, there exist C >
0, A > 1 such that for all f ∈ Fp(K, d,m) ∩ C(K), x ∈ K, r > 0, we have

ˆ
Bθ(x,r)

gpf dµ ≤ CΓp〈f〉(Bθ(x,Ar)). (9.27)
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(ii) We have N1,p(K, θ, µ) ∩ C(K) ⊆ Fp(K, d,m) ∩ C(K). Moreover, there exist C >
0, A > 1 such that for all f ∈ Fp(K, d,m) ∩ C(K), x ∈ K, r > 0, we have

Γp〈f〉(Bd(x, r)) ≤ C

ˆ
Bd(x,Ar)

gpf dµ. (9.28)

Proof. (i) We will start with the proof of (9.27). To this end, let f ∈ Fp(K, d,m) ∩
C(K), x ∈ K, r > 0 be arbitrary. For 0 < s < r, consider a maximal s-separated subset
N of Bθ(x, r) in (K, θ), so that Bθ(x, r) ⊆ ∪y∈NBθ(y, s) ⊆ Bθ(x, r + s). Therefore

1Bθ(x,r)(y)1Bθ(y,s)(z) ≤
∑
n∈N

1Bθ(n,2s)(y)1Bθ(n,2s)(z). (9.29)

By the doubling property and [HKST, Lemma 4.1.12], for any λ > 1, there exists Cλ
depending only on λ and the doubling constant of (K, θ) such that∑

n∈N

1Bθ(n,λs) ≤ Cλ1Bθ(x,r+λs). (9.30)

We will use Proposition 9.9 to show estimate the norm of the upper gradient. By (9.15)
in Proposition 9.20, there exist C1, A1 ∈ (1,∞) such that for all f ∈ Fp(K, d,m) ∩ C(K),
we have

ˆ
Bθ(x,r)

s−p
 
Bθ(y,s)

|f(y)− f(z)|p µ(dy)µ(dz)

. s−2p

ˆ
K

ˆ
K

|f(y)− f(z)|p1Bθ(x,r)(y)1Bθ(y,s)(z)µ(dy)µ(dz)

. s−2p
∑
n∈N

ˆ
Bθ(n,2s)

ˆ
Bθ(n,2s)

|f(y)− f(z)|p µ(dy)µ(dz) (by (9.29))

. s−p
∑
n∈N

inf
α∈R

ˆ
Bθ(n,2s)

|f(y)− α|p µ(dy) (by [BB, Lemma 4.17])

.
∑
n∈N

Γp〈f〉(Bθ(n,A1s)) (by (9.15))

≤ C1Γp〈f〉(Bθ(x, r + A1s)) (by (9.30)). (9.31)

By letting r →∞ in (9.31) and using Proposition 9.9, we conclude that

Fp(K, d,m) ∩ C(K) ⊆ N1,p(K, θ, µ) ∩ C(K).

By (9.31) and (9.7) in Proposition 9.9, we obtain (9.27).

(ii) This is similar to part (i), except that we use Proposition 8.22 and (9.14) in place
of Proposition 9.9 and (9.15) respectively. �



Sobolev spaces on the Sierpiński carpet 77

Proof of Theorem 9.21. The estimate (9.23) follows from Lemma 9.23 along with Lemma
9.22.

It remains to show (9.25). By normalizing the measures if necessary, we assume that
m and µ are probability measures. For f ∈ C(K) let fm =

´
K
f dm and fµ =

´
K
f dµ

denote the averages of f with respect to m and µ respectively. The proof of (9.15) with
r = 2 diam(K, θ) yields

ˆ
K

|f − fm|p dµ . ‖f‖pFp for all f ∈ Fp(K, d,m) ∩ C(K). (9.32)

Note that for any f ∈ Fp(K, d,m) ∩ C(K), we have

ˆ
K

|f|p dµ ≤ 2p−1

(
|fm|p +

ˆ
K

|f − fm|p dµ
)

.
ˆ
K

|f|p dm+ ‖f‖pFp (by (9.32) and Jensen’s inequality). (9.33)

Therefore the first estimate in (9.25) follows from (9.23) and (9.24). The proof of the
second estimate in (9.25) is similar. �

We observe two important consequences of Theorem 9.21. The first one states that
Loewner measures must be minimal energy dominant measures for the self-similar energy
(Ep,Fp).

Theorem 9.24. Suppose Assumption 9.15. Then µ is a minimal energy dominant mea-
sure for (Ep,Fp). Furthermore, there exists C ∈ (0,∞) and u ∈ Cp, we have

C−1Γp〈u〉(B) ≤ µ(B) ≤ CΓp〈u〉(B) for all Borel subset B ⊂ K. (9.34)

Proof. By Theorem 9.21, Γp〈f〉 � µ for all f ∈ Cp. Combining with the density of
C(K) ∩ Fp(K, d,m) (Theorem 6.17(v)) and Lemma 9.19 (a), we obtain the domination
property: Γp〈f ′〉 � µ for all f ′ ∈ Fp(K, d,m).

By [HKST, Corollary 8.3.16] and a biLipschitz change of metric if necessary, we can
assume that θ is a geodesic metric. Consider the function u(·) = θ(x0, ·) for some x0 ∈
K. Since u is Lipschitz in (K, θ) by [HKST, Lemma 6.2.6], we have u ∈ N1,p(K, θ, µ).
Furthermore, by considering geodesics in (K, θ), we can show that lipu ≡ 1. By [HKST,
Theorem 13.5.1], we have that the minimal p-weak upper gradient gu of u satisfies gu = 1
µ-almost everywhere. By (9.23) in Theorem 9.21, we have that µ � Γp〈u〉 and hence µ
is a minimal energy dominant measure and satisfies (9.34). �

The second one is the identification of the two different Sobolev spaces Fp(K, d,m)
and N1,p(K, θ, µ).
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Theorem 9.25. Suppose Assumption 9.15. Then there exists a bounded, linear bijection
ι : Fp(K, d,m)→ N1,p(K, θ, µ) satisfying

C−1
1 ‖f‖Fp ≤ ‖ι(f)‖N1,p ≤ C1 ‖f‖Fp for all f ∈ Fp(K, d,m), (9.35)

where C1 ≥ 1 is the constant in (9.25). Furthermore if f ∈ C(K) ∩ Fp(K, d,m), then ι
maps the equivalence class containing f in Fp(K, d,m) to the equivalence class containing
f in N1,p(K, θ, µ).

Proof. We first note that Cp is a dense linear subspace of both Fp(K, d,m) andN1,p(K, θ, µ)
by Theorem 6.17 and [HKST, Theorem 8.2.1]. Let ι0 : (Cp, ‖ · ‖Fp)→ N1,p(K, θ, µ) be the

inclusion map, i.e., ι0(f) = [f ]N1,p for f ∈ Cp, where [f ]N1,p is the equivalence class defined
in Definition 9.4. By (9.25) in Theorem 9.21, we have C−1

1 ‖f‖Fp ≤ ‖ι0(f)‖N1,p ≤ C1 ‖f‖Fp
for all f ∈ Cp. Hence by [Meg, 1.4.14 Proposition] ι0 is an isomorphism. By [Meg, 1.9.1
Theorem] and the density of Cp, there is a unique extension ι : Fp(K, d,m)→ N1,p(K, θ, µ)
of ι0, which is also an isomorphism satisfying C−1

1 ‖f‖Fp ≤ ‖ι(f)‖N1,p ≤ C1 ‖f‖Fp for all

f ∈ Fp(K, d,m). �

We conclude this subsection by extending the comparability result of energy measures
to all functions in Sobolev spaces through the above isomorphism.

Corollary 9.26. Suppose Assumption 9.15 and let ι : Fp(K, d,m)→ N1,p(K, θ, µ) be the
identification map in Theorem 9.25. Then there exists C ≥ 1 such that the following hold:
for any f ∈ Fp(K, d,m) and any Borel set B ∈ B(K),

C−1Γp〈f〉(B) ≤
ˆ
B

gpι(f) dµ ≤ CΓp〈f〉(B). (9.36)

In particular,

C−1Ep(f) ≤
ˆ
X

gpι(f) dµ ≤ CEp(f) for all f ∈ Fp(K, d,m). (9.37)

Proof. By [HKST, (6.3.18)], for any u, v ∈ N1,p(K, θ, µ) and B ∈ B(K), we have(ˆ
B

gpu+v dµ

)1/p

≤
(ˆ

B

gpu dµ

)1/p

+

(ˆ
B

gpv dµ

)1/p

.

In particular, limn→∞
´
B
gpun dµ =

´
B
gpu dµ whenever limn→∞ ‖u− un‖N1,p = 0. Let f ∈

Fp(K, d,m) and pick a sequence {fn}n ⊆ Cp such that limn→∞ ‖f − fn‖Fp = 0. By (9.35),

we then have limn→∞ ‖ι(f)− ι(fn)‖N1,p = 0. Therefore, letting n → ∞ in (9.23) for fn
yields (9.36). �

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. Theorems 9.21, 9.25 and Corollary 9.26. The second assertion
follows from Theorem 9.24. �
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10 Conjectures and open problems

We conclude this paper by mentioning some related open problems and conjectures.

To construct a Hölder continuous cutoff function with low energy and to obtain
Poincaré inequality, the condition ζ = df − dw(p) < 1 was crucial. This is because the
conclusion of Theorem 3.2 fails without the condition ζ < 1. However, it is conceivable
that capacity bounds imply Poincaré inequality without this restriction but such a result
would require a very different approach.

Problem 10.1. Relax the conditions ζ < 1 in Theorems 4.2 and 5.6.

Problem 10.1 is similar in spirit to the resistance conjecture for the case p = 2 and hence
it appears very challenging [Mur23+, §6.3].

In this paper, we confine ourselves to the planar standard Sierpiński carpet but it is
of interest to define Sobolev spaces on other fractals.

Problem 10.2. Construct Sobolev spaces, p-energies, energy measures for other examples
such as Sierpiński cross [Kig09], subsystems of (hyper)cubic tiling [Kig23], unconstrained
Sierpiński carpets [CQ21+, CQ23+], boundaries of hyperbolic groups, Julia sets of con-
formal dynamical systems [Bon, Kle].

In the case of p = 2, the Dirichlet form (E2,F2) constructed in Theorem 1.1 is unique
(up to multiplications of constants) [BBKT]. It is natural to expect that such the unique-
ness is true for any p ∈ (1,∞).

Conjecture 10.3. For any p ∈ (1,∞), self-similar p-energy satisfying the conditions in
Theorem 1.1 is unique up to multiplications of constants. We expect that the uniqueness
is true for a wide class of Sierpiński carpets (e.g. generalized Sierpiński carpets).

Compared to our (1, p)-Sobolev space Fp, the definition of energy measures on a self-
similar set heavily depends on the self-similarity. This is a difference from the case p = 2
(Dirichlet form theory) and is an obstacle to develop general theory. This motivates the
following question.

Problem 10.4. Let (K, d) be a compact metric space satisfying Assumption 6.15. Define
p-energy measures Γp〈 · 〉 on K (without using the self-similarity) and establish their basic
properties (e.g. Theorem 1.2(ii),(iii) and (vi)).

It is also natural to expect that p-energy measures on typical fractals are mutually
singular with the underlying self-similar measures (cf. [Hin05, KM20] for the case p = 2).

Problem 10.5. For a self-similar set (K, d) satisfying Assumption 6.15 with β > p, show
that Γp〈f〉 ⊥ m for any f ∈ Fp, where m is the self-similar measure.

The next two problems are motivated by a desire to understand the dependence of the
Sobolev space Fp and energy measures on the exponent p.
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Problem 10.6. Let p, q ∈ (1,∞) be distinct. Let νp, νq be minimal energy-dominant
measures of (Ep,Fp), (Eq,Fq) respectively. Are νp and νq mutually singular or absolutely
continuous?

We also do not know if there are inclusion relations among {Fp}p>1.

Problem 10.7. Let p, q ∈ (1,∞) be distinct. Determine the intersection Fp ∩ Fq. In
particular, does Fp ∩ Fq contain any non-constant function?

Towards the attainment problem of the Ahlfors regular conformal dimension, we expect
that the following variant of Theorem 1.7(ii) to be useful. This conjecture is an analog of
[KM23, Theorem 6.54].

Conjecture 10.8. Let (K, d,m) be the Sierpiński carpet. Suppose that dARC(K, d) is
attained. There exists h which is dARC-harmonic with respect to the self-similar dARC-
energy EdARC

on K \ V0 such that ΓdARC
〈h〉 is also an optimal measure.

A An application of Whitney cover

This section aims to prove Lemma 9.22. We will use the following version of Whitney
coverings.

Definition A.1 ([Mur23+, Definition 2.3]). Let (X, d) be a metric space and ε ∈ (0, 1/2).
Let U be a non-empty proper subset of X such that U 6= X. A collection of balls
R = {B(xi, ri) | xi ∈ U, ri > 0, i ∈ I} is said to be an ε-Whitney cover of U if it satisfies
the following conditions:

(1) The balls in R are pairwise disjoint.

(2) The radius ri satisfies

ri =
ε

1 + ε
dist(xi, X \ U), for each i ∈ I. (A.1)

(3) It holds that
⋃
i∈I B(xi, 2(1 + ε)ri) = U .

Remark A.2. From (A.1), we observe that B
(
xi, ε

−1(1 + ε)ri
)
⊆ U for all i ∈ I.

The existence of such an ε-Whitney cover of any non-empty open subset U of a given
metric space (X, d) for all ε ∈ (0, 1/2) is ensured by [Mur23+, Proposition 3.2(a)]. The
following proposition states a basic overlapping property of Whitney covers on a doubling
metric space.

Proposition A.3 ([Mur23+, Proposition 3.2(d)]). Let (X, d) be a metric space and let
U be a non-empty proper subset of X such that U 6= X. If (X, d) is metric doubling, then
for any ε ∈ (0, 1/2) there exists C > 0 (depending only on ε and the doubling constant
of (X, d)) such that the following hold: for any ε-Whitney cover R = {B(xi, ri) | xi ∈
U, ri > 0, i ∈ I} of U , we have

∑
i∈I 1B(xi,ε−1ri) ≤ C.
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Now we can prove the desired lemma:

Proof of Lemma 9.22. By the outer regularity of measures ν1 and ν2 [HKST, Proposition
3.3.37], it suffices to verify (9.26) for all open sets.

To this end, let U be an arbitrary non-empty open subset of X. Let us fix small
enough ε so that 0 < ε < (3A1)−1 and choose a ε-Whitney cover R = {B(xi, ri) | xi ∈
U, ri > 0, i ∈ I} of U . Then we note that B(xi, 3A1ri) ⊆ U for all i ∈ I. By the
bounded overlap property Proposition A.3, there exists C2 depending only on C1, A1 and
the constant associated to the doubling property of (X, d) such that

ν1(U) ≤
∑

B(xi,ri)∈R

ν1(B(xi, 3ri)) ≤
∑

B(xi,ri)∈R

C1ν2(B(xi, 3A1ri)) ≤ C2ν2(U), (A.2)

which concludes the proof. �
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