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Abstract

We introduce new contraction properties called the generalized p-contraction
property for p-energy forms as generalizations of many well-known inequalities, such
as Clarkson’s inequalities, the strong subadditivity and the “Markov property” in
the theory of nonlinear Dirichlet forms, and show that any p-energy form satisfy-
ing Clarkson’s inequalities is Fréchet differentiable. We also verify the generalized
p-contraction property for p-energy forms constructed by Kigami [Mem. Eur. Math.
Soc. 5 (2023)] and by Cao–Gu–Qiu [Adv. Math. 405 (2022), no. 108517]. As a
general framework of p-energy forms taking into consideration the generalized p-
contraction property, we introduce the notion of p-resistance form and investigate
fundamental properties for p-harmonic functions with respect to p-resistance forms.
In particular, some new estimates on scaling factors of p-energy forms are obtained
by establishing Hölder regularity estimates for harmonic functions, and the p-walk
dimensions of the generalized Sierpiński carpets and D-dimensional level-l Sierpiński
gasket are shown to be strictly greater than p.
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1 Introduction

In the field of ‘analysis on fractals’, on a large class of self-similar sets including the Sier-
piński gasket and the Sierpiński carpet (see Figure 1.1), it is an established result that
there exists a nice Dirichlet form (E2,F2), which is an analogue of the pair of the Dirichlet
2-energy

´
|∇u|2 dx and the associated (1, 2)-Sobolev spaceW 1,2 on a differentiable space

(see, e.g., [Kig01, BB99]). Once we obtain a nice Dirichlet form, the theory of symmet-
ric Dirichlet forms provides us the associated energy measure Γ2〈u〉 playing the role of
|∇u|2 dx whose existence is highly non-trivial because the density “|∇u|” usually does not
make sense on fractals (see [Hin05, KM20]). The main purpose of this article is to develop
a general theory for Lp-analogues of (E2,F2,Γ2〈 · 〉), where p ∈ (1,∞), on the basis of the
new contraction property called the generalized p-contraction property. To state results
precisely, throughout this introduction, we fix a self-similar set K and a natural Hausdorff
measure m on K. For a large class of the pair (K, p), a natural Lp-analogue of (E2,F2)
on K, namely a p-energy form (Ep,Fp) playing the role of

´
|∇u|p dx and the associated

(1, p)-Sobolev space W 1,p, where Fp is a linear subspace of Lp(K,m) and Ep : Fp → [0,∞)
is p-homogeneous in the sense that Ep(au) = |a|p Ep(u) for any a ∈ R and any u ∈ Fp,
have been constructed in several works [HPS04, Kig23, Shi24, CGQ22, MS23+, KO+]1,
most of which are very recent. Furthermore, the associated p-energy measure Γp〈u〉,
which is a finite Borel measure on K and an analogue of |∇u|p dx, has been introduced
in [Shi24, MS23+] with the help of the self-similarity of (Ep,Fp). See Section 5 for de-
tails on the self-similarity of a p-energy form, and Example 4.2 for examples of p-energy
measures without relying on the self-similarity. Compared with the case p = 2, where the
theory of symmetric Dirichlet forms is applicable, very little has been established to deal
with (Ep,Fp,Γp〈 · 〉) in a general framework. In particular, there are two missing pieces
in known results of (Ep,Fp,Γp〈 · 〉): first, useful contraction properties of it, and secondly,
the (Fréchet) differentiabilities of Ep and of Γp. In the first half of this paper (Sections
2-5), we aim to establish general results filling these missing pieces. We shall explain in
more detail below.

The first missing piece is contraction properties for (Ep,Fp,Γp〈 · 〉). Every p-energy
form (Ep,Fp) constructed in the previous studies is known to satisfy the following unit
contractivity:

u+ ∧ 1 ∈ Fp and Ep(u+ ∧ 1) ≤ Ep(u) for any u ∈ Fp. (1.1)

In the case p = 2, by using some helpful expressions of E2, e.g. [FOT, Lemma 1.3.4 and
(3.2.12)], (1.1) can be improved to the following normal contractivity (see [MR, Chapter
I, Theorem 4.1.2] for example): if n ∈ N, T : Rn → R satisfy |T (x)| ≤

∑n
k=1 |xk| and

|T (x)− T (y)| ≤
∑n

k=1 |xk − yk| for any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, then for

1The differences among these works are the class of (K, p) on which (Ep,Fp) is constructed. Let us
clarify only some important differences (see [KS23+, Introduction] for details). In [HPS04, CGQ22], K
is assumed to be a post-critically finite self-similar set (see Definition 5.3) so that the Sierpiński gasket
is included while the Sierpiński carpet is excluded. The case K is the Sierpiński carpet is allowed in
[Kig23, Shi24, MS23+, KO+], but we need to assume that p is strictly greater than the Ahlfors regular
conformal dimension of K (see Definition 8.5-(4)) in [Kig23, Shi24, KO+].
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Figure 1.1: The Sierpiński gasket (left) and the Sierpiński carpet (right)

any u = (u1, . . . , un) ∈ Fn2 we have

T (u) ∈ F2 and E2(T (u))
1
2 ≤

n∑
k=1

E2(uk)
1
2 . (1.2)

It is natural to expect that (Ep,Fp) also has a similar property to (1.2) since Ep(u) is an
analogue of

´
|∇u|p dx; nevertheless, it is not clear whether (1.1) can be improved in such

a way without going back to the constructions of (Ep,Fp) in the previous studies. Not
only (1.2) but also part of useful inequalities like the following strong subadditivity and
p-Clarkson’s inequalities, was not mentioned in [HPS04, Kig23, Shi24, CGQ22, MS23+]:

(Strong subadditivity) For any u, v ∈ Fp, we have u ∧ v, u ∨ v ∈ Fp and

Ep(u ∧ v) + Ep(u ∨ v) ≤ Ep(u) + Ep(v). (1.3)

(p-Clarkson’s inequality) For any u, v ∈ Fp,{
Ep(u+ v)

1
p−1 + Ep(u− v)

1
p−1 ≤ 2

(
Ep(u) + Ep(v)

) 1
p−1 if p ∈ (1, 2],

Ep(u+ v) + Ep(u− v) ≤ 2
(
Ep(u)

1
p−1 + Ep(v)

1
p−1
)p−1 if p ∈ (2,∞).

(1.4)

These inequalities play significant roles in the nonlinear potential theory with respect to
(Ep,Fp). For example, (1.3) will be important to consider the p-capacity associated with
(Ep,Fp); see [BV05, (H3)]. Also, we frequently use (1.4) in this paper; see Theorem 1.3
below for one of the most important consequence of (1.4). Since we do not know whether
the property (1.1) is enough for desirable inequalities unlike the case p = 2, one needs to go
back the constructions of (Ep,Fp) in the preceding works if one wishes to show them. The
situation is similar for p-energy measures. It is natural to expect that p-energy measures
inherit contraction properties from (Ep,Fp), however, in order to show such a property
for p-energy measures, we need to recall how p-energy measures are constructed partially
because no canonical way to define p-energy measures is known (see [MS23+, Problem
12.5]).

To overcome this situation, in this paper, we will introduce the following notion of gen-
eralized p-contraction property as a candidate of the strongest possible form of contraction
properties of p-energy forms.
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Definition 1.1 (Generalized p-contraction property; see also Definition 2.1). Let n1, n2 ∈
N, q1 ∈ (0, p] and q2 ∈ [p,∞]. We say that (Ep,Fp) satisfies the generalized p-contraction
property if T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfies T (0) = 0 and ‖T (x)− T (y)‖`q2 ≤
‖x− y‖`q1 for any x, y ∈ Rn1 , then for any u = (u1, . . . , un1) ∈ Fn1

p we have

T (u) ∈ Fn2
p and

∥∥∥(Ep(Tl(u))
1
p
)n2

l=1

∥∥∥
`q2
≤
∥∥∥(Ep(uk) 1

p
)n1

k=1

∥∥∥
`q1
. (1.5)

Note that the case (p, n1, n2, q1, q2) = (2, n, 1, 1, p) is the same as (1.2) for symmetric
Dirichlet forms. As recorded in the following proposition, (1.5) is actually a generalization
of many useful inequalities like (1.2), (1.3) and (1.4).

Proposition 1.2 (Proposition 2.2). Let ϕ ∈ C(R) satisfy ϕ(0) = 0 and |ϕ(t)− ϕ(s)| ≤
|t− s| for any s, t ∈ R. Assume that (Ep,Fp) satisfies the generalized p-contraction prop-
erty. Then the following hold.

(a) (Triangle inequality and strict convexity) E1/p
p is a seminorm on Fp, and for any

λ ∈ (0, 1) and any f, g ∈ Fp with Ep(f) ∧ Ep(g) ∧ Ep(f − g) > 0,

Ep(λf + (1− λ)g) < λEp(f) + (1− λ)Ep(g).

(b) (Lipschitz contractivity) ϕ(u) ∈ Fp and Ep(ϕ(u)) ≤ Ep(u) for any u ∈ Fp.
(c) (Strong subadditivity) Assume that ϕ is non-decreasing. Then for any f, g ∈ Fp,

Ep
(
f − ϕ(f − g)

)
+ Ep

(
g + ϕ(f − g)

)
≤ Ep(f) + Ep(g).

In particular, (1.3) holds.
(d) (Leibniz rule) For any f, g ∈ Fp ∩ L∞(K,m), we have

f · g ∈ Fp and Ep(f · g)
1
p ≤ ‖g‖L∞(K,m) Ep(f)

1
p + ‖f‖L∞(K,m) Ep(g)

1
p .

(e) (p-Clarkson’s inequality) Let f, g ∈ Fp. If p ∈ (1, 2], then

2
(
Ep(f)

1
p−1 + Ep(g)

1
p−1
)p−1 ≤ Ep(f + g) + Ep(f − g) ≤ 2

(
Ep(f) + Ep(g)

)
.

If p ∈ [2,∞), then

2
(
Ep(f) + Ep(g)

)
≤ Ep(f + g) + Ep(f − g) ≤ 2

(
Ep(f)

1
p−1 + Ep(g)

1
p−1
)p−1

.

In particular, (1.4) holds.

Since the generalized p-contraction property is introduced as arguably the strongest
possible formulation of the contraction property of (Ep,Fp), it is highly non-trivial whether
p-energy forms constructed in the previous studies satisfy it. In Section 8, we will see that
we can still verify the existing constructions of p-energy forms in the previous studies so as
to get ones satisfying (1.5). (See also [KS.a] for an approach, which is based on Korevaar–
Schoen p-energy forms, to obtain p-energy forms satisfying (1.5).)
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The other missing piece is the differentiability of p-energy forms, which should be
useful to study p-harmonic functions with respect to Ep. (See [KM23, Problem 7.7]
and [MS23+, Conjecture 10.9] for some motivations to investigate p-harmonic functions
on fractals.) In [HPS04, Shi24, CGQ22], p-harmonic functions are defined as functions
minimizing Ep under some fixed boundary conditions. However, it is still unclear how
to give an equivalent definition of p-harmonic function in a weak sense due to the lack
of ‘two-variable version’ Ep(u;ϕ) [Kig23, Problem 2 in Section 6.3]. We shall recall the
Euclidean case to explain the importance of this object. Let D ∈ N and U ⊆ RD a
domain. A function u ∈ W 1,p(RD) is said to be p-harmonic on U in the weak sense if

ˆ
RD
|∇u(x)|p−2 〈∇u(x),∇ϕ(x)〉RD dx = 0 for every ϕ ∈ C∞c (U), (1.6)

where 〈 · , · 〉RD is the inner product of RD. It is well known that (1.6) is equivalent to
ˆ
RD
|∇u(x)|p dx = inf

{ˆ
RD
|∇v(x)|p dx

∣∣∣∣ v ∈ W 1,p(RD), u− v ∈ W 1,p
0 (U)

}
. (1.7)

An issue to consider an analogue of (1.6) in terms of Ep is that we do not have a satisfac-
tory counterpart, Ep(u;ϕ), of

´
|∇u|p−2 〈∇u,∇ϕ〉 dx associated with Ep. As mentioned in

[SW04, (2.1)], the ideal definition of Ep(u;ϕ)2 is

Ep(u;ϕ) :=
1

p

d

dt
Ep(u+ tϕ)

∣∣∣∣
t=0

, (1.8)

but the existence of this derivative is unclear3 because the constructions of Ep in the previ-
ous studies include many steps such as the operation of taking a subsequential scaling limit
of discrete p-energies. Similarly, in respect of p-energy measures, no suitable way is known
to define a ‘two-variable version’ Γp〈u;ϕ〉, which plays the role of |∇u|p−2 〈∇u,∇ϕ〉 dx.
The ideal definition of Γp〈u;ϕ〉 is similar to (1.8), i.e., for any Borel set A of K,

Γp〈u;ϕ〉(A) :=
1

p

d

dt
Γp〈u+ tϕ〉(A)

∣∣∣∣
t=0

. (1.9)

Such a signed measure is discussed in [BV05, Section 5], but the existence of the deriva-
tive in (1.9) is assumed in [BV05] (in some uniform manner); see [BV05, (H4) and the
beginning of Section 5] for details. In [Cap07], the (scale-invariant) elliptic Harnack in-
equality for p-harmonic functions on metric fractals (see [Cap07, Definition 2.3]) is proved
under some assumptions including the existence of Γp〈u;ϕ〉, which is called the measure-
valued p-Lagrangian and denoted by L(p)(u, ϕ) in [Cap07], as in [BV05]. However, in the
case that there is no explicit expression of the p-energy measure Γp〈u〉 unlike the case

2Strichartz and Wong [SW04] have proposed an approach based on subderivative instead of (1.8), i.e.,
Ep(u;ϕ) is defined as the interval

[
E−p (u;ϕ), E+p (u;ϕ)

]
where d±

dt Ep(u+ tϕ)
∣∣∣
t=0

=: E±p (u;ϕ).
3The case p = 2 is special because of the parallelogram law. Indeed, E2 is known to be a quadratic

form and hence E2(u, v) := 4−1(E2(u+ v)− E2(u− v)) is a symmetric form satisfying (1.8).
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of Euclidean spaces, there is no proof of the existence of the derivatives in (1.9) in the
literature. (The p-energy form on the Sierpiński gasket constructed in [HPS04] is dis-
cussed in [Cap07, Section 5] as a concrete examples and it is stated that “we can define
the corresponding Lagrangian L(p)(u, v)” in p. 1315 of that paper, nevertheless, we have
been unable to find in the literature a rigorous proof of the existence of the derivatives in
[Cap07, p. 1315] defining Eg(u, v) and in [Cap07, p. 1303, (L5)] defining L(p)(u, v) for the
p-energy form on the Sierpinski gasket obtained in [HPS04].)

As another main contributions of this paper, we make a key observation that p-
Clarkson’s inequality (1.4) implies the desired differentiability of Ep. In addition to this
result, we record basic properties of Ep(u;ϕ) given by (1.8) in the following theorem.

Theorem 1.3 (Proposition 3.5 and Theorem 3.6). Assume that (Ep,Fp) satisfies (1.4).
Then R 3 t 7→ Ep(f + tg) ∈ [0,∞) is differentiable for any f, g ∈ Fp, and for any s ∈ R,

lim
δ↓0

sup
g∈Fp;Ep(g)≤1

∣∣∣∣Ep(f + (s+ δ)g)− Ep(f + sg)

δ
− d

dt
Ep(f + tg)

∣∣∣∣
t=s

∣∣∣∣ = 0.

We define Ep( · ; · ) : Fp×Fp → R by Ep(f ; g) := 1
p
d
dt
Ep(f + tg)

∣∣
t=0

. Let a ∈ R, f, f1, f2, g ∈
Fp and h ∈ E−1

p (0). Then the following hold.

(a) Ep(f ; f) = Ep(f) and Ep(af ; g) = sgn(a) |a|p−1 Ep(f ; g).
(b) The map Ep(f ; · ) : Fp → R is linear.
(c) Ep(f ;h) = 0 and Ep(f + h; g) = Ep(f ; g).
(d) R 3 t 7→ Ep(f + tg; g) ∈ R is strictly increasing if and only if g 6∈ E−1

p (0)

(e) |Ep(f ; g)| ≤ Ep(f)
p−1
p Ep(g)

1
p .

(f) |Ep(f1; g)− Ep(f2; g)| ≤ Cp
(
Ep(f1) ∨ Ep(f2)

) p−1−αp
p Ep(f1 − f2)

αp
p Ep(g)

1
p , where αp =

1
p
∧ p−1

p
and some constant Cp ∈ (0,∞) determined solely and explicitly by p.

We also establish a similar result for p-energy measures as follows, which is the first
rigorous result on the existence of the derivative in (1.9) for p-energy measures on fractals.

Theorem 1.4 (Propositions 4.3, 4.8 and Theorem 4.5). Assume that {Γp〈u〉}u∈Fp satisfies{
Γp〈f + g〉(A)

1
p−1 + Γp〈f − g〉(A)

1
p−1 ≤ 2

(
Γp〈f〉(A) + Γp〈g〉(A)

) 1
p−1 if p ∈ (1, 2],

Γp〈f + g〉(A) + Γp〈f − g〉(A) ≤ 2
(
Γp〈f〉(A)

1
p−1 + Γp〈g〉(A)

1
p−1
)p−1 if p ∈ (2,∞),

for any Borel set A of K. Then R 3 t 7→ Γp〈f + tg〉(A) ∈ [0,∞) is differentiable for any
f, g ∈ Fp and any Borel set A of K, and for any s ∈ R,

lim
δ↓0

sup
g∈Fp;Ep(g)≤1

∣∣∣∣Γp〈f + (s+ δ)g〉(A)− Γp〈f + sg〉(A)

δ
− d

dt
Γp〈f + tg〉(A)

∣∣∣∣
t=s

∣∣∣∣ = 0.

We define Γp〈f ; g〉(A) := 1
p
d
dt

Γp〈f + tg〉(A)
∣∣
t=0

. Then Γp〈f ; g〉 is a signed Borel measure
on K. Moreover, for any Borel set A of K, Γp〈 · ; · 〉(A) : Fp × Fp → R satisfies the
following properties: Let a ∈ R, f, f1, f2, g, h ∈ Fp with Γp〈h〉(A) = 0. Then
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(a) Γp〈f ; f〉(A) = Γp〈f〉 and Γp〈af ; g〉(A) = sgn(a) |a|p−1 Γp〈f ; g〉(A).
(b) The map Γp〈f ; · 〉(A) : Fp → R is linear.
(c) Γp〈f ;h〉(A) = 0 and Γp〈f + h; g〉(A) = Γp〈f ; g〉(A).
(d) R 3 t 7→ Γp〈f + tg; g〉(A) ∈ R is strictly increasing if and only if Γp〈g〉(A) > 0

(e) For any Borel measurable functions ϕ, ψ : K → [0,∞],

ˆ
K

ϕψ d |Γp〈f ; g〉| ≤
(ˆ

K

ϕ
p
p−1 dΓp〈f〉

)(p−1)/p(ˆ
K

ψp dΓp〈g〉
)1/p

.

(f) Let αp = 1
p
∧ p−1

p
. There exists a constant Cp ∈ (0,∞) determined solely and explicitly

by p such that

|Γp〈f1; g〉(A)− Γp〈f2; g〉(A)|

≤ Cp
(
Γp〈f1〉(A) ∨ Γp〈f2〉(A)

) p−1−αp
p Γp〈f1 − f2〉(A)

αp
p Γp〈g〉(A)

1
p .

In the second part of this paper (Sections 6 and 7), we aim to develop a general theory
for (Ep,Fp) on the basis of the generalized p-contraction property and Theorem 1.3. As
a satisfactory theory of p-energy forms taking into the generalized p-contraction property
and focusing on a “low-dimensional” setting, we will introduce the notion of p-resistance
form, which can be regarded as a natural Lp-analogue of the theory of resistance forms
developed by Kigami mainly in [Kig01, Kig12].

Definition 1.5 (p-Resistance form; see Definition 6.1). (Ep,Fp) is said to be a p-resistance
form on K if and only if it satisfies the following conditions:

(RF1)p Fp is a linear subspace of RK containing R1K and Ep( · )1/p is a seminorm on Fp
satisfying {u ∈ Fp | Ep(u) = 0} = R1K .

(RF2)p The quotient normed space (Fp/R1K , Ep( · )1/p) is a Banach space.
(RF3)p If x 6= y ∈ K, then there exists u ∈ Fp such that u(x) 6= u(y).
(RF4)p For any x, y ∈ K,

REp(x, y) := sup

{
|u(x)− u(y)|p

Ep(u)

∣∣∣∣ u ∈ Fp \ R1K} <∞.

(RF5)p (Ep,Fp) satisfies the generalized p-contraction property.

We will verify that p-energy forms constructed by Kigami in [Kig23, Theorem 3.21]
under the assumptions that the underlying compact metric space is p-conductively ho-
mogeneous (Definition 8.11) and p is strictly greater than the Ahlfors regular conformal
dimension of the underlying space, are p-resistance forms. In addition, we prove that
p-energy forms on post-critically finite self-similar sets constructed by Cao–Gu–Qiu in
[CGQ22, Proposition 5.3] turn out to be p-resistance forms for any p ∈ (1,∞) under the
condition (R) in [CGQ22, p. 18]. (See Section 8 for details.) Similar to the case p = 2,
developing a general theory for p-resistance forms allows us to to investigate p-energy
forms provided by these broad frameworks in a synthetic manner.
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It is immediate that if (Ep,Fp) is a p-resistance form on K, then REp( · , · )1/p is a
metric on K and any function in Fp is a continuous function on K with respect to the
topology induced by this metric. In the theory of resistance forms (p = 2), it is well
known that RE2( · , · ) is a metric, which is called the resistance metric associated with
the resistance form (E2,F2). See [Kig01, Theorem 2.3.4] for a proof. In view of this fact in
the case p = 2, it is natural to seek the optimal exponent q where REp( · , · )q is a metric.
The following theorem gives the answer.

Theorem 1.6 (Corollary 6.32). If (Ep,Fp) is a p-resistance form on K, then REp( · , · )
1
p−1

is a metric on K.

The power 1/(p − 1) in the theorem above is sharp; see Example 6.34. Let us call
REp( · , · )

1
p−1 the p-resistance metric associated with (Ep,Fp). The proof of the triangle

inequality for the p-resistance metric is done independently by [Her10, ACFP19] for finite
weighted graphs (see also [Shi21] for infinite graphs). Our result (Theorem 1.6) is the first
result including continuous settings.

We also investigate p-harmonic functions with respect to p-resistance forms, which
should correspond to a part of nonlinear potential theory where each point has a positive
p-capacity. Let us explain some basic results in this introduction. The following definition
is a natural analogue of (1.6) (or of (1.7)).

Definition 1.7 (Ep-Harmonic function; see Definition 6.12). Let (Ep,Fp) be a p-resistance
form on K and let B be a non-empty subset of K. A function h ∈ Fp is said to be Ep-
harmonic on K \B if and only if

Ep(h;ϕ) = 0 for any ϕ ∈ Fp with ϕ|B = 0,

or equivalently
Ep(h) = inf{Ep(u) | u ∈ Fp, u|B = h|B}.

(See Proposition 6.11 for this equivalence.)

A standard argument in variational analysis ensures the existence and the uniqueness
of Ep-harmonic function satisfying a given boundary condition.

Proposition 1.8 (see Theorem 6.13). Let (Ep,Fp) be a p-resistance form on K and
let B be a non-empty subset of K. We define Fp|B := {u|B | u ∈ Fp}. Then for
any u ∈ Fp|B, there exists a unique function h

Ep
B [u] in Fp satisfying hEpB [u]

∣∣
B

= u and
Ep(hEpB [u]) = inf{Ep(v) | v ∈ Fp, v|B = u}.

Using the (nonlinear) operator hEpB [ · ] : Fp|B → Fp given in the proposition above,
we can introduce a new p-resistance form on the boundary set, which is called the trace
of the p-resistance form to the boundary set. This notion is at the core of our theory
of p-resistance forms, and turns out to be a powerful tool especially when we work on
post-critically finite self-similar sets; see Subsection 8.3 for example. Here we just record
fundamental results on traces in the following theorem.
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Theorem 1.9 (Trace of p-resistance form; see Theorem 6.13). Let (Ep,Fp) be a p-
resistance form on K and let B be a non-empty subset of K. We define Ep|B : Fp|B →
[0,∞) by Ep|B(u) := Ep(hEpB [u]) for u ∈ Fp|B. Then (Ep|B,Fp|B) is a p-resistance form on
B. Furthermore, REp|B = REp|B×B and

Ep|B(u; v) = Ep
(
h
Ep
B [u];h

Ep
B [v]

)
for any u, v ∈ Fp|B.

Now let us state results on behaviors of Ep-harmonic functions. We start with a com-
parison principle for Ep-harmonic functions. Because of the nonlinearity of the operator
h
Ep
B in Proposition 1.8, a maximum principle does not imply a comparison principle unlike

the case p = 2. Fortunately, by virtue of Proposition 1.8 and the strong subadditivity in
Proposition 1.2, we can establish a weak comparison principle for Ep-harmonic functions
in the following formulation (see Proposition 6.26).

If ∅ 6= B ⊆ K and u, v ∈ Fp|B satisfy u ≤ v on B, then hEpB [u] ≤ h
Ep
B [v]. (1.10)

We also show a a stronger formulation of the weak comparison principle above under
suitable assumptions; see Proposition 6.30. Next we discuss a (scale-invariant) elliptic
Harnack inequality for non-negative Ep-harmonic functions. In the case p = 2, one can
show a Harnack-type estimate for E2-harmonic functions by using the maximum principle
(see [Kig01, Proposition 3.2.7]). We can not follow this approach to get a Harnack-type
inequality for Ep-harmonic functions because of an issue due to the nonlinearity. However,
by employing a similar approach as in [Cap07], we can show the following elliptic Harnack
inequality under some extra assumptions including the existence of nice p-energy measures
(see Theorem 6.37 for the precise statement); there exists a constant C ∈ (0,∞) such that
for any (x, s) ∈ K×(0,∞) and any h ∈ Fp which is Ep-harmonic on BR̂p

(x, 2s) and u ≥ 0,

where R̂p := R
1/(p−1)
Ep , it holds that

sup
B
R̂p

(x,s)

h ≤ C inf
B
R̂p

(x,s)
h, (1.11)

which implies a local Hölder continuity of h. Regarding continuity estimates for Ep-
harmonic functions, we also obtain the following sharp Hölder regularity estimate, which
is a key ingredient of the proof of Theorem 1.6.

Theorem 1.10 (Theorem 6.31). Let (Ep,Fp) be a p-resistance form on K and let B be a
non-empty subset of K. We define BFp :=

⋂
u∈Fp;u|B=0 u

−1(0) and, for x ∈ K \BFp,

R̂p(x,B) :=

(
sup

{
|u(x)|p

Ep(u)

∣∣∣∣ u ∈ Fp, u|B = 0, u(x) 6= 0

}) 1
p−1

.

Assume that h ∈ Fp is Ep-harmonic on K\B and supB |h| <∞. Then for any x ∈ K\BFp
and any y ∈ K,

|h(x)− h(y)| ≤ R̂p(x, y)

R̂p(x,B)
sup

x′,y′∈B
|h(x′)− h(y′)| .
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Next let us move to applications of such a general theory of p-resistance forms. In
forthcoming papers [KS.b, KS.c], the authors will heavily use this theory to make some
essential progress in the setting of post-critically finite self-similar structures. See [KS23+]
for a survey of these results in the case of the Sierpiński gasket. Here we shall explain
another application for strict estimates on p-walk dimensions of some special classes of
fractals, namely generalized Sierpiński carpets and D-dimensional level-l Sierpiński gasket
(see Figure 1.2). For such a nice self-similar set K, as shown in the previous studies, we
can construct Ep so as to satisfy the following self-similarity : there exists σp ∈ (0,∞)
(which we call the weight of (Ep,Fp)) such that

Ep(u) = σp
∑
i∈S

Ep(u ◦ Fi), u ∈ Fp, (1.12)

where S is a finite set and {Fi}i∈S is a family of similitudes associated with K such that
K =

⋃
i∈S Fi(K) and |Fi(x)− Fi(y)| = r∗ |x− y| for some r∗ ∈ (0, 1). Then the p-walk

dimension dw,p of K is defined by

dw,p :=
log
(
(#S)σp

)
log r−1

∗
,

which coincides with the walk-dimension if p = 2. As shown in [MS23+, Theorem 7.1],
the value dw,p plays a role of the space-scaling exponent in the following sense:

Ep(u) � lim sup
r↓0

ˆ
K

 
|x−y|<r

|u(x)− u(y)|p

rdw,p
m(dy)m(dx), u ∈ Fp,

wherem is the log(#S)/ log r−1
∗ -dimensional Hausdorff measure on (K, d) withm(K) = 1.

In the case p = 2, the strict inequality dw,2 > 2 has been verified for many self-similar sets,
which implies a number of anomalous features of the diffusion associated with (E2,F2).
See [Kaj23] and the references therein for further details. Compared with the case p = 2,
a class of self-similar sets where dw,p > p is shown is limited to the planar generalized
Sierpiński carpets due to the lack of counterparts of many useful tools in the case p = 2
(see [Shi24, Theorem 2.27]). As an application of the differentiability in (1.8), in Section 9,
we will extend this result to any generalized Sierpiński carpet by following the argument
in [Kaj23]. We also prove dw,p > p for any D-dimensional level-l Sierpiński gasket, where
the argument in [Kaj23] does not work.

We would also like to mention a geometric role of σp appearing in (1.12). As done
in [Kig20, Kig23], the constant σp is determined by seeking the behavior of conductance
constants (see [Kig23, Definition 2.17]) on approximating graphs of K. (See Theorem
8.12 for details.) A remarkable fact is that the behavior of σp as a function in p is deeply
related to the notion of Ahlfors regular conformal dimension; indeed, σp > 1 if and only if
p > dimARC(K) (see, e.g., [Kig20, Theorem 4.7.6]), where dimARC(K) denotes the Ahlfors
regular conformal dimension of K (see Definition 8.5-(4) for the definition of dimARC(K)).
Therefore, knowing properties of the function p 7→ σp is very important to understand the
Ahlfors regular conformal dimension and related geometric information. Nevertheless, we
do not know anything other than the following:
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Figure 1.2: From the left, a non-planar generalized Sierpiński carpet (Menger Sponge)
and 2-dimensional level-l Sierpiński gaskets (l = 2, 3, 4)

(Continuity; [Kig20, Proposition 4.7.5]) σp is continuous in p.
(Simple monotonicity; [Kig20, Proposition 4.7.5]) σp is non-decreasing in p.
(Hölder-type monotonicity; [Kig20, Lemma 4.7.4]) dw,p/p is non-increasing in p.
(Relation with dimARC; [Kig20, Theorem 4.7.6]) σp > 1 if and only if p > dimARC(K).

As another application of our theory of p-resistance forms, we present the following new
monotonicity behavior on σp (in a suitable general setting including all of the self-similar
sets in Figure 1.2):

(dimARC(K),∞) 3 p 7→ σ1/(p−1)
p ∈ (0,∞) is non-decreasing in p, (1.13)

which is good evidence that properties of p 7→ σ
1/(p−1)
p are also important to deepen our

understanding of (Ep,Fp) and, possibly, of dimARC(K).
Let us conclude the introduction by clarifying a difference between our theory and

some related literatures [BBR24, Kuw24], where p-energy forms based on a (strongly local
regular) symmetric Dirichlet form are considered. In the settings of [BBR24, Kuw24],
the associated p-energy measure Γp〈u〉 can be explicitly defined by using the “density”
corresponding to |∇u| without depending on p (see Example 4.2-(3)) whereas it is almost
impossible to find a priori such a density on fractals. (We can naturally define p-energy
measures by using (1.12). See Section 5 for details. See also [KS.a] for p-energy measure
associated with Korevaar–Schoen p-energy forms.) In [KS.c], the authors will show that
Γp〈up〉 and Γq〈uq〉 are mutually singular with respect to each other for any p, q ∈ (1,∞)
with p 6= q and any (up, uq) ∈ Fp × Fq for some post-critically finite self-similar sets by
establishing the strict version of (1.13). This phenomenon on the singularity of energy
measures never happens in the settings of [BBR24, Kuw24]. This point also motivates us
to develop a general theory of p-energy forms in an abstract setting in order to deal with
fractals.

This paper is organized as follows. In Section 2, we collect basic results on the gen-
eralized p-contraction property. In Section 3, we prove the differentiability (in Theorem
1.3) for p-energy forms satisfying p-Clarkson’s inequality. Moreover, we will see that the
(Fréchet) derivative in (1.8) gives a homeomorphism between Fp/E−1

p (0) and its dual. We
also discuss regular and local properties of p-energy forms there. In Section 4, under the
existence of p-energy measures, we discuss fundamental properties of them (Theorem 1.4
for example). We also formulate a chain rule for p-energy measures and observe some con-
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sequence of it. In Section 5, we give standard notations on self-similar structures, discuss
the self-similarity of p-energy forms and see that we can associate self-similar p-energy
measures to a given self-similar p-energy form. Section 6 is devoted to the study of fun-
damental nonlinear potential theory for p-resistance forms, most of which are mentioned
in the introduction (see Theorems 1.6, 1.9, 1.10, Proposition 1.8, (1.10) and (1.11)). We
further investigate the theory of p-resistance forms in the self-similar case in Section 7.
In particular, we establish a Poincaré-type inequality in terms of self-similar p-energy
measures under some geometric assumptions on the p-resistance metric. In Section 8, the
generalized p-contraction property is verified for p-energy/p-resistance forms constructed
in [Kig23, CGQ22]. More precisely, in Subsections 8.1 and 8.2, we recall the notion of
p-conductively homogeneous compact metric space and the construction of (Ep,Fp) due
to [Kig23]. In Subsection 8.3, we focus our attempt on post-critically finite self-similar
structures and show that eigenforms constructed in [CGQ22] turn out to be p-resistance
forms. In Subsection 8.4, we review a sufficient condition for the existence of eigenforms
on affine nested fractals. In Section 9, we prove dw,p > p for generalized Sierpiński carpets
and D-dimensional level-l Sierpiński gasket by using properties of p-harmonic functions
developed in Section 6.

Notation. Throughout this paper, we use the following notation and conventions.

(1) For [0,∞]-valued quantities A and B, we write A . B to mean that there exists an
implicit constant C ∈ (0,∞) depending on some unimportant parameters such that
A ≤ CB. We write A � B if A . B and B . A.

(2) For a set A, we let #A ∈ N ∪ {0,∞} denote the cardinality of A.
(3) We set sup ∅ := 0 and inf ∅ :=∞. We write a∨ b := max{a, b}, a∧ b := min{a, b} and

a+ := a∨0 for a, b ∈ [−∞,∞], and we use the same notation also for [−∞,∞]-valued
functions and equivalence classes of them. All numerical functions in this paper are
assumed to be [−∞,∞]-valued.

(4) Let n ∈ N. For x = (xk)
n
k=1 ∈ Rn, we set ‖x‖`pn := ‖x‖`p := (

∑n
k=1|xk|p)1/p for

p ∈ (0,∞), ‖x‖`∞n := ‖x‖`∞ := max1≤k≤n |xk| and ‖x‖ := ‖x‖`2 . For Φ: Rn → R
which is differentiable on Rn and for k ∈ {1, . . . , n}, its first-order partial derivative in
the k-th coordinate is denoted by ∂kΦ and its gradient is denoted by ∇Φ := (∂kΦ)nk=1.

(5) Let X be a non-empty set. We define idX : X → X by idX(x) := x, 1A = 1XA ∈ RX

for A ⊆ X by 1A(x) := 1XA (x) :=

{
1 if x ∈ A,
0 if x 6∈ A,

and set ‖u‖sup := ‖u‖sup,X :=

supx∈X |u(x)| for u : X → [−∞,∞]. Also, set oscX [u] := supx,y∈X |u(x)− u(y)| for
u : X → R with ‖u‖sup <∞.

(6) Let X be a topological space. The Borel σ-algebra of X is denoted by B(X), the
closure of A ⊆ X in X by A

X , and we say that A ⊆ X is relatively compact in
X if and only if AX is compact. We set C(X) := {u ∈ RX | u is continuous},
suppX [u] := X \ u−1(0)

X
for u ∈ C(X), Cb(X) := {u ∈ C(X) | ‖u‖sup < ∞}, and

Cc(X) := {u ∈ C(X) | suppX [u] is compact}.
(7) Let X be a topological space having a countable open base. For a Borel measure m
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on X and a Borel measurable function f : X → [−∞,∞] or an m-equivalence class f
of such functions, we let suppm[f ] denote the support of the measure |f | dm, that is,
the smallest closed subset F of X such that

´
X\F |f | dm = 0.

(8) Let (X, d) be a metric space. We set Bd(x, r) := {y ∈ X | d(x, y) < r} for (x, r) ∈
X × (0,∞) and distd(A,B) := inf{d(x, y) | x ∈ A, y ∈ B} for subsets A,B of X.

(9) Let (X,B,m) be a measure space. We set
ffl
A
f dm := 1

m(A)

´
A
f dm for f ∈ L1(X,m)

and A ∈ B with m(A) ∈ (0,∞), and set m|A := m|B|A for A ∈ B, where B|A :=
{B ∩ A | B ∈ B}.

2 The generalized p-contraction property

In this section, we will introduce the generalized p-contraction property and establish
basic results on these properties. Throughout this section, we fix p ∈ (1,∞), a measure
space (X,B,m), a linear subspace F of L0(X,m) := L0(X,B,m), where

L0(X,B,m) := {the m-equivalence class of f | f : X → R, f is B-measurable},

and a p-homogeneous map E : F → [0,∞), i.e., E(au) = |a|p E(u) for any (a, u) ∈ R×F .
(The pair (B,m) is arbitrary. In the case where B = 2X and m is the counting measure
on X, we have L0(X,B,m) = RX .)

Definition 2.1 (Generalized p-contraction property). The pair (E ,F) is said to satisfy
the generalized p-contraction property, (GC)p for short, if and only if the following hold:
if n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy

T (0) = 0 and ‖T (x)− T (y)‖`q2 ≤ ‖x− y‖`q1 for any x, y ∈ Rn1 , (2.1)

then for any u = (u1, . . . , un1) ∈ Fn1 we have

T (u) ∈ Fn2 and
∥∥(E(Tl(u))1/p

)n2

l=1

∥∥
`q2
≤
∥∥(E(uk)

1/p
)n1

k=1

∥∥
`q1
. (GC)p

The next proposition is a collection of useful inequalities included in (GC)p.

Proposition 2.2. Let ϕ ∈ C(R) satisfy ϕ(0) = 04 and |ϕ(t)− ϕ(s)| ≤ |t− s| for any
s, t ∈ R. Suppose that (E ,F) satisfies (GC)p.

(a) T (x, y) := x + y, x, y ∈ R, satisfies (2.1) with (q1, q2, n1, n2) = (1, p, 2, 1). In partic-
ular, E1/p is a seminorm on F , and E is strictly convex on F/E−1(0), i.e., for any
λ ∈ (0, 1), any f, g ∈ F with E(f) ∧ E(g) > 0 and f − g 6∈ E−1(0),

E(λf + (1− λ)g) < λE(f) + (1− λ)E(g). (2.2)

(b) T := ϕ satisfies (2.1) with (q1, q2, n1, n2) = (1, p, 1, 1). In particular,

ϕ(u) ∈ F and E(ϕ(u)) ≤ E(u) for any u ∈ F . (2.3)
4Note that ϕ ◦ f ∈ Lp(X,m) for any f ∈ Lp(X,m) by this condition.
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(c) Assume that ϕ is non-decreasing. Define T = (T1, T2) : R2 → R2 by

T1(x1, x2) = x1 − ϕ(x1 − x2) and T2(x1, x2) = x2 + ϕ(x1 − x2), (x1, x2) ∈ R2.

Then T satisfies (2.1) with (q1, q2, n1, n2) = (p, p, 2, 2). In particular,

E
(
f − ϕ(f − g)

)
+ E

(
g + ϕ(f − g)

)
≤ E(f) + E(g) for any f, g ∈ F . (2.4)

Moreover, by considering the case ϕ(x) = x∨ 0, we have the following strong subad-
ditivity: f ∨ g, f ∧ g ∈ F and

E(f ∨ g) + E(f ∧ g) ≤ E(f) + E(g). (2.5)

(d) For any a1, a2 > 0, define T a1,a2 : R2 → R by

T a1,a2(x1, x2) :=
([

(−a1) ∨ a−1
2 x1

]
∧ a1

)
·
([

(−a2) ∨ a−1
1 x2

]
∧ a2

)
, (x1, x2) ∈ R2.

Then T a1,a2 satisfies (2.1) with (q1, q2, n1, n2) = (1, p, 2, 1). In particular, for any
f, g ∈ F ∩ L∞(X,m) we have

f · g ∈ F and E(f · g)1/p ≤ ‖g‖L∞(X,m) E(f)1/p + ‖f‖L∞(X,m) E(g)1/p. (2.6)

(e) Assume that p ∈ (1, 2]. Define T = (T1, T2) : R2 → R2 by

T1(x1, x2) = 2−(p−1)/p(x1+x2) and T2(x1, x2) = 2−(p−1)/p(x1−x2), (x1, x2) ∈ R2.

Then T satisfies (2.1) with (q1, q2, n1, n2) = (p/(p− 1), p, 2, 2). In particular, (E ,F)
satisfies the following p-Clarkson’s inequalities:

E(f + g) + E(f − g) ≥ 2
(
E(f)1/(p−1) + E(g)1/(p−1)

)p−1
, (2.7)

E(f + g) + E(f − g) ≤ 2
(
E(f) + E(g)

)
. (2.8)

(f) Assume that p ∈ [2,∞). Define T = (T1, T2) : R2 → R2 by

T1(x1, x2) = 2−1/p(x1 + x2) and T2(x1, x2) = 2−1/p(x1 − x2), (x1, x2) ∈ R2.

Then T satisfies (2.1) with (q1, q2, n1, n2) = (p, p/(p− 1), 2, 2). In particular, (E ,F)
satisfies the following p-Clarkson’s inequalities:

E(f + g) + E(f − g) ≤ 2
(
E(f)1/(p−1) + E(g)1/(p−1)

)p−1
, (2.9)

E(f + g) + E(f − g) ≥ 2
(
E(f) + E(g)

)
. (2.10)

Remark 2.3. (1) The property (2.4) is inspired by the nonlinear Dirichlet form theory
due to Cipriani and Grillo [CG03]. See [Cla23, Theorem 4.7] and the reference therein
for further background.

(2) By using an elementary inequality 2q−1(aq + bq) ≤ (a + b)q for q ∈ (0, 1] and a, b ∈
[0,∞), we easily see that the inequality (2.7) for (E ,F) in the case p ∈ (1, 2] implies
(2.8). Similarly, by Hölder’s inequality, the inequality (2.9) for (E ,F) in the case
p ∈ [2,∞) implies (2.10).



Contraction properties and differentiability of p-energy forms 17

Proof. (a): It is obvious that T (x, y) := x+y satisfies (2.1) with (q1, q2, n1, n2) = (1, p, 2, 1)
and hence the triangle inequality for E1/p holds. Since (0,∞) 3 x 7→ xp is strictly convex,
for any λ ∈ (0, 1) and any f, g ∈ F with E(f) ∧ E(g) ∧ E(f − g) > 0,

E(λf + (1− λ)g) ≤
(
λE(f)1/p + (1− λ)E(g)1/p

)p
< λE(f) + (1− λ)E(g),

where we used the triangle inequality for E1/p in the first inequality.
(b): This is obvious.
(c): Let x = (x1, x2), y = (y1, y2) ∈ R2. For simplicity, set zi := xi − yi and A :=

ϕ(x1 − x2)− ϕ(y1 − y2). Then ‖T (x)− T (y)‖`p ≤ ‖x− y‖`p ie equivalent to

|z1 − A|p + |z2 + A|p ≤ |z1|p + |z2|p , (2.11)

so we will show (2.11). Note that |A| ≤ |z1 − z2| since ϕ is 1-Lipschitz. The desired
estimate (2.11) is evident when z1 = z2, so we consider the case z1 6= z2. Suppose that
z1 > z2 because the remaining case z1 < z2 is similar. Then (x1−x2)−(y1−y2) = z1−z2 >
0 and thus 0 ≤ A ≤ z1 − z2. Set ψp(t) := |t|p (t ∈ R) for brevity. If 0 ≤ A < z1−z2

2
, then

z2 ≤ z2 + A < z1 − A ≤ z1 and we see that

|z1 − A|p + |z2 + A|p − |z1|p − |z2|p =

ˆ z2+A

z2

ψ′p(t) dt−
ˆ z1

z1−A
ψ′p(t) dt

≤ A
(
ψ′p(z2 + A)− ψ′p(z1 − A)

)
≤ 0.

If A ≥ z1−z2
2

, then z2 ≤ z1 − A ≤ z2 + A ≤ z1 and thus

|z1 − A|p + |z2 + A|p − |z1|p − |z2|p =

ˆ z1−A

z2

ψ′p(t) dt−
ˆ z1

z2+A

ψ′p(t) dt

≤ (z1 − z2 − A)
(
ψ′p(z1 − A)− ψ′p(z2 + A)

)
≤ 0,

which proves (2.11). The case ϕ(x) = x+ immediately implies (2.5).
(d): For any a1, a2 > 0 and (x1, x2), (y1, y2) ∈ R2, we see that

|T a1,a2(x1, x2)− T a1,a2(x1, x2)|
≤
∣∣(−a1) ∨ a−1

2 x1 ∧ a1

∣∣ ∣∣((−a2) ∨ a−1
1 x2 ∧ a2

)
−
(
(−a2) ∨ a−1

1 y2 ∧ a2

)∣∣
+
∣∣(−a2) ∨ a−1

1 y2 ∧ a2

∣∣ ∣∣((−a1) ∨ a−1
2 x1 ∧ a1

)
−
(
(−a1) ∨ a−1

2 y1 ∧ a1

)∣∣
≤ a1

∣∣a−1
1 x2 − a−1

1 y2

∣∣+ a2

∣∣a−1
2 x1 − a−1

2 y1

∣∣ = |x1 − y1|+ |x2 − y2| ,

whence T a1,a2 satisfies (2.1). We get (2.6) by applying (GC)p with u1 = ‖g‖L∞(X,m) f ,
u2 = ‖f‖L∞(X,m) g, a1 = ‖f‖L∞(X,m), a2 = ‖g‖L∞(X,m).

(e),(f): These statements follow from p-Clarkson’s inequalities for the `p-norm (see,
e.g., [Cla36, Theorem 2]).

The following corollary is easily implied by Proposition 2.2-(b),(d).

Corollary 2.4. Assume that (E ,F) satisfies (GC)p.
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(a) Let u ∈ F ∩ L∞(X,m) and let Φ ∈ C1(R) satisfy Φ(0) = 0. Then

Φ(u) ∈ F and E(Φ(u)) ≤ sup
{
|Φ′(t)|p

∣∣ t ∈ R, |t| ≤ ‖u‖L∞(X,m)

}
E(u). (2.12)

(b) Let δ,M ∈ (0,∞) and let f, g ∈ F satisfy f ≥ 0, g ≥ 0, f ≤M and (f+g)|{f 6=0} ≥ δ.
Then there exists C ∈ (0,∞) depending only on p, δ,M such that

f

f + g
∈ F and E

(
f

f + g

)
≤ C

(
E(f) + E(g)

)
. (2.13)

(c) Let n ∈ N, v ∈ F and u = (u1, . . . , un) ∈ L0(X,m)n. If there exist q ∈ [1, p] and
m-versions of v,u such that |v(x)| ≤ ‖u(x)‖`q and |v(x)− v(y)| ≤ ‖u(x)− u(y)‖`q
for any x, y ∈ X, then u ∈ Fn and E(v) ≤

∥∥(E(vk)
1/p
)n
k=1

∥∥
`q
.

Proof. The statement (a) is immediate from Proposition 2.2-(b).
(b): We follow [MS23+, Proposition 6.25 (ii)]. Let ϕ ∈ C(R) be a Lipschitz map such

that ϕ(x) = x−1 for x ≥ δ and supx 6=y∈R
|ϕ(x)−ϕ(y)|
|x−y| ≤ C ′ for some constant C ′ depending

only on δ. Since f · ϕ(f + g) = f
f+g

, we get (2.13) by using (2.3) and (2.6).
(c): The proof below is similar to [MR, Corollary I.4.13]. Fix m-versions of v,u

satisfying |v(x)| ≤ ‖u(x)‖`q and |v(x)− v(y)| ≤ ‖u(x)− u(y)‖`q for any x, y ∈ X. Set
u(X) := u1(X) × · · · × un(X) ⊆ Rn. We define T0 : u(X) → R by setting T0(0) := 0
and T0(z) := v(x) for each z ∈ u(X), where x ∈ X satisfies z = u(x). This map
T0 is well-defined since v(x) = 0 for any x ∈ X with u(x) = 0 and |v(x)− v(y)| ≤
‖u(x)− u(y)‖`q = 0 for any x, y ∈ X with u(x) = u(y) ∈ u(X). In addition, we easily
see that |T0(z1)− T0(z2)| ≤ ‖z1 − z2‖`q for any z1, z2 ∈ u(X) ∪ {0}, i.e., T0 : (u(X) ∪
{0}, ‖ · ‖`q) → R is 1-Lipschitz. Noting that (Rn, ‖ · ‖`q) is a metric space since q ≥ 1,
we can get a 1-Lipschitz map T : (Rn, ‖ · ‖`q) → R satisfying T (z) = T0(z) for any z ∈
u(X)∪{0} by applying the McShane–Whitney extension lemma (see, e.g., [HKST, p. 99]).
Since T satisfies (2.1) with (q1, q2, n1, n2) = (q, p, n, 1) and E(T (u)) = E(v), we obtain the
desired statement by (GC)p.

We also notice that (GC)p includes a new variant of p-Clarkson’s inequality in the case
p ∈ [2,∞), which we call improved p-Clarkson’s inequality. This result is not used in the
paper, but we record it for potential future applications.

Proposition 2.5 (Improved p-Clarkson’s inequality). Define φp : (0,∞) → (0,∞) and
T s = (T s1 , T

s
2 ) : R2 → R2, s ∈ (0,∞), by

ψp(s) := (1 + s)p−1 + sgn(1− s) |1− s|p−1 , s > 0. (2.14)

(a) Assume that p ∈ (1, 2]. For s ∈ (0,∞), define T s = (T s1 , T
s
2 ) : R2 → R2 by

T s1 (x1, x2) := 2−1ψp(s)
1/p(x1 + x2), T s2 (x1, x2) := 2−1ψp(s

−1)1/p(x1 − x2).

Then T s satisfies (2.1) with (q1, q2, n1, n2) = (p, p, 2, 2) for any s ∈ (0,∞). If (E ,F)
satisfies (GC)p, then

sup
s>0

{
ψp(s)E(f) + ψp(s

−1)E(g)
}
≤ E(f + g) + E(f − g) for any f, g ∈ F . (2.15)
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(b) If p ∈ (1, 2] and E satisfies (2.15), then p-Clarkson’s inequality, (2.7), for E holds.
(c) Assume that p ∈ [2,∞). For s ∈ (0,∞), define T s = (T s1 , T

s
2 ) : R2 → R2 by

T s1 (x1, x2) := ψp(s)
−1/px1+ψp(s

−1)−1/px2, T s2 (x1, x2) := ψp(s)
−1/px1−ψp(s−1)−1/px2.

Then T s satisfies (2.1) with (q1, q2, n1, n2) = (p, p, 2, 2) for any s ∈ (0,∞). If p ∈
[2,∞) and (E ,F) satisfies (GC)p, then

E(f + g) + E(f − g) ≤ inf
s>0

{
ψp(s)E(f) + ψp(s

−1)E(g)
}

for any f, g ∈ F . (2.16)

(d) If E satisfies (2.16), then p-Clarkson’s inequality, (2.9), for E holds.

Proof. We first recall a key result from [BCL94, Lemma 4]: for any x, y ∈ R,

|x+ y|p + |x− y|p =

{
sups>0

{
ψp(s) |x|p + ψp(s

−1) |y|p
}

if p ∈ [2,∞),
infs>0

{
ψp(s) |x|p + ψp(s

−1) |y|p
}

if p ∈ [2,∞).
(2.17)

(a): By considering x+y, x−y in (2.17) instead of x, y, we have that for any s ∈ (0,∞),

2−pφp(s) |x+ y|p + 2−pφp(s
−1) |x− y|p ≤ |x|p + |y|p ,

which means that T s satisfies (2.1) with (q1, q2, n1, n2) = (p, p, 2, 2). Since s ∈ (0,∞) is
arbitrary, we obtain (2.15).

(b): Let f, g ∈ F with E(f)∧E(g) > 0, set a := E(f)1/(p−1) and b := E(g)1/(p−1). Then,

sup
s>0

{
ψp(s)E(f) + ψp(s

−1)E(g)
}
≥ ψp(b/a)ap−1 + ψp(a/b)b

p−1 = 2(a+ b)p−1,

which together with (2.15) yields (2.7).
(c): For any s ∈ (0,∞), we immediately see from (2.17) that T s satisfies (2.1). Since

s ∈ (0,∞) is arbitrary, we obtain (2.16).
(d): Let f, g ∈ F with E(f)∧E(g) > 0, set a := E(f)1/(p−1) and b := E(g)1/(p−1). Then,

inf
s>0

{
ψp(s)E(f) + ψp(s

−1)E(g)
}
≤ ψp(b/a)ap−1 + ψp(a/b)b

p−1 = 2(a+ b)p−1,

which together with (2.16) yields (2.9).

The property (GC)p is stable under taking “limits” and some algebraic operations like
summations. To state precise results, we recall the following definition on convergences
of functionals.

Definition 2.6 ([Dal, Definition 4.1 and Proposition 8.1]). Let X be a topological space,
let F : X → R ∪ {±∞} and let {Fn : X → R ∪ {±∞}}n∈N.
(1) The sequence {Fn}n∈N is said to converge pointwise to F if and only if limn→∞ Fn(x) =

F (x) for any x ∈ X .
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(2) Suppose that X is a first-countable topological space. The sequence {Fn}n∈N is said
to Γ-converge to F (with respect to the topology of X ) if and only if the following
conditions hold for any x ∈ X :
(i) If xn → x in X , then F (x) ≤ lim infn→∞ Fn(xn).
(ii) There exists a sequence {xn}n∈N in X such that

xn → x in X and lim sup
n→∞

Fn(xn) ≤ F (x). (2.18)

A sequence {xn}n∈N satisfying (2.18) is called a recovery sequence of {Fn}n∈N at x.

We also need the following reverse Minkowski inequality (see, e.g., [AF, Theorem
2.12]).

Proposition 2.7 (Reverse Minkowski inequality). Let (Y,A, µ) be a measure space5 and
let r ∈ (0, 1]. Then for any A-measurable functions f, g : Y → [0,∞],(ˆ

Y

f r dµ

)1/r

+

(ˆ
Y

gr dµ

)1/r

≤
(ˆ

Y

(f + g)r dµ

)1/r

. (2.19)

In the following definition, we introduce the set of p-homogeneous functional on F
which satisfies (GC)p.

Definition 2.8. Recall that F is a linear subspace of L0(X,m). Define

UGC
p (F) := UGC

p := {E ′ : F → [0,∞) | E ′ is p-homogeneous, (E ′,F) satisfies (GC)p}.

Now we can state the desired stability of (GC)p.

Proposition 2.9. (a) a1E (1) + a2E (2) ∈ UGC
p for any E (1), E (2) ∈ UGC

p and any a1, a2 ∈
[0,∞).

(b) Let
{
E (n) ∈ UGC

p

}
n∈N and let E (∞) : F → [0,∞). If {E (n)}n∈N converges pointwise to

E (∞), then E (∞) ∈ UGC
p .

(c) Suppose that F ⊆ Lp(X,m) and let us regard F as a topological space equipped
with the topology of Lp(X,m). Let

{
E (n) ∈ UGC

p

}
n∈N and let E (∞) : F → [0,∞). If

{E (n)}n∈N Γ-converges to E (∞), then E (∞) ∈ UGC
p .

Proof. The statement (b) is trivial, so we will show (a) and (c). Throughout this proof,
we fix n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfying
(2.1).

(a): Let E (1), E (2) ∈ UGC
p . Then aE (1) ∈ UGC

p is evident for any a ∈ [0,∞). Set
E(f) := E (1)(f) + E (2)(f), f ∈ F , and let u = (u1, . . . , un1) ∈ Fn1 . It suffices to prove

5In the book [AF], the reverse Minkowski inequality is stated and proved only for the Lr-space over
non-empty open subsets of the Euclidean space equipped with the Lebesgue measure, but the same proof
works for any measure space.
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∥∥(E(Tl(u))1/p
)n2

l=1

∥∥
`q2
≤
∥∥(E(uk)

1/p
)n1

k=1

∥∥
`q1

. For simplicity, we consider the case q2 <∞.
(The case q2 =∞ is similar.) Then we have

n2∑
l=1

E
(
Tl(u)

)q2/p
=

n2∑
l=1

[
E (1)
(
Tl(u)

)
+ E (2)

(
Tl(u)

)]q2/p

≤

 ∑
i∈{1,2}

[
n2∑
l=1

E (i)
(
Tl(u)

)q2/p]p/q2q2/p

(by the triangle ineq. for ‖ · ‖`q2/p)

(GC)p
≤

[ n1∑
k=1

E (1)(uk)
q1/p

]p/q1
+

[
n1∑
k=1

E (2)(uk)
q1/p

]p/q1q2/p

(2.19)
≤

(
n1∑
k=1

[
E (1)(uk) + E (2)(uk)

]q1/p) p
q1
· q2
p

=

(
n1∑
k=1

E(uk)
q1/p

)q2/q1

, (2.20)

which implies E ∈ UGC
p .

(c): Let u = (u1, . . . , un1) ∈ Fn1 and choose a recovery sequence {un = (u1,n, . . . , un1,n) ∈
Fn1}n∈N of {E (n)}n∈N at u. We first show tnat ‖Tl(u)− Tl(un)‖Lp(X,m) → 0 as n → ∞.
Indeed, for any v = (v1, . . . , vn1) and any z = (z1, . . . , zn1) ∈ Lp(X,m)n1 , we see that

max
l∈{1,...,n2}

‖Tl(v)− Tl(z)‖pLp(X,m)

(2.1)
≤

ˆ
X

‖v(x)− z(x)‖p`q1 m(dx)

=

ˆ
X

(
n1∑
k=1

|vk(x)− zk(x)|p·
q1
p

)p/q1

m(dx)

≤ n
(p−q1)/q1
1

n1∑
k=1

‖vk − zk‖pLp(X,m) , (2.21)

where we used Hölder’s inequality in the last line. Since maxk ‖uk − uk,n‖Lp(X,m) → 0 as
n→∞, (2.21) implies the desired convergence ‖Tl(u)− Tl(un)‖Lp(X,m) → 0.

Now we prove (GC)p for the Γ-limit E (∞) of {E (n)}n∈N (with respect to the Lp(X,m)-
topology). It is easy to see that E (∞) is p-homogeneous (see, e.g., [Dal, Proposition 11.6]).
We suppose that q2 <∞ since the case q2 =∞ is similar. Then,

n2∑
l=1

E (∞)
(
Tl(u)

)q2/p ≤ n2∑
l=1

lim inf
n→∞

E (n)
(
Tl(un)

)q2/p ≤ lim inf
n→∞

n2∑
l=1

E (n)
(
Tl(un)

)q2/p
≤ lim inf

n→∞

(
n1∑
k=1

E (n)(uk,n)q1/p

) p
q1
· q2
p

=

(
n1∑
k=1

E (∞)(uk)
q1/p

) p
q1
· q2
p

,

which proves E (∞) ∈ UGC
p .
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3 Differentiability of p-energy forms and related results

In this section, we show the existence of the derivative (1.8) for any p-energy form satisfy-
ing p-Clarkson’s inequality, (2.7) or (2.9). As an application of our differentiability result,
we will introduce a ‘two-variable’ version of a p-energy form and observe its fundamental
properties.

Throughout this section, we fix p ∈ (1,∞), a measure space (X,B,m), and a p-energy
form (E ,F) on (X,m) in the following sense:

Definition 3.1 (p-Energy form). Let F be a linear subspace of L0(X,m) and let E : F →
[0,∞). The pair (E ,F) is said to be a p-energy form on (X,m) if E1/p is a seminorm on
F .

Note that the same argument as in the proof of Proposition 2.2-(a) implies that E is
strictly convex on F/E−1(0) (see (2.2)).

3.1 p-Clarkson’s inequality and differentiability

In this section, we mainly deal with p-energy forms satisfying p-Clarkson’s inequality in
the following sense.

Definition 3.2 (p-Clarkson’s inequality). The pair (E ,F) is said to satisfy p-Clarkson’s
inequality, (Cla)p for short, if and only if for any f, g ∈ F ,{

E(f + g)1/(p−1) + E(f − g)1/(p−1) ≤ 2
(
E(f) + E(g)

)1/(p−1) if p ∈ (1, 2],
E(f + g) + E(f − g) ≤ 2

(
E(f)1/(p−1) + E(g)1/(p−1)

)p−1 if p ∈ [2,∞).
(Cla)p

To state a consequence of (Cla)p on the convexity of E1/p, let us recall the notion
of uniform convexity. See, e.g., [Cla36, Definition 1]. (The notion of uniform convexity
is usually defined for a Banach space in the literature. We present the definition for
seminormed space because we are mainly interested in (F , E1/p).)

Definition 3.3 (Uniformly convex seminormed spaces). Let (X , | · |) be a seminormed
space. We say that (X , | · |) is uniformly convex if and only if for any ε > 0 there exists
δ > 0 with the property that |f + g| ≤ 2(1 − δ) whenever f, g ∈ X satisfy |f | = |g| = 1
and |f − g| > ε.

It is well known that (Cla)p implies the uniform convexity as follows.

Proposition 3.4. Assume that (E ,F) satisfies (Cla)p. Then (F , E1/p) is uniformly con-
vex.

Proof. The same argument as in [Cla36, Proof of Corollary of Theorem 2] works.

Moreover, (Cla)p provides us the following quantitative estimate for the central differ-
ence, which plays a central role in this section.
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Proposition 3.5. Assume that (E ,F) satisfies (Cla)p. Then, for any f, g ∈ F ,

E(f + g) + E(f − g)− 2E(f) ≤

2E(g) if p ∈ (1, 2],

2(p− 1)
[
E(f)

1
p−1 + E(g)

1
p−1

]p−2

E(g)
1
p−1 if p ∈ (2,∞).

(3.1)
In particular, R 3 t 7→ E(f + tg) ∈ [0,∞) is differentiable and for any s ∈ R,

lim
δ↓0

sup
g∈F ;E(g)≤1

∣∣∣∣E(f + (s+ δ)g)− E(f + sg)

δ
− d

dt
E(f + tg)

∣∣∣∣
t=s

∣∣∣∣ = 0. (3.2)

Proof. The desired inequality (3.1) in the case p ∈ (1, 2] is immediate from (2.8), so we
suppose that p ∈ (2,∞). Let f, g ∈ F , set a := E(f)1/(p−1) and b := E(g)1/(p−1). Then we
have (3.1) since (Cla)p implies that

E(f+g)+E(f−g)−2E(f) ≤ 2
(
(a+b)p−1−ap−1

)
= 2(p−1)

ˆ a+b

a

sp−2 ds ≤ 2(p−1)(a+b)p−2b.

Next we show that for any t ∈ R,

lim
δ↓0

sup
g∈F ;E(g)≤1

E
(
f + (t+ δ)g

)
+ E

(
f + (t− δ)g

)
− 2E(f + tg)

δ
= 0, (3.3)

Let t ∈ R, δ ∈ (0,∞) and set

Dt,δ(f ; g) := E
(
f + (t+ δ)g

)
+ E

(
f + (t− δ)g

)
− 2E(f + tg). (3.4)

By (3.1), we have

Dt,δ(f ; g) ≤

2δpE(g) if p ∈ (1, 2],

2(p− 1)δp/(p−1)
[
E(f + tg)

1
p−1 + E(δg)

1
p−1

]p−2

E(g)
1
p−1 if p ∈ (2,∞).

Hence we get

sup
g∈F ;E(g)≤1

Dt,δ(f ; g)

δ
≤

2δp−1 if p ∈ (1, 2],

2(p− 1)δ1/(p−1)
[(
E(f)1/p + t

) p
p−1 + δ

p
p−1

]p−2

if p ∈ (2,∞),

(3.5)

which implies

lim sup
δ↓0

sup
g∈F ;E(g)≤1

Dt,δ(f ; g)

δ
≤ 0. (3.6)

Since E is convex on F , we know that the limits

lim
δ↓0

E
(
f + (t+ δ)g

)
− E(f + tg)

δ
and lim

δ↓0

E
(
f + (t− δ)g

)
− E(f + tg)

−δ
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exist and

Dt,δ(f ; g)

δ
=
E
(
f + (t+ δ)g

)
+ E

(
f + (t− δ)g

)
− 2E(f + tg)

δ
≥ 0. (3.7)

By combining (3.6) and (3.7), we obtain (3.3) and the differentiability of t 7→ E(f + tg).
From the convexity of t 7→ E(f + tg) again, we have

sup
g∈F ;E(g)≤1

∣∣∣∣E(f + (s+ δ)g)− E(f + sg)

δ
− d

dt
E(f + tg)

∣∣∣∣
t=s

∣∣∣∣ ≤ sup
g∈F ;E(g)≤1

Ds,δ(f ; g)

δ
,

which together with (3.6) implies (3.2).

Proposition 3.5, especially (3.2), implies the Fréchet differentiability of E on F/E−1(0).
We record this fact and basic properties of these derivatives in the following theorem.

Theorem 3.6. Assume that (E ,F) satisfies (Cla)p. Then E : F/E−1(0) → [0,∞) is
Fréchet differentiable on the quotient normed space F/E−1(0). In particular, for any
f, g ∈ F ,

the derivative E(f ; g) :=
1

p

d

dt
E(f + tg)

∣∣∣∣
t=0

∈ R exists, (3.8)

the map E(f ; · ) : F → R is linear, E(f ; f) = E(f) and E(f ;h) = 0 for h ∈ E−1(0).
Moreover, for any f, f1, f2, g ∈ F and any a ∈ R, the following hold:

R 3 t 7→ E(f + tg; g) ∈ R is strictly increasing if and only if g 6∈ E−1(0). (3.9)

E(af ; g) = sgn(a) |a|p−1 E(f ; g), E(f + h; g) = E(f ; g) for h ∈ E−1(0). (3.10)

|E(f ; g)| ≤ E(f)(p−1)/pE(g)1/p. (3.11)

|E(f1; g)− E(f2; g)| ≤ Cp
(
E(f1) ∨ E(f2)

)(p−1−αp)/pE(f1 − f2)αp/pE(g)1/p, (3.12)

where αp = 1
p
∧ p−1

p
and some constant Cp ∈ (0,∞) determined solely and explicitly by p.

Remark 3.7. It seems that the Hölder continuity exponent αp appearing in (3.12) is
not optimal because this exponent can be improved to (p − 1) ∧ 1 in the case E(f ; g) =´
Rn |∇f |

p−2 〈∇f,∇g〉 dx. However, such an improved continuity is unclear even for con-
crete p-energy forms constructed in the previous works [CGQ22, Kig23, MS23+, Shi24].
We can see the desired continuity ((3.12) with (p − 1) ∧ 1 in place of αp) for p-energy
forms constructed in [KS.a], where a direct construction of p-energy forms based on the
Korevaar–Schoen type p-energy forms is presented.

Proof. The existence of E(f ; g) in (3.8) is already proved in Proposition 3.5. The proper-
ties E(f ; ag) = aE(f ; g), E(af ; g) = sgn(a) |a|p−1 E(f ; g) and E(f ; f) = E(f) are obvious
from the definition. The equalities E(f + h; g) = E(f + g) and E(f ;h) = 0 for any
h ∈ E−1(0) follow from the triangle inequality for E1/p, so (3.10) holds. The property
(3.9) is a consequence of the strict convexity of E (see (2.2)) and the differentiability in
(3.8).
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To show that E(f ; · ) is linear, it suffices to prove E(f ; g1 + g2) = E(f ; g1) + E(f ; g2)
for any g1, g2 ∈ F . For any t > 0, the convexity of E implies that

E
(
f + t(g1 + g2)

)
− E(f)

t
=
E
(

1
2
(f + 2tg1) + 1

2
(f + 2tg2)

)
− E(f)

t

≤ E(f + 2tg1)− E(f)

2t
+
E(f + 2tg2)− E(f)

2t
. (3.13)

Passing to the limit as t ↓ 0, we get E(f ; g1 + g2) ≤ E(f ; g1) + E(f ; g2). We obtain the
converse inequality by noting that

E(f − tg)− E(f)

t
→ − d

dt
E(f + tg)

∣∣∣∣
t=0

= −pE(f ; g) as t ↓ 0,

and by applying (3.13) with −g1,−g2 in place of g1, g2 respectively.
The Hölder-type estimate (3.11) follows from the following elementary estimate:

|aq − bq| =
∣∣∣∣ˆ a∨b

a∧b
qtq−1 dt

∣∣∣∣ ≤ q(aq−1 ∨ bq−1) |a− b| for q ∈ (0,∞), a, b ∈ [0,∞). (3.14)

Indeed, by (3.14) and the triangle inequality for E1/p, for any t > 0,∣∣∣∣E(f + tg)− E(f)

t

∣∣∣∣ ≤ p
(
E(f + tg)1/p ∨ E(f)1/p

)p−1E(g)1/p. (3.15)

We obtain (3.11) by letting t ↓ 0 in (3.15). We conclude that E(f ; · ) is the Fréchet
derivative of E at f by (3.2), the linearity of E(f ; · ) and (3.11).

In the rest of this proof, we prove (3.12). Our proof is partially inspired by an argument
by Šmulian in [Smu40]. In this proof, Cp,i, i ∈ {1, . . . , 5}, is a constant depending only
on p. We first show an analogue of (3.1) for E1/p. Using (3.14), we can show that there
exists c∗ ∈ (0, 2−p

3
) depending only on p such that

sup

{
|E(f)− E(f + δg)|

E(f)

∣∣∣∣ f, g,∈ F , δ ∈ (0,∞) such that
0 < δ < c∗E(f)1/p and E(g) = 1

}
≤ 1

10
. (3.16)

Let ψ(t) := |t|1/p and fix g ∈ F with E(g) = 1. Then there exist θ1, θ2, θ ∈ [0, 1] such that

0 ≤ ψ(E(f + δg)) + ψ(E(f − δg))− 2ψ(E(f))

= ψ′(A1,δ)
[
E(f + δg)− E(f)

]
− ψ′(A2,δ)

[
E(f)− E(f − δg)

]
= ψ′(A1(δ))Dδ(f ; g)−

(
ψ′(A1,δ)− ψ′(A2,δ)

)[
E(f)− E(f − δg)

]
= ψ′(A1,δ)Dδ(f ; g)− ψ′′

(
A1,δ + θ(A2,δ − A1,δ)

)
(A2,δ − A1,δ)

[
E(f)− E(f − δg)

]
, (3.17)

where Dδ(f ; g) := Dδ,0(f ; g) is the same as in (3.4) and

A1,δ := E(f) + θ1

[
E(f + δg)− E(f)

]
, A2,δ := E(f − δg) + θ2

[
E(f)− E(f − δg)

]
.
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By (3.16), we note that |A1,δ|∧|A1,δ + θ(A2,δ − A1,δ)| ≥ 1
2
E(f), which together with (3.17)

and (3.1) implies that for any (δ, f) ∈ (0,∞)×F with 0 < δ < c∗E(f)1/p,

0 ≤ ψ(E(f + δg)) + ψ(E(f − δg))− 2ψ(E(f))

≤ Cp,1

(
E(f)

1
p
−1+

(p−2)+

p−1 δp∧
p
p−1 + E(f)

1
p
−2+

2(p−1)
p δ2

)
≤ Cp,1δ · δ(p−1)∧ 1

p−1

(
E(f)

1
p
−1+

(p−2)+

p−1 + E(f)
1
p
−2+

2(p−1)
p

)
.

In particular, if E(f) = 1, then

E(f + δg)1/p + E(f − δg)1/p ≤ 2 + Cp,1δ
(p−1)∧(p−1)−1

δ for any δ ∈ (0, c∗). (3.18)

Next let f1, f2 ∈ F . Then, by (3.11) and (3.14),

|E(f2; f1)− E(f1)| ≤ |E(f2; f1)− E(f2)|+ |E(f2)− E(f1)|

≤
(
E(f2)(p−1)/p + p

(
E(f2)(p−1)/p ∨ E(f1)(p−1)/p

))
E(f1 − f2)1/p

≤ Cp,2

(
E(f1)(p−1)/p ∨ E(f2)(p−1)/p

)
E(f1 − f2)1/p. (3.19)

Now, for any f1, f2, g ∈ F with E(f1) = E(g) = 1 and δ ∈ (0, c∗) we see that

E(f1; δg)− E(f2; δg)

= E(f1; f1 + δg) + E(f2; f1 − δg)− E(f1)− E(f2; f1)

(3.11)
≤
(
E(f1)(p−1)/p ∨ E(f2)(p−1)/p

)(
E(f1 + δg)1/p + E(f1 − δg)1/p

)
− E(f1)− E(f2; f1)

(3.14),(3.18)
≤

(
1 + Cp,3E(f1 − f2)1/p

)(
2 + Cp,1δ

(p−1)∧(p−1)−1

δ
)
− E(f1)− E(f2; f1).

Similarly, we can show

E(f1; δg)− E(f2; δg)

= −E(f1; f1 − δg)− E(f2; f1 + δg) + E(f1) + E(f2; f1)

≥ −
(

1 + Cp,3E(f1 − f2)1/p
)(

2 + Cp,1δ
(p−1)∧(p−1)−1

δ
)

+ E(f1) + E(f2; f1).

From these estimates, we have

|E(f1; g)− E(f2; g)| = |E(f1; δg)− E(f2; δg)|
δ

≤
(

1 + Cp,3E(f1 − f2)1/p
)(

2δ−1 + Cp,1δ
(p−1)∧(p−1)−1

)
− δ−1E(f1)− δ−1E(f2; f1)

=
(

1 + Cp,3E(f1 − f2)1/p
)(

2δ−1 + Cp,1δ
(p−1)∧(p−1)−1

)
− 2δ−1E(f1) + δ−1

(
E(f1)− E(f2; f1)

)
(3.19)
≤
(

1 + Cp,3E(f1 − f2)1/p
)(

2δ−1 + Cp,1δ
(p−1)∧(p−1)−1

)
− 2δ−1 + Cp,2δ

−1E(f1 − f2)1/p

≤ Cp,4

(
δ(p−1)∧(p−1)−1

+ δ−1E(f1 − f2)1/p
)
.
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If E(f1 − f2) < c
−p2/((p−1)∨1)
∗ , then, by choosing δ = E(f1 − f2)((p−1)∨1)/p2 , we obtain

|E(f1; g)− E(f2; g)| ≤ Cp,5E(f1 − f2)((p−1)∧1)/p2

. (3.20)

The same is clearly true if E(f1 − f2) ≥ c
−p2/((p−1)∨1)
∗ since E(f2) ≤ 2p−1

(
1 + E(f1 − f2)

)
.

Finally, for any f1, f2, g ∈ F with E(f1) ∧ E(g) > 0, we have

|E(f1; g)− E(f2; g)| = E(f1)(p−1)/pE(g)1/p

∣∣∣∣E( f1

E(f1)1/p
;

g

E(g)1/p

)
− E

(
f2

E(f1)1/p
;

g

E(g)1/p

)∣∣∣∣
(3.20)
≤ Cp,5E(f1)(p−1)/pE(g)1/pE

(
f1

E(f1)1/p
− f2

E(f1)1/p

)((p−1)∧1)/p2

(3.20)
≤ Cp,5

(
E(f1) ∨ E(f2)

)(p−1−αp)/pE(g)1/pE(f1 − f2)αp/p.

The same estimate is clearly true if E(f2) ∧ E(g) > 0. Since (3.12) is obvious when
g ∈ E−1(0) or E(f1) ∨ E(f2) = 0, we obtain (3.12).

The following theorem gives a quantitative continuity for the inverse map of f 7→
E(f ; · ).

Theorem 3.8. Assume that (E ,F) satisfies (Cla)p. Then for any f, g ∈ F ,

E(f−g) ≤ C ′p

[(
E(f)∨E(g)

)1/p∨
(
E(f)∨E(g)

)α′p]( sup
ϕ∈F ;E(ϕ)≤1

|E(f ;ϕ)− E(g;ϕ)|

)
, (3.21)

where α′p = 1
p

+ p(p−2)+

p−1
and some constant C ′p ∈ (0,∞) determined solely and explicitly by

p.

Proof. For simplicity, for any linear functional Φ: F → R, we set ‖Φ‖F ,∗ := supu∈F ;E(u)≤1 |Φ(u)|.
Clearly, ‖Φ1 + Φ2‖F ,∗ ≤ ‖Φ1‖F ,∗+‖Φ2‖F ,∗ for any linear functionals Φ1,Φ2 : F → R. Note
that ‖E(f ; · )‖F ,∗ = E(f)(p−1)/p by (3.11) for any f ∈ F . In particular, for any f, g ∈ F ,∣∣∣E(f)

p−1
p − E(g)

p−1
p

∣∣∣ =
∣∣∣‖E(f ; · )‖F ,∗ − ‖E(g; · )‖F ,∗

∣∣∣ ≤ ‖E(f ; · )− E(g; · )‖F ,∗ ,

which together with (3.14) with q = (p− 1)/p implies that

|E(f)− E(g)| ≤ p

p− 1

(
E(f)1/p ∨ E(g)1/p

)
‖E(f ; · )− E(g; · )‖F ,∗ . (3.22)

Let us define ψ : R → R by ψ(t) := p−1E(f + t(g − f)). Then ψ ∈ C1(R) by (3.2) and
(3.12); indeed, (3.2) implies that ψ′(t) = E(f + t(g − f); g − f), which is continuous by
(3.12). Now we see that

|ψ′(0)| = |E(f ; g − f)| ≤ |E(f ; g)− E(g)|+ |E(g)− E(f)|
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(3.22)
≤ ‖E(f ; · )− E(g; · )‖F ,∗ E(g)1/p +

p

p− 1

(
E(f)1/p ∨ E(g)1/p

)
‖E(f ; · )− E(g; · )‖F ,∗

≤
(

1 +
p

p− 1

)(
E(f)1/p ∨ E(g)1/p

)
‖E(f ; · )− E(g; · )‖F ,∗ .

Similarly,

|ψ′(1)| = |E(g; g − f)| ≤
(

1 +
p

p− 1

)(
E(f)1/p ∨ E(g)1/p

)
‖E(f ; · )− E(g; · )‖F ,∗ .

Since ψ is C1-convex, we obtain

max
t∈[0,1]

|ψ′(t)| ≤
(

1 +
p

p− 1

)(
E(f)1/p ∨ E(g)1/p

)
‖E(f ; · )− E(g; · )‖F ,∗ ,

and hence∣∣∣∣−E(f) + E
(
f + g

2

)∣∣∣∣ = |−E(f) + pψ(1/2)| = p |ψ(1/2)− ψ(0)| ≤ p

2
|ψ′(1)|

≤ cp
(
E(f)1/p ∨ E(g)1/p

)
‖E(f ; · )− E(g; · )‖F ,∗ ,

where we put cp := p
2

(
1 + p

p−1

)
. Similarly,∣∣∣∣−E(g) + E

(
f + g

2

)∣∣∣∣ ≤ p

2
|ψ′(0)| ≤ cp

(
E(f)1/p ∨ E(g)1/p

)
‖E(f ; · )− E(g; · )‖F ,∗ .

Therefore, it follows that

E
(
f + g

2

)
≥
(
E(f) ∨ E(g)− cp

(
E(f)1/p ∨ E(g)1/p

)
‖E(f ; · )− E(g; · )‖F ,∗

)+

. (3.23)

Next we derive an estimate on E(f−g
2

) by using (Cla)p and (3.23). Set a := E(f) ∨ E(g)
for simplicity. If p ∈ [2,∞), then

E
(
f − g

2

)
(Cla)p
≤ 21−p(E(f)1/(p−1) + E(g)1/(p−1)

)p−1 − E
(
f + g

2

)
(3.23)
≤ a−

(
a− cpa1/p ‖E(f ; · )− E(g; · )‖F ,∗

)+

≤ cpa
1/p ‖E(f ; · )− E(g; · )‖F ,∗ .

In the rest of the proof, we assume that p ∈ (1, 2]. We see that

E
(
f − g

2

)1/(p−1) (Cla)p
≤

(
E(f) + E(g)

2

)1/(p−1)

− E
(
f + g

2

)1/(p−1)

(3.23)
≤ a1/(p−1) −

[(
a− cpa1/p ‖E(f ; · )− E(g; · )‖F ,∗

)+
]1/(p−1)

. (3.24)
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In the case a ≤ cpa
1/p ‖E(f ; · )− E(g; · )‖F ,∗, we have

E
(
f − g

2

)
≤ a ≤ cpa

1/p ‖E(f ; · )− E(g; · )‖F ,∗ .

Let us consider the remaining case a > cpa
1/p ‖E(f ; · )− E(g; · )‖F ,∗. Then we have from

(3.14) with q = 1
p−1

that

E
(
f − g

2

)1/(p−1)

= a1/(p−1) −
(
a− cpa1/p ‖E(f ; · )− E(g; · )‖F ,∗

)1/(p−1)

≤ cp
p− 1

a
2−p
p−1

+ 1
p ‖E(f ; · )− E(g; · )‖F ,∗ .

Hence we obtain the desired estimate (3.21).

The following proposition is a kind of ‘monotonicity on values of p-Laplacian’. This
result will play important roles in Subsection 6.4 later and in the subsequent works [KS.b,
KS.c].

Proposition 3.9. Assume that (E ,F) satisfies (Cla)p and the strong subadditivity (2.5).
Let u1, u2, v ∈ F satisfy ((u2−u1)∧v)(x) = 0 for m-a.e. x ∈ X. Then E(u1; v) ≥ E(u2; v).

Proof. Let t > 0. Define f, g ∈ F by f := u1 + tv and g := u2. Then we easily see that
f ∨ g = u2 + tv and f ∧ g = u1. By (2.5), we have E(u2 + tv) +E(u1) ≤ E(u1 + tv) +E(u2),
which implies that

E(u2 + tv)− E(u2)

t
≤ E(u1 + tv)− E(u1)

t
.

Letting t ↓ 0, we get E(u2; v) ≤ E(u1; v).

We conclude this subsection by viewing typical examples of p-energy forms.

Example 3.10. (1) Let D ∈ N, let X := Ω ⊆ RD be a domain, let B := B(X), let m
be the D-dimensional Lebesgue measure on X and let F = W 1,p(Ω) be the usual
(1, p)-Sobolev space on Ω (see [AF, p. 60] for example). Define E(f) := ‖∇f‖pLp(X,m),
f ∈ F , where the gradient operator ∇ is regarded in the distribution sense. Then ,
by following a similar argument as in the proof of Theorem A.19, one can show that
(E ,F) is a p-energy form on (X,m) satisfying (GC)p. In this case, we have

E(f ; g) =

ˆ
Ω

|∇f(x)|p−2 〈∇f(x),∇g(x)〉RD dx, f, g ∈ F ,

where 〈 · , · 〉RD denotes the inner product on RD.
(2) In the recent work [Kig23, MS23+], a p-energy form (E ,F) on a compact metrizable

space with some geometric assumptions is constructed via discrete approximations.
See [HPS04, CGQ22] for constructions of p-energy forms on post-critically finite self-
similar sets. The construction in [CGQ22] can be seen as a generalization of that in
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[HPS04]. As will be seen in more detail later in Section 8, we can prove that p-energy
forms constructed in [CGQ22, Kig23, MS23+] satisfy (GC)p although even (Cla)p is
not mentioned in [CGQ22, Kig23]. Furthermore, very recently, Kuwae [Kuw24] intro-
duced a p-energy form (E p, H1,p) based on a strongly local Dirichlet form (E , D(E ))
on L2(X,m). It is shown that (E p, H1,p) satisfies (Cla)p in [Kuw24, Theorem 1.8]. We
can also verify (GC)p for (E p, H1,p) (see Theorem A.19) by using some good estimates
due to the bilinearity. See Appendix A for details.

(3) There are various ways to define (1, p)-Sobolev spaces in the field of ‘Analysis on
metric spaces’ (see, e.g., [HKST, Chapter 10]). In these definitions, roughly speaking,
we find a counterpart of |∇u|, e.g., the minimal p-weak upper gradient gu ≥ 0 (see,
e.g., [HKST, Chapter 6] for details), and consider a p-energy form (Ẽ ,F) on (X,m)

given by Ẽ(u) :=
´
X
gpu dm and F := {u ∈ Lp(X,m) | gu ∈ Lp(X,m)}. Unfortunately,

this p-energy form may not satisfy (Cla)p because of a lack of the linearity of u 7→ gu
(see, e.g., [HKST, (6.3.18)]). However, in a suitable setting, we can construct a
functional which is equivalent to Ẽ and satisfies (Cla)p; see the p-energy form denoted
by (Fp,W 1,p) in [ACD15, Theorem 40]. Moreover, we can verify (GC)p for (Fp,W 1,p)
since (Fδk,p,W 1,p) defined in [ACD15, (7.3)] satisfies (GC)p and Fp is defined as a
Γ-limit point of Fδk,p as k →∞. (See also the proof of Theorem 8.19 later.)

3.2 p-Clarkson’s inequality and approximations in p-energy forms

In this subsection, in addition to the setting specified at the beginning of this section, by
considering F ∩ Lp(X,m) instead of F if necessary, we also assume that F ⊆ Lp(X,m)
for simplicity.

We introduce a family of natural norms on F in the following definition.

Definition 3.11 ((E , α)-norm). Let α ∈ (0,∞). We define the norm ‖ · ‖E,α on F by

‖f‖E,α :=
(
E(f) + α ‖f‖pLp(X,m)

)1/p

, f ∈ F (3.25)

We call ‖ · ‖E,α the (E , α)-norm on F .

The following proposition states on the convexity of ‖ · ‖E,α.

Proposition 3.12. Let α ∈ (0,∞) and assume that (E ,F) satisfies (Cla)p. Then
(‖ · ‖pE,α ,F) is a p-energy form on (X,m) satisfying (Cla)p, and (F , ‖ · ‖E,α) is uniformly
convex. If (F , ‖ · ‖E,α) is a Banach space in addition, then it is reflexive.

Proof. We have (Cla)p for the p-energy form (‖ · ‖pE,α ,F) on (X,m) by applying (2.20) for
T : R2 → R given in Proposition 2.2-(e),(f). The uniform convexity ‖ · ‖E,α follows from
[Cla36, Proof of Corollary of Theorem 2].

Assume that (F , ‖ · ‖E,α) is a Banach space. Then (F , ‖ · ‖E,α) is reflexive by the
Milman–Pettis theorem (see, e.g., [LT, Proposition 1.e.3]) since (F , ‖ · ‖E,α) is uniformly
convex.
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We will frequently use the following Mazur’s lemma, which is an elementary fact in
the theory of Banach spaces.

Lemma 3.13 (Mazur’s lemma; see, e.g., [HKST, p. 19]). Let (vn)n∈N be a sequence in a
normed space V converging weakly to some element v ∈ V . Then there exist {Nl}l∈N ⊆ N
with Nl > l and

{
λk,l ∈ [0, 1]

∣∣ k = l, l+1, . . . , Nl

}
with

∑Nl
k=l λk,l = 1 such that

∑Nl
k=l λk,lvk

converges strongly to v as l→∞.

We also prepare the following two lemmas.

Lemma 3.14. Assume that (E ,F) satisfies (Cla)p and that F equipped with ‖ · ‖E,1 is a
Banach space. For v ∈ L

p
p−1 (X,m), we define a bounded linear map Ψv : Lp(X,m) → R

by Ψv(u) :=
´
X
uv dm. Then {Ψv|F | v ∈ L

p
p−1 (X,m)} is dense in F∗.

Proof. Set M := {Ψv|F | v ∈ L
p
p−1 (X,m)} for simplicity. Then M ⊆ F∗ since

‖u‖Lp(X,m) ≤ ‖u‖E,1 for any u ∈ F . Suppose that MF∗ 6= F∗. Let ϕ ∈ F∗ \ MF∗ .
By the Hahn–Banach theorem, there exists Φ ∈ F∗∗ such that Φ(ϕ) 6= 0 and Φ|

M
F∗ = 0.

Since F is reflexive by Proposition 3.12, there exists u ∈ F such that Φ(ψ) = Ψ(u) for
any ψ ∈ F∗. Then for any ψ ∈ M , we have ψ(u) = Φ(ψ) = 0, which implies that u = 0.
This contradicts ϕ(u) = Φ(ϕ) 6= 0.

Lemma 3.15. Assume that (E ,F) satisfies (Cla)p and that F equipped with ‖ · ‖E,1 is a
Banach space. If {un}n∈N ⊆ F converges in Lp(X,m) to u ∈ F and supn∈N E(un) < ∞,
then {un}n∈N converges weakly in (F , ‖ · ‖E,1) to u.

Proof. For any ϕ ∈ F∗ and any ε > 0, by Lemma 3.14, there exists v ∈ L
p
p−1 (X,m) such

that ‖ϕ−Ψv|F‖F∗ < ε. Then we easily see that

|ϕ(u)− ϕ(un)| ≤ |ϕ(u)−Ψv(u)|+ |Ψv(u)−Ψv(un)|+ |ϕ(un)−Ψv(un)|

≤ ε

(
‖u‖E,1 + sup

n∈N
‖un‖E,1

)
+ |Ψv(u)−Ψv(un)| ,

whence lim supn→∞ |ϕ(u)− ϕ(un)| ≤ ε
(
‖u‖E,1 + supn∈N ‖un‖E,1

)
. Since ε > 0 is arbitrary,

we obtain limn→∞ ϕ(un) = ϕ(u). This completes the proof.

We collect some useful results on converges in E in the following proposition. Let
us regard E as a [0,∞]-valued functional on Lp(X,m) by setting E(f) := ∞ for f ∈
Lp(X,m) \ F .

Proposition 3.16. Assume that (E ,F) satisfies (Cla)p and that (F , ‖ · ‖E,1) is a Banach
space.

(a) If {un}n∈N ⊆ Lp(X,m) converges to u ∈ Lp(X,m) in Lp(X,m) as n → ∞, then
E(u) ≤ lim infn→∞ E(un).

(b) If {un}n∈N ⊆ F converges to u ∈ F in Lp(X,m) as n → ∞ and limn→∞ E(un) =
E(u), then u ∈ F and limn→∞ ‖u− un‖E,1 = 0.
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Proof. (a): If lim infn→∞ E(un) =∞, then the desired statement clearly holds. So, we as-
sume that lim infn→∞ E(un) <∞. Pick a subsequence {unk}k∈N such that limk→∞ E(unk) =
lim infn→∞ E(un). Then {unk}k is a bounded sequence in (F , ‖ · ‖E,1) and hence Lemma
3.15 implies that {unk}k∈N converges weakly in F to u. Since ‖ · ‖E,1 is lower semicon-
tinuous with respect to the weak topology of F , we have from limk→∞ ‖unk‖Lp(X,m) =

‖u‖Lp(X,m) that E(u)1/p ≤ lim infn→∞ E(un)1/p.
(b): If u ∈ E−1(0), then E(u − un) = E(un) → E(u) = 0. It suffices to consider the

case E(u) = 1. Since u+ un converges in Lp(X,m) to 2u as n→∞, by (a),

2 = E(2u)1/p ≤ lim inf
n→∞

E
(
u+ un

)1/p ≤ lim sup
n→∞

E
(
u+ un

)1/p

≤ lim
n→∞

E(un)1/p + E(u)1/p = 2,

i.e., limn→∞ E(u+ un) = 2p. By (Cla)p, if p ≤ 2, then

lim
n→∞

E(u− un)1/(p−1) ≤ 2
(
E(u) + lim

n→∞
E(un)

)1/(p−1)

− lim
n→∞

E(u+ un)1/(p−1)

= 2 · 21/(p−1) − 2p/(p−1) = 0.

If p ≥ 2, then

lim
n→∞

E(u− un) ≤ 2p−1
(
E(u) + lim

n→∞
E(un)

)
− lim

n→∞
E(u+ un) = 2p−1 · 2− 2p = 0.

Since un converges in Lp(X,m) to u as n→∞, we obtain the desired convergence.

The following convergences in E are also useful. These are analogues of [FOT, Theorem
1.4.2-(iii), Theorem 1.4.2-(v)].

Corollary 3.17. Assume that (E ,F) satisfies (Cla)p and that (F , ‖ · ‖E,1) is a Banach
space. In addition, we assume the following property: if ϕ ∈ C(R) satisfies ϕ(0) = 0
and |ϕ(t)− ϕ(s)| ≤ |t− s| for any s, t ∈ R, then ϕ(u) ∈ F and E(ϕ(u)) ≤ E(u) for any
u ∈ F .
(a) Let {ϕn}n∈N ⊆ C(R) satisfy limn→∞ ϕn(t) = t, ϕn(0) = 0 and |ϕn(t)− ϕn(s)| ≤

|t− s| for any n ∈ N, s, t ∈ R. Then {ϕn(u)}n∈N ⊆ F and limn→∞ E(u−ϕn(u)) = 0
for any u ∈ F .

(b) Let u ∈ F , {un}n∈N ⊆ F and ϕ ∈ C(R) satisfy limn→∞ ‖u− un‖E,1 = 0, ϕ(0) = 0,
|ϕ(t)− ϕ(s)| ≤ |t− s| for any s, t ∈ R and ϕ(u) = u. Then {ϕ(un)}n∈N ⊆ F and
limn→∞ E(u− ϕ(un)) = 0.

Remark 3.18. Let us make the same remark as [KS23+, Remark 2.21] for convenience.
Typical choices of {ϕn}n∈N ⊆ C(R) in Corollary 3.17-(a) are ϕn(t) = (−n) ∨ (t ∧ n) and
ϕn(t) = t − (− 1

n
) ∨ (t ∧ 1

n
). A typical use of Corollary 3.17-(b) is to obtain a sequence

of I-valued functions converging to u in (F , ‖ · ‖E,1) when I ⊆ R is a closed interval and
u ∈ F is I-valued, by considering ϕ ∈ C(R) given by ϕ(t) := (inf I) ∨ (t ∧ sup I).
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Proof. (a): We have ϕn(u) ∈ F by the assumption on (E ,F). It is immediate from the
dominated convergence theorem that ϕn(u) converges in Lp(X,m) to u as n → ∞. By
E(ϕn(u)) ≤ E(u) and Proposition 3.16-(a),

E(u) ≤ lim inf
n→∞

E(un) ≤ lim sup
n→∞

E(un) ≤ E(u),

which implies limn→∞ E(un) = E(u). We have limn→∞ E(u − ϕn(u)) = 0 by Proposition
3.16-(b).

(b): By the dominated convergence theorem, ϕ(un) converges in Lp(X,m) to ϕ(u) = u
as n→∞. We have ϕ(un) ∈ F by the assumption on (E ,F). By E(ϕ(un)) ≤ E(un) and
Proposition 3.16-(a),

E(u) = E(ϕ(u)) ≤ lim inf
n→∞

E(ϕ(un)) ≤ lim sup
n→∞

E(ϕ(un)) ≤ lim
n→∞

E(un) = E(u),

which implies limn→∞ E(ϕ(un)) = E(u). We have limn→∞ E(u−ϕ(un)) = 0 by Proposition
3.16-(b).

3.3 Fréchet derivative as a homeomorphism to the dual space

In many practical situations, the quotient normed space F/E−1(0) (equipped with the
norm E1/p) becomes a Banach space (see Subsection 6.2). To state some basic properties
of this Banach space, we recall the notion of uniformly smoothness.

Definition 3.19 (Uniformly smooth normed space). Let (X , ‖ · ‖) be a normed space.
The normed space X is said to be uniformly smooth if and only if it satisfies

lim
τ→0

τ−1 sup

{
‖u+ v‖+ ‖u− v‖

2
− 1

∣∣∣∣ ‖u‖ = 1, ‖v‖ = τ

}
= 0.

The following duality between uniform convexity and uniform smoothness is well
known. (See also [BCL94, Lemma 5] for a quantitative version of this theorem.)

Theorem 3.20 (Day’s duality theorem; see, e.g., [LT, Proposition 1.e.2]). Let X be a
Banach space. Then X is uniformly convex if and only if its dual space X ∗ is uniformly
smooth.

We also recall the notion of duality mapping and its fundamental results in the fol-
lowing proposition (see, e.g., [Miya, Definition 2.1, Lemmas 2.1 and 2.2]).

Proposition 3.21 (Duality mapping). Let X be a Banach space and let X ∗ be the dual
space of X . Let ‖ · ‖W be the norm of W for each W ∈ {X ,X ∗}. For (x, f) ∈ X × X ∗,
we set 〈x, f〉 := f(x). For x ∈ X , define F : X → 2X

∗ by

F (x) :=
{
f ∈ X ∗

∣∣ 〈x, f〉 = ‖x‖2
X = ‖f‖2

X ∗
}
,

which is called the duality mapping of X . Then the following properties hold:
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(a) F (x) 6= ∅ for any x ∈ X .
(b) If X is reflexive, then

⋃
x∈X F (x) = X ∗.

(c) If X is strictly convex, i.e., ‖λx+ (1− λ)y‖X < λ ‖x‖X + (1 − λ) ‖y‖X for any
λ ∈ (0, 1) and any x, y ∈ X \ {0}, then #(F (x)) = 1 for any x ∈ X .

Now we can state a result on the dual space of F/E−1(0).

Theorem 3.22. Assume that (E ,F) satisfies (Cla)p and that F/E−1(0) is a Banach space.

(a) The Banach space F/E−1(0) is uniformly convex and uniformly smooth. In particu-
lar, it is reflexive and its dual Banach spaces

(
F/E−1(0)

)∗ is also uniformly convex
and uniformly smooth.

(b) The map f 7→ E(f ; ·) is a homeomorphism from F/E−1(0) to
(
F/E−1(0)

)∗. In
particular,

(
F/E−1(0)

)∗
= {E(f ; · ) | f ∈ F}.

Proof. For simplicity, set X := F/E−1(0) and ‖u‖X := E(u)1/p for any u ∈ X .
(a): The uniform convexity of X is immediate from Proposition 3.4, whence X is re-

flexive by the Milman–Pettis theorem. Also, we easily see from (3.18) that X is uniformly
smooth. The same properties for X ∗ follow from Theorem 3.20.

(b): Let u ∈ X and define A(u) := E(u)2/p−1E(u; · ) ∈ X ∗. (We define A(u) = 0 if
E(u) = 0.) We will show that A : X → X ∗ is a bijection. By (3.11), we have

‖A(u)‖X ∗ = E(u)2/p−1 ‖E(u; · )‖X ∗ = E(u)2/p−1+(p−1)/p = ‖u‖X .

Then 〈u,A(u)〉 = E(u)2/p = ‖u‖2
X = ‖A(u)‖2

X ∗ and hence

A(u) ∈ {f ∈ X ∗ | 〈u, f〉 = ‖u‖2
X = ‖f‖2

X ∗} = F (u),

where F : X → X ∗ is the duality mapping. We see from Proposition 3.21 and (a) that
A : X → X ∗ is a surjection. Note that the mapping F−1 : X ∗ → X ∗∗ = X defined by
F−1(f) = {u ∈ X | 〈u, f〉 = ‖u‖2

X = ‖f‖2
X ∗} for f ∈ X ∗ is the duality mapping from

X ∗ to X . By Proposition 3.21 and (a) again, we conclude that A is injective. The map
f 7→ E(f ; ·) and its inverse are continuous by (3.11) and by (3.21) respectively.

We also present a similar statement for (F , ‖ · ‖E,α).

Corollary 3.23. Let α ∈ (0,∞). Assume that F ⊆ Lp(X,m), that (E ,F) satisfies (Cla)p
and that Xα := (F , ‖ · ‖E,α) is a Banach space.

(a) The Banach space Xα is uniformly convex and uniformly smooth. In particular, it is
reflexive and its dual space X ∗α is also uniformly convex and uniformly smooth.

(b) For each f ∈ F , define a linear map Ψf
p,α : F → R by

Ψf
p,α(g) := E(f ; g) + α

ˆ
X

sgn(f) |f |p−1 g dm, g ∈ F . (3.26)

Then the map f 7→ Ψf
p,α is a homeomorphism from Xα to X ∗α. In particular, X ∗α =

{Ψf
p,α | f ∈ F}.
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Proof. We define Eα : F × F → R by

Eα(u; v) := E(u; v) + α

ˆ
X

sgn(u) |u|p−1 v dm, u, v ∈ F .

and set Eα(u) := Eα(u;u) = ‖u‖pE,α. Then (Eα,F) is a p-energy form on (X,m) and it
satisfies (Cla)p by Proposition 3.12. We have the desired result by applying Theorem 3.22
for (Eα,F).

3.4 Regularity and strong locality

In this subsection, in addition to the setting specified at the beginning of this section,
similar to [FOT], we make the following topological assumptions6:

X is a locally compact metrizable space. (3.27)
m is a positive Radon measure on X with full topological support. (3.28)

Note that (3.28) is equivalent to saying that m(O) > 0 for any non-empty open subset
O of X. Under this setting, the map C(X) to L0(X,B,m), where B = B(X), defined
by taking u ∈ C(X) to its m-equivalence class is injective and hence gives a canonical
embedding of C(X) into L0(X,m) as a subalgebra, and we will consider C(X) as a subset
of L0(X,m) through this embedding without further notice.

The following definitions are analogues of the notions in the theory of regular sym-
metric Dirichlet forms (see, e.g., [FOT, p. 6]).

Definition 3.24 (Core). Let C be a subset of F ∩ Cc(X).

(1) C is said to be a core of (E ,F) if and only if C is dense both in (F , ‖ · ‖E,,1) and in
(Cc(X), ‖ · ‖sup).

(2) A core C is said to be special if and only if C is a linear subspace of F ∩Cc(X), C is
a dense subalgebra of (Cc(X), ‖ · ‖sup), and for any compact subset K of X and any
relatively compact open subset G of X with K ⊆ G, there exists ϕ ∈ C such that
ϕ ≥ 0, ϕ = 1 on K and ϕ = 0 on X \G.

Definition 3.25 (Regularity). We say that (E ,F) is regular if and only if there exists a
core C of (E ,F).

We can show the following result on regular p-energy forms, which is an analogue of
[FOT, Exercise 1.4.1].

Proposition 3.26. Suppose that (E ,F) is regular and that F satisfies the following prop-
erties:

u+ ∧ 1 ∈ F for any u ∈ F , (3.29)

uv ∈ F for any uv ∈ F ∩ Cb(X). (3.30)

Then F ∩ Cc(X) is a special core of (E ,F).
6We do not assume that X is separable unlike [FOT, (1,1,7)].
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Proof. It is clear that F ∩Cc(X) is a core of (E ,F). By (3.30), F ∩Cc(X) is a subalgebra
of Cc(X). Let K be a compact subset of X and G be a relatively compact open subset
G of X with K ⊆ G. By Urysohn’s lemma, there exists ϕ0 ∈ Cc(X) such that ϕ0 = 2 on
K and ϕ0 = 0 on X \ G. Let ε ∈ (0, 1/2). Fix ψ ∈ F ∩ Cc(X) satisfying ψ = 1 on GX ,
which exists by the regularity of (E ,F), the locally compactness of X and (3.29). Since
F ∩Cc(X) is a core of (E ,F), there exists ϕ̃ ∈ F ∩Cc(X) such that ‖ϕ0 − ϕ̃‖sup < ε. Now

we define ϕ ∈ Cc(X) by ϕ := (ϕ̃− εψ)+ ∧ 1. (Note that suppX [ϕ] is compact since GX is
compact.) Then ϕ ∈ F ∩ Cc(X) by (3.29). Clearly, ϕ = 1 on K and ϕ = 0 on X \G, so
the proof is completed.

The proposition above ensures when there exist cutoff functions in F . We also intro-
duce the following condition stating the existence of cutoff functions in a weaker sense.

Definition 3.27. We say that a p-energy form (E ,F) on (X,m) satisfies the property
(CF)m7 if and only if, for any compact subset K of X and any open subset U of X with
K ⊆ U , there exists ϕ ∈ F∩L∞(X,m) such that ϕ(x) = 1 for m-a.e. x ∈ K and ϕ(x) = 0
for m-a.e. x ∈ X \ U .

Next we introduce two formulations of the notion of strong locality for (E ,F).

Definition 3.28 (Strong locality). (1) We say that (E ,F) has the strongly local property
(SL1) if and only if, for any f1, f2, g ∈ F with either suppm[f1−α1] or suppm[f2−α2]
compact and suppm[f1 − α1] ∩ suppm[f2 − α2] = ∅ for some α1, α2 ∈ E−1(0),

E(f1 + f2 + g) + E(g) = E(f1 + g) + E(f2 + g). (3.31)

(2) Suppose that (E ,F) satisfies (Cla)p. We say that (E ,F) has the strongly local property
(SL2) if and only if, for any f1, f2, g ∈ F with either suppm[f1−f2−α] or suppm[g−β]
compact and suppm[f1 − f2 − α] ∩ suppm[g − β] = ∅ for some α, β ∈ E−1(0),

E(f1; g) = E(f2; g). (3.32)

In the following propositions, we collect basic results about (SL1) and (SL2).

Proposition 3.29. Assume that (E ,F) satisfies (Cla)p.

(a) If (E ,F) satisfies (SL1), then for any f1, f2, g ∈ F with either suppm[f1 − α1] or
suppm[f2 − α2] compact and suppm[f1 − α1] ∩ suppm[f2 − α2] = ∅ for some α1, α2 ∈
E−1(0),

E(f1 + f2; g) = E(f1; g) + E(f2; g). (3.33)

(b) If (E ,F) satisfies (SL2), then for any f1, f2, g ∈ F with either suppm[f1 − f2 − α]
or suppm[g − β] compact and suppm[f1 − f2 − α] ∩ suppm[g − β] = ∅ for some
α, β ∈ E−1(0),

E(g; f1) = E(g; f2). (3.34)
7We can consider several versions of this condition such as a version requiring ϕ ∈ F ∩ C(K) in

addition. Note that (CF)m holds if (E ,F) admits a special core.



Contraction properties and differentiability of p-energy forms 37

Proof. (a): Note that (3.31) with g = 0 implies that E(f1 + f2) = E(f1) + E(f2). For any
t ∈ (0,∞), we have from (3.31) that

E(f1 + f2 + tg)− E(f1 + f2)

t
+ tp−1E(g) =

E(f1 + tg)− E(f1)

t
+
E(f2 + tg)− E(f2)

t
.

We obtain (3.33) by letting t ↓ 0 in this equality.
(b): Since E(g; · ) is linear by Theorem 3.6, it suffices to prove E(g; f1−f2) = 0, which

follows from (3.32) with g, 0, f1 − f2 in place of f1, f2, g.

Proposition 3.30. Assume that (E ,F) satisfies (Cla)p.

(a) If (E ,F) satisfies (SL1), then (E ,F) also satisfies (SL2).
(b) Assume that (E ,F) satisfies (SL2) and the following three conditions:

uv ∈ F ∩ L∞(X,m) for any u, v ∈ F ∩ L∞(X,m). (3.35)
For any u ∈ F , un := (−n) ∨ u ∧ n ∈ F and lim

n→∞
E(u− un) = 0. (3.36)

(E ,F) satisfies (CF)m. (3.37)

Then (E ,F) satisfies (SL1).

Proof. (a): Let f1, f2, g ∈ F and α1, α2 ∈ E−1(0) with either suppm[f1 − f2 − α] or
suppm[g − β] compact and suppm[f1 − f2 − α] ∩ suppm[g − β] = ∅. Let t ∈ (0, 1). By
(3.31) with t(f1 − f2), g, 0 in place of f1, f2, g, we have

E(t(f1 − f2) + g) = E(t(f1 − f2)) + E(g),

whence
lim
t↓0

E(g + t(f1 − f2))− E(g)

t
= lim

t↓0
tp−1E(f1 − f2) = 0.

Since E(g; · ) is linear by Theorem 3.6, we get E(g; f1) = E(g; f2). Similarly, by (3.31)
with f2 − f1, tg, f1 in place of f1, f2, g,

E
(
(f2 − f1) + tg + f1

)
+ E(f1) = E

(
(f2 − f1) + f1

)
+ E(tg + f1),

which implies E(f1; g) = E(f2; g).
(b): We first consider the case g ∈ F ∩L∞(X,m). Let f1, f2 ∈ F and α1, α2 ∈ E−1(0)

with either suppm[f1−α1] or suppm[f2−α2] compact and suppm[f1−α1]∩suppm[f2−α2] =
∅. We assume that suppm[f1 − α1] is compact since both cases are similar. Let U be an
open neighborhood of suppm[f1 − α1] such that U ⊆ X \ suppm[f2 − α2]. By (3.37) and
the locally compactness of K, there exists ϕ ∈ F ∈ L∞(X,m) such that ϕ(x) = 1 for
m-a.e. x ∈ U , suppm[ϕ] is compact and suppm[ϕ]∩ suppm[f2−α2] = ∅. Note that ϕg ∈ F
by (3.35). Then we see from (SL2) that

E(f1 + f2 + g) + E(g) = E(f1 + f2 + g; f1) + E(f1 + f2 + g; f2) + E(f1 + f2 + g; g) + E(g)

(SL2)
= E(f1 + g; f1) + E(f2 + g; f2) + E(f1 + f2 + g; g) + E(g)
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= E(f1 + g; f1) + E(f2 + g; f2)

+ E(f1 + f2 + g; (1− ϕ)g) + E(f1 + f2 + g;ϕg) + E(g). (3.38)

Since suppm[ϕg] and suppm[f1 − α1] are compact, suppm[f1 − α1] ∩ suppm[(1− ϕ)g] = ∅
and suppm[f2 − α2] ∩ suppm[ϕg] = ∅, we have the following equalities by (SL2):

E(f1 + f2 + g; (1− ϕ)g) = E(f2 + g; (1− ϕ)g).

E(f1 + f2 + g;ϕg) = E(f1 + g;ϕg).

E(g) = E(g; (1− ϕ)g) + E(g;ϕg) = E(f1 + g; (1− ϕ)g) + E(f2 + g;ϕg).

By combining these equalities and (3.38), we obtain

E(f1 + f2 + g) + E(g) = E(f1 + g; f1) + E(f2 + g; f2) + E(f1 + g; g) + E(f2 + g; g)

= E(f1 + g) + E(f2 + g),

which proves (SL1) in the case g ∈ F ∩ L∞(X,m).
Lastly, we prove (SL1) without assuming the boundedness of g. Let g ∈ F and set

gn := (−n) ∨ (g ∧ n), n ∈ N. Then gn ∈ F by (3.36), and the statement proved in the
previous paragraph yields that

E(f1 + f2 + gn) + E(gn) = E(f1 + gn) + E(f2 + gn)

for any n ∈ N. Thanks to (3.36) and the triangle inequality for E1/p, we obtain the desired
equality (3.32) by letting n→∞ in the equality above.

4 p-Energy measures and their basic properties

In this section, we discuss p-energy measures dominated by a p-energy form. Similar to
the case of p-energy forms, we will introduce two-variable versions of p-energy measures
and prove their basic properties.

As in the previous section, in this section, we fix p ∈ (1,∞), a measure space (X,B,m)
and a p-energy form (E ,F) on (X,m) with F ⊆ L0(X,m).

4.1 p-Energy measures and p-Clarkson’s inequalities

In this subsection, we also assume the existence of a family of finite measures {Γ〈f〉}f∈F
on (X,B) whose definition is as follows.

Definition 4.1 (p-Energy measures dominated by a p-energy form). Let {Γ〈f〉}f∈F be a
family of measures on (X,B). We say that {Γ〈f〉}f∈F are p-energy measures dominated
by (E ,F) if and only if the following hold:

(EM1)p Γ〈f〉(X) ≤ E(f) for any f ∈ F .
(EM2)p Γ〈 · 〉(A)1/p is a seminorm on F for any A ∈ B.
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We then see that (Γ〈 · 〉(A),F) is a p-energy form on (X,m) for each A ∈ B by (EM2)p.
We say that {Γ〈f〉}f∈F satisfies p-Clarkson’s inequality, (Cla)p for short, if and only

if (Γ〈 · 〉(A),F) satisfies (Cla)p for any A ∈ B, i.e., for any f, g ∈ F ,{
Γ〈f + g〉(A)

1
p−1 + Γ〈f − g〉(A)

1
p−1 ≤ 2

(
Γ〈f〉(A) + Γ〈g〉(A)

) 1
p−1 if p ∈ (1, 2],

Γ〈f + g〉(A) + Γ〈f − g〉(A) ≤ 2
(
Γ〈f〉(A)

1
p−1 + Γ〈g〉(A)

1
p−1
)p−1 if p ∈ (2,∞).

(Cla)p

We also say that {Γ〈f〉}f∈F satisfies the generalized p-contraction property, (GC)p for
short, if and only if (Γ〈 · 〉(A),F) satisfies (GC)p for any A ∈ B.

Example 4.2. (1) Consider the same setting as in Example 3.10-(1). Then the measures

Γ〈f〉(A) :=

ˆ
A

|∇f(x)|p dx for f ∈ W 1,p(Ω) and A ∈ B(RD) with A ⊆ Ω,

are easily seen to be p-energy measures dominated by E(f) =
´

Ω
|∇f(x)|p dx sat-

isfying (EM1)p and (EM2)p. Similar to Example 3.10-(1), one can show (GC)p for
{Γ〈f〉}f∈W 1,p(Ω) by following an argument in the proof of Theorem A.19. Recall that
E(f ; g) =

´
Ω
|∇f(x)|p−2 〈∇f(x),∇g(x)〉RD dx. Then we can see that, by the Leibniz

and chain rules for ∇, for any u, ϕ ∈ W 1,p(Ω) ∩ C1(Ω),

ˆ
Ω

ϕdΓ〈u〉 = E(u;uϕ)−
(
p− 1

p

)p−1

E
(
|u|

p
p−1 ;ϕ

)
. (4.1)

(2) Although p-energies are constructed on compact metric spaces [Kig23, MS23+], we do
not know how to construct the associated p-energy measures because of the lack of the
density “|∇u(x)|p”. (As described in (3) below, the theory of Dirichlet forms presents
2-energy measures {µ〈u〉}u∈F2 associated with a given nice Dirichlet form (E2,F2).
On a large class of self-similar sets, it is known that µ〈u〉 is mutually singular with
respect to the natural Hausdorff measure of the underlying fractal [Hin05, KM20].)
In the case of self-similar sets with suitable assumptions, self-similar p-energy forms
are constructed in [CGQ22, Kig23, MS23+, Shi24], and we can introduce p-energy
measures satisfying (EM1)p, (EM2)p and (GC)p by using the self-similarity of p-energy
forms. See Section 5 for details.
In [KS.a], under suitable assumptions, the authors construct a good p-energy form
EKS
p , which is called a Korevaar–Shoen p-energy form, on a locally compact separable

metric space (X, d) equipped with a σ-finite Borel measure m with full topological
support. As an advantage of EKS

p , the right-hand side of (4.1) with EKS
p in place of E

can be extended to a bounded positive linear functional in ϕ ∈ Cc(X) and the p-energy
measure ΓKS

p 〈u〉 associated with EKS
p is constructed as the unique Radon measure

corresponding to this functional through the Riesz–Markov–Kakutani representation
theorem. A notable fact is that this approach does not rely on the self-similarity
of the underlying space or of the p-energy form. In [KS.a, Sections 3 and 4], basic
properties for ΓKS

p 〈 · 〉 like (EM1)p, (EM2)p and (GC)p are also shown.
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(3) The case p = 2 is very special thanks to the theory of symmetric Dirichlet forms. (See
[FOT, Section 3.2] for details on 2-energy measures associated with regular symmetric
Dirichlet forms.) If (E , D(E )) is a regular strongly local Dirichlet form on L2(X,m),
where X is a locally compact separable metrizable space and m is a Radon measure
on X with full topological support (see [FOT, (1.1.7)]), then E (u) := E (u, u) is a
2-energy form on (X,m) and it satisfies (GC)2 (see Proposition A.2). In addition,
the Dirichlet form theory provides us the associated 2-energy measures {µ〈u〉}u∈D(E )

through the following formula8:ˆ
X

ϕdµ〈u〉 = E (u, uϕ)− 1

2
E (u2, ϕ) for any ϕ ∈ D(E ) ∩ Cc(X). (4.2)

(Recall (4.1).) We easily see that {µ〈u〉}u∈D(E ) satisfies (EM1)2 and the parallelogram
law, which implies (EM2)2 and (Cla)2. We can also verify (GC)2 for {µ〈u〉}u∈D(E )

(see Proposition A.14). In the framework of [Kuw24] (see also Definition A.17), we
can introduce p-energy measures satisfying (EM1)p, (EM2)p and (GC)p by setting
Γ〈u〉(A) :=

´
A

Γµ(u)
p
2 dµ, where µ is a E -dominant measure; in particular µ〈u〉 � µ,

and Γµ :=
dµ〈u〉
dµ

. See Theorem A.19 for a proof of (GC)p for these p-energy measures.
(4) Let gu be the minimal p-weak upper gradient of u ∈ N1,p(X,m), where N1,p(X,m) :=
{u ∈ Lp(X,m) | gu ∈ Lp(X,m)} is the Newton-Sobolev space (see [HKST, Section
7.1]). Then Γ〈u〉(A) :=

´
A
gpu dm defines p-energy measures satisfying (EM1)p and

(EM2)p. Indeed, we have (EM2)p by [HKST, (6.3.18)]. However, (Cla)p for these
measures is unclear because of the lack of the linearity of u 7→ gu.

The same argument as in Proposition 3.5 yields the following result.

Proposition 4.3. Assume that {Γ〈f〉}f∈F satisfies (Cla)p. Then, for any f, g ∈ F and
any A ∈ B,

Γ〈f + g〉(A) + Γ〈f − g〉(A)− 2Γ〈f〉(A)

≤

2Γ〈g〉(A) if p ∈ (1, 2],

2(p− 1)
[
Γ〈f〉(A)

1
p−1 + Γ〈g〉(A)

1
p−1

]p−2

Γ〈g〉(A)
1
p−1 if p ∈ (2,∞).

(4.3)

In particular, R 3 t 7→ Γ〈f + tg〉(A) ∈ [0,∞) is differentiable and for any s ∈ R,

lim
δ↓0

sup
A∈B,g∈F ;
E(g)≤1

∣∣∣∣Γ〈f + (s+ δ)g〉(A)− Γ〈f + sg〉(A)

δ
− d

dt
Γ〈f + tg〉(A)

∣∣∣∣
t=s

∣∣∣∣ = 0. (4.4)

Definition 4.4. Assume that {Γ〈f〉}f∈F satisfies (Cla)p. Let f, g ∈ F . Define
Γ〈f ; g〉 : B → R by

Γ〈f ; g〉(A) :=
1

p

d

dt
Γ〈f + tg〉(A)

∣∣∣∣
t=0

for A ∈ B(X), (4.5)

which exists by Proposition 4.3.
8Precisely, the formula (4.2) is valid for u ∈ D(E )∩L∞(X,m). We can extend it to any u ∈ D(E ) by

considering the limit of (u ∧ n) ∨ (−n) as n→∞
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The following properties of Γ〈f ; g〉 can be shown in a similar way as Theorem 3.6.

Theorem 4.5. Assume that {Γ〈f〉}f∈F satisfies (Cla)p. Let A ∈ B. Then Γ〈f ; · 〉(A) is
the Fréchet derivative of Γ〈 · 〉(A) : F/E−1(0) → [0,∞) at f ∈ F . In particular, the map
Γ〈f ; · 〉(A) : F → R is linear, Γ〈f ; f〉(A) = Γ〈f〉(A) and Γ〈f ;h〉(A) = 0 if h ∈ F satisfies
Γ〈h〉(A) = 0. Moreover, for any f, f1, f2, g ∈ F and a ∈ R, the following hold:

R 3 t 7→ Γ〈f + tg; g〉(A) ∈ R is strictly increasing if and only if Γ〈g〉(A) > 0. (4.6)

Γ〈af ; g〉 = sgn(a) |a|p−1 Γ〈f ; g〉, Γ〈f + h; g〉(A) = Γ〈f ; g〉(A) if Γ〈h〉(A) = 0. (4.7)

|Γ〈f ; g〉(A)| ≤ Γ〈f〉(A)(p−1)/pΓ〈g〉(A)1/p. (4.8)

|Γ〈f1; g〉(A)− Γ〈f2; g〉(A)| ≤ Cp
(
Γ〈f1〉(A) ∨ Γ〈f2〉(A)

) p−1−αp
p Γ〈f1 − f2〉(A)

αp
p Γ〈g〉(A)

1
p ,

(4.9)

where αp, Cp are the same as in Theorem 3.6.

The set function Γ〈f ; g〉 is a signed measure as shown in the following proposition.

Proposition 4.6. Assume that {Γ〈f〉}f∈F satisfies (Cla)p. For any f, g ∈ F , the set
function Γ〈f ; g〉 is a signed measure on (X,B). Moreover, for any B-measurable function
ϕ : X → [0,∞) with ‖ϕ‖sup < ∞,

´
X
ϕdΓ〈 · 〉 : F/E−1(0) → R is Fréchet differentiable

and has the same properties as those of Γ〈 · 〉 in Theorem 4.5 with “Γ〈g〉(A) > 0” in (4.6)
replaced by “

´
X
ϕdΓ〈g〉 > 0”, and for any f, g ∈ F ,

ˆ
X

ϕdΓ〈f ; g〉 =
1

p

d

dt

ˆ
X

ϕdΓ〈f + tg〉
∣∣∣∣
t=0

. (4.10)

Proof. The equalities Γ〈f ; g〉(∅) = 0 and |Γ〈f ; g〉(X)| = |E(f ; g)| < ∞ are clear from
the definition. We will show the countable additivity of Γ〈f ; g〉 . The finite additivity
of Γ〈f ; g〉 is obvious. Let {An}n∈N ⊆ B be a family of disjoint measurable sets. Set
BN :=

⋃∞
n=N+1 An for each N ∈ N. Then we see that∣∣∣∣∣Γ〈f ; g〉

(⋃
n∈N

An

)
−

N∑
n=1

Γ〈f ; g〉(An)

∣∣∣∣∣ = |Γ〈f ; g〉(BN)|

(4.8)
≤ Γ〈f〉(BN)(p−1)/pΓ〈g〉(BN)1/p −−−→

N→∞
0,

which shows that Γ〈f ; g〉 is a signed measure on (X,B).
The other properties except for (4.10) can be proved by following the arguments in the

proof of Theorem 3.6, so we shall prove (4.10). By the finite additivity of
´
X
ϕdΓ〈f ; g〉 and

1
p

d
dt

´
X
ϕdΓ〈f + tg〉

∣∣
t=0

in ϕ, we can assume that ϕ ≥ 0. Let sn =
∑ln

k=1 ak1Ak with ak ≥ 0
and Ak ∈ B be a sequence of simple functions so that sn ↑ ϕ m-a.e. as n→∞. Then we
immediately have (4.10) with ϕ = sn. Since limn→∞

´
X
sn dΓ〈f ; g〉 =

´
X
ϕdΓ〈f ; g〉 by the

dominated convergence theorem, it suffices to prove

lim
n→∞

d

dt

ˆ
X

sn dΓ〈f + tg〉
∣∣∣∣
t=0

=
d

dt

ˆ
X

ϕdΓ〈f + tg〉
∣∣∣∣
t=0

. (4.11)
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Since (3.15) with
´
X
ϕdΓ〈 · 〉 in place of E holds by the fact that (

´
X
ϕdΓ〈 · 〉,F) is a

p-energy form on (X,m), we know that for any B-measurable function ψ : X → [0,∞)
with ‖ψ‖sup <∞∣∣∣∣ ddt

ˆ
X

ψ dΓ〈f + tg〉
∣∣∣∣
t=0

∣∣∣∣ ≤ (ˆ
X

ψ dΓ〈f〉
)(p−1)/p(ˆ

X

ψ dΓ〈g〉
)1/p

. (4.12)

By combining (4.12) with ψ = ϕ− sn and the dominated convergence theorem, we obtain
(4.11).

Remark 4.7. As mentioned in the introduction, a signed measure corresponding to
Γ〈f ; g〉 is discussed in [BV05, Section 5] under some non-trivial assumptions, which have
not been verified for fractals like the Sierpiński gasket and the Sierpiński carpet in the
literature.

The following proposition gives a Hölder-type estimate with respect to the total vari-
ation measure |Γ〈f ; g〉|.
Proposition 4.8. Assume that {Γ〈f〉}f∈F satisfies (Cla)p. For any f, g ∈ F and any
B-measurable functions ϕ, ψ : X → [0,∞],

ˆ
X

ϕψ d |Γ〈f ; g〉| ≤
(ˆ

X

ϕ
p
p−1 dΓ〈f〉

)(p−1)/p(ˆ
X

ψp dΓ〈g〉
)1/p

. (4.13)

Proof. Let X = P t N be the Hahn decomposition with respect to Γ〈f ; g〉 such that
Γ〈f ; g〉(A) ≥ 0 for any Borel set A ⊆ P and Γ〈f ; g〉(A) ≤ 0 for any Borel set A ⊆ N .
Then the total variation measure |Γ〈f ; g〉| is given by

|Γ〈f ; g〉| (A) = Γ〈f ; g〉(P ∩ A)− Γ〈f ; g〉(N ∩ A) for any A ∈ B.

Therefore, by (4.8),

|Γ〈f ; g〉| (A) ≤ Γ〈f〉(P ∩ A)(p−1)/pΓ〈g〉(P ∩ A)1/p + Γ〈f〉(N ∩ A)(p−1)/pΓ〈g〉(N ∩ A)1/p

≤
(
Γ〈f〉(P ∩ A) + Γ〈f〉(N ∩ A)

)(p−1)/p(
Γ〈g〉(P ∩ A) + Γ〈g〉(N ∩ A)

)1/p

= Γ〈f〉(A)(p−1)/pΓ〈g〉(A)1/p, (4.14)

where we used Hölder’s inequality in the third line.
Now we prove (4.13). First, we consider the case that ϕ and ψ are non-negative simple

functions, that is,

ϕ =

N1∑
k=1

ãk1Ak , ψ =

N2∑
k=1

b̃k1Bk , where ãk, b̃k ∈ [0,∞) and Ak, Bk ∈ B.

Then we can assume that there exist N ∈ N, {ak}Nk=1, {bk}Nk=1 ⊆ [0,∞) and a disjoint
family of measurable sets {Ek}Nk=1 ⊆ B such that ϕ =

∑N
k=1 ak1Ek and ψ =

∑N
k=1 bk1Ek .

Since uv =
∑N

k=1 akbk1Ek , a combination of (4.14) and Hölder’s inequality yields
ˆ
X

ϕψ d |Γ〈f ; g〉| =
N∑
k=1

akbk |Γ〈f ; g〉(Ek)|
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≤

(
N∑
k=1

a
p/(p−1)
k Γ〈f〉(Ek)

)(p−1)/p( N∑
k=1

bpkΓ〈g〉(Ek)

)1/p

.

Hence, for any non-negative simple functions u and v, we have

ˆ
X

ϕψ d |Γ〈f ; g〉| ≤
(ˆ

X

ϕp/(p−1) dΓ〈f〉
)(p−1)/p(ˆ

X

ψp dΓ〈g〉
)1/p

. (4.15)

Next, suppose that u and v are non-negative B-measurable functions and let {sn,w}n≥1 be
sequences of non-negative simple functions such that sn,w ↑ w m-a.e. as n→∞ for each
w ∈ {ϕ, ψ}. Then, by (4.15), for any n ∈ N,

ˆ
X

sn,usn,v d |Γ〈f ; g〉| ≤
(ˆ

X

sp/(p−1)
n,u dΓ〈f〉

)(p−1)/p(ˆ
X

spn,v dΓ〈g〉
)1/p

.

It is clear that {sn,usn,v}n≥1 is a sequence of non-negative simple functions and sn,usn,v ↑
ϕψ m-a.e. as n→∞. Hence letting n→∞ in the inequality above yields (4.13).

In the following proposition, we show that integrals with respect to p-energy measures
satisfying (GC)p are p-energy forms on (X,m) satisfying (GC)p.

Proposition 4.9. Assume that {Γ〈f〉}f∈F satisfies (GC)p. Then for any B-measurable
function ϕ : X → [0,∞) with ‖ϕ‖sup <∞, (

´
X
ϕdΓ〈 · 〉,F) is a p-energy form on (X,m)

satisfying (GC)p.

Proof. Let n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞], u = (u1, . . . , un1) ∈ Fn1 and
T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfying (2.1). Similar to (2.20), by using the trian-
gle inequality for the `q2/p-norm and the reverse Minkowski inequality (Proposition 2.7)
for the `q1/p-norm, we see that for any non-negative simple function ϕ on (X,B),∥∥∥∥∥

((ˆ
X

ϕdΓ〈Tl(u)〉
)1/p

)n2

l=1

∥∥∥∥∥
`q2

≤

∥∥∥∥∥
((ˆ

X

ϕdΓ〈uk〉
)1/p

)n1

k=1

∥∥∥∥∥
`q1

. (4.16)

We can extend (4.16) to any B-measurable function ϕ : X → [0,∞] by the monotone
convergence theorem. The proof is completed.

The following Fatou type result is useful.

Proposition 4.10. Assume that F ⊆ Lp(X,m) and that F equipped with ‖ · ‖E,1 is a
Banach space. Let ϕ : X → [0,∞) be B-measurable and satisfy ‖ϕ‖sup <∞. If {un}n∈N ⊆
F converges weakly in F to u ∈ F , then

ˆ
X

ϕdΓ〈u〉 ≤ lim inf
n→∞

ˆ
X

ϕdΓ〈un〉. (4.17)
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Proof. Let {unk}k be a subsequence with limk→∞
´
X
ϕdΓ〈unk〉 = lim infn→∞

´
X
ϕdΓ〈un〉.

By Mazur’s lemma (Lemma 3.13), there exist N(l) ∈ N and {αl,k}N(l)
k=l ⊆ [0, 1] such that

N(l) > l,
∑N(l)

k=l αl,k = 1 and vl :=
∑N(l)

k=l αl,kuk converges to u in F as l → ∞. We see
from the triangle inequality for

(´
X
ϕdΓ〈 · 〉

)1/p that

(ˆ
X

ϕdΓ〈vl〉
)1/p

≤
N(l)∑
k=l

αl,k

(ˆ
X

ϕdΓ〈uk〉
)1/p

,

which implies (4.17) by letting l→∞.

4.2 Extensions of p-energy measures

Let D ⊆ F be a linear subspace, which is fixed in the rest of this section. In the rest of
this subsection, we assume that there exist p-energy measures {Γ〈f〉}f∈D dominated by
(E ,D). We will extend p-energy measures to Γ〈u〉 for u ∈ DF in the following proposition.

Proposition 4.11. For any u ∈ DF , there exists a unique measure Γ〈u〉 on (X,B) such
that for any {un}n∈N ⊆ D with limn→∞ E(u − un) = 0 and any B-measurable function
ϕ : X → [0,∞) with ‖ϕ‖sup <∞,

ˆ
X

ϕdΓ〈u〉 = lim
n→∞

ˆ
X

ϕdΓ〈un〉, (4.18)

and Γ〈u〉 further satisfies Γ〈u〉(X) ≤ E(u). Moreover, for each such ϕ, (
´
X
ϕdΓ〈 · 〉,DF)

is a p-energy form on (X,m).

Proof. By (EM2)p and the monotone convergence theorem, for any B-measurable function
ϕ : X → [0,∞] and any u, v ∈ D,(ˆ

X

ϕdΓ〈u+ v〉
)1/p

≤
(ˆ

X

ϕdΓ〈u〉
)1/p

+

(ˆ
X

ϕdΓ〈v〉
)1/p

. (4.19)

In the rest of this proof, let ϕ : X → [0,∞) be B- measurable and satisfy ‖ϕ‖sup < ∞.

Let u ∈ DF and {un}n∈N ⊆ D satisfy limn→∞ E(u−un) = 0. By (4.19),
{´

X
ϕdΓ〈un〉

}
n∈N

is a Cauchy sequence in [0,∞) and limn→∞
´
X
ϕdΓ〈un〉 =: Iu(ϕ) is independent of the

choice of {un}n. In addition, we have that∣∣∣∣∣
(ˆ

X

ϕdΓ〈un〉
)1/p

− Iu(ϕ)1/p

∣∣∣∣∣ ≤ ‖ϕ‖1/p
sup E(un − u)1/p, (4.20)

that 0 ≤ Iu(ϕ) ≤ ‖ϕ‖sup E(u) and that In is linear in the sense that Iu
(∑N

k=1 akϕk
)

=∑N
k=1 akIu(ϕk) for any N ∈ N, (ak)

N
k=1 ⊆ [0,∞) and B-measurable functions ϕk : X →

[0,∞) with ‖ϕk‖sup <∞, k ∈ {1, . . . , N}. Now we define Γ〈u〉(A) := Iu(1A) ∈ [0,∞) for
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A ∈ B, and show that Γ〈u〉 is a finite measure on (X,B). Clearly, Γ〈u〉 is finitely additive
and Γ〈u〉(X) ≤ E(u) < ∞. Let us show the countable additivity of Γ〈u〉. By (4.20),
for any ε > 0 there exists N0 ∈ N such that supA∈B(X)

∣∣Γ〈u〉(A)1/p − Γ〈un〉(A)1/p
∣∣ < ε

for any n ≥ N0. Let {Ak}k∈N ⊆ B be a sequence of disjoint measurable sets, and set
BN :=

⋃∞
k=N+1Ak for each N ∈ N. Then we see that for any N ∈ N and any n ≥ N0,∣∣∣∣∣Γ〈u〉

(⋃
k∈N

Ak

)
−

N∑
k=1

Γ〈u〉(Ak)

∣∣∣∣∣
1/p

= Γ〈u〉(BN)1/p ≤ ε+ Γ〈un〉(BN)1/p,

whence limN→∞

∣∣∣Γ〈u〉 (⋃k∈NAk
)
−
∑N

k=1 Γ〈u〉(Ak)
∣∣∣ = 0, proving the desired countable

additivity.

Note that Iu+v(ϕ)1/p ≤ Iu(ϕ)1/p + Iv(ϕ)1/p for any u, v ∈ DF by (4.19) and the
definition of I•(ϕ). This together with the monotone convergence theorem implies the
triangle inequality for

(´
X
ϕdΓ〈 · 〉

)1/p on DF ; in particular, (
´
X
ϕdΓ〈 · 〉,DF) is a p-

energy form on (X,m). Next we show (4.18). Let {un}n∈N ⊆ D be a sequence satisfying
limn→∞ E(u− un) = 0. By the triangle inequality for (

´
X
ϕdΓ〈 · 〉,DF),∣∣∣∣∣

(ˆ
X

ϕdΓ〈u〉
)1/p

−
(ˆ

X

ϕdΓ〈un〉
)1/p

∣∣∣∣∣ ≤
(ˆ

X

ϕdΓ〈u− un〉
)1/p

≤ ‖ϕ‖1/p
sup E(u− un)1/p,

which together with (4.20) implies (4.18); indeed,∣∣∣∣∣Iu(ϕ)1/p −
(ˆ

X

ϕdΓ〈u〉
)1/p

∣∣∣∣∣
≤

∣∣∣∣∣Iu(ϕ)1/p −
(ˆ

X

ϕdΓ〈un〉
)1/p

∣∣∣∣∣+

∣∣∣∣∣
(ˆ

X

ϕdΓ〈un〉
)1/p

−
(ˆ

X

ϕdΓ〈u〉
)1/p

∣∣∣∣∣
≤ 2 ‖ϕ‖1/p

sup E(u− un)1/p −−−→
n→∞

0.

If in addition {Γ〈f〉}f∈D satisfies (Cla)p, then we can easily see that {Γ〈f〉}
f∈DF also

satisfies (Cla)p. We record this fact in the following proposition.

Proposition 4.12. Assume that {Γ〈f〉}f∈D satisfies (Cla)p. Then {Γ〈f〉}
f∈DF satisfies

(Cla)p.

Proof. It is clear from (4.18) that {Γ〈f〉}
f∈DF satisfies (Cla)p.

If F ⊆ Lp(X,m) and F equipped with ‖ · ‖E,1 is a Banach space, then (GC)p is also
extended to p-energy measures {Γ〈f〉}

f∈DF .

Proposition 4.13. Assume that F ⊆ Lp(X,m), that F equipped with ‖ · ‖E,1 is a Banach
space and that both (E ,D) and {Γ〈f〉}f∈D satisfy (GC)p. Then, for any B-measurable
function ϕ : X → [0,∞) with ‖ϕ‖sup <∞, (

´
X
ϕdΓ〈 · 〉,DF) is a p-energy form on (X,m)

satisfying (GC)p.
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Proof. Let us fix n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 →
Rn2 satisfying (2.1). Let u = (u1, . . . , un1) ∈

(
DF
)n1 . For each k ∈ {1, . . . , n1},

fix {uk,n}n∈N ⊆ D so that limn→∞ ‖uk − uk,n‖F ,1 = 0. Set un := (u1,n, . . . , un1,n).
By (GC)p for (E ,D) and (2.1), we know that {Tl(un)}n is bounded in F and that
limn→∞ ‖Tl(un)− Tl(u)‖Lp(X,m) = 0. Since F is reflexive (see Proposition 3.12) and F
is continuously embedded in Lp(X,m), we see that Tl(u) ∈ DF and that there exists a
subsequence {Tl(unj)}j such that Tl(unj) weakly converges to Tl(u) in F as j → ∞ for
any l ∈ {1, . . . , n2}. If q2 <∞, then we see from Proposition 4.10 that∥∥∥∥∥

((ˆ
X

ϕdΓ〈Tl(u)〉
)1/p

)n2

l=1

∥∥∥∥∥
`q2

≤

(
n2∑
l=1

lim inf
j→∞

(ˆ
X

ϕdΓ〈Tl(unj)〉
)1/p

)1/q2

≤ lim inf
j→∞

(
n2∑
l=1

(ˆ
X

ϕdΓ〈Tl(unj)〉
)1/p

)1/q2

≤ lim inf
j→∞

(
n1∑
k=1

(ˆ
X

ϕdΓ〈uk,nj〉
)1/p

)1/q1

=

∥∥∥∥∥
((ˆ

X

ϕdΓ〈uk〉
)1/p

)n1

k=1

∥∥∥∥∥
`q1

.

The case q2 =∞ is similar, so (
´
X
ϕdΓ〈 · 〉,DF) satisfies (GC)p.

4.3 Chain rule and strong locality of p-energy measures

In this subsection, we see that strongly local properties for p-energy measures hold if
p-energy measures satisfy a chain rule (see Definition 4.14 below). In addition to the
setting specified at the beginning at the previous subsection, we assume that (X,m)
satisfies (3.27) and (3.28), that B = B(X) and that D ⊆ F ∩C(X). We also assume that
F ⊆ Lp(X,m) and equip F with the norm ‖ · ‖E,1.

Definition 4.14 (Chain rules for p-energy measures). (i) We say that {Γ〈f〉}f∈D sat-
isfies the chain rule (CL1) if and only if for any u ∈ D and any Φ ∈ C1(R), we have
Φ(u) ∈ D and

dΓ〈Φ(u)〉 = |Φ′(u)|p dΓ〈u〉. (4.21)

(ii) Assume that {Γ〈f〉}f∈D satisfies (Cla)p. We say that {Γ〈f〉}f∈D satisfies the chain
rule (CL2) if and only if for any n ∈ N, u ∈ D, v = (v1, . . . , vn) ∈ Dn, Φ ∈ C1(R)
and Ψ ∈ C1(Rn), we have Φ(u),Ψ(v) ∈ D and

dΓ〈Φ(u); Ψ(v)〉 =
n∑
k=1

sgn
(
Φ′(u)

)
|Φ′(u)|p−1

∂kΨ(v) dΓ〈u; vk〉. (4.22)

Proposition 4.15. Assume that {Γ〈f〉}f∈D satisfies (Cla)p and (CL2).
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(a) {Γ〈f〉}f∈D satisfies (CL1).
(b) (Leibniz rule) For any u, v, w ∈ D, we have vw ∈ D and

dΓ〈u; vw〉 = v dΓ〈u;w〉+ w dΓ〈u; v〉. (4.23)

Proof. The statement (a) is clear. Noting that vw = 1
4

[
(v+w)2−(v−w)2

]
, we immediately

have (4.23) from (CL2).

We have the following theorem as a consequence of (CL1).

Theorem 4.16 (Image density property). Assume that (E ,D) satisfies (2.3), (2.6) and
(Cla)p, that (F , ‖ · ‖E,1) is a Banach space, and that {Γ〈f〉}f∈D satisfies (CL1). Then, for
any u ∈ D, the Borel measure Γ〈u〉 ◦ u−1 on R defined by Γ〈u〉 ◦ u−1(A) := Γ〈u〉(u−1(A)),
A ∈ B(R), is absolutely continuous with respect to the Lebesgue measure on R.

Proof. This is proved, on the basis of (4.21), in exactly the same way as [Shi24, Proposition
7.6], which is a simple adaptation of [CF, Theorem 4.3.8], but we present the details
because in [Shi24] the underlying topological space X is assumed to be a generalized
Sierpiński carpet. It suffices to prove that Γ〈u〉 ◦ u−1(F ) = 0 for any u ∈ D and any
compact subset F of R such that L 1(F ) = 0, where L 1 denotes the 1-dimensional
Lebesgue measure on R. Let {ϕn}n∈N ⊆ Cc(R) satisfy |ϕn| ≤ 1, limn→∞ ϕn(x) = 1F (x)
for any x ∈ R and

ˆ ∞
0

ϕn(t) dt =

ˆ 0

−∞
ϕn(t) dt = 0 for any n ∈ N.

We define Φn(x) :=
´ x

0
ϕn(t) dt, x ∈ R, and un := Φn ◦ u for any n ∈ N. Then we easily

see that Φn ∈ C1(R)∩Cc(R), Φn(0) = 0, and Φ′n = ϕn for any n ∈ N. Also, un converges
to 0 in Lp(X,m) as n→∞ by the dominated convergence theorem. By (2.3) for (E ,D),
we deduce that un ∈ F and supn∈N E(un) < ∞. Since F is reflexive by Proposition 3.12
and F is continuously embedded in Lp(X,m), there exists a subsequence {unk}k∈N weakly
converging to 0 in F . By Mazur’s lemma, there exist N(l) ∈ N and {al,k}N(l)

k=l ⊆ [0, 1]

such that N(l) > l,
∑N(l)

k=l al,k = 1 and
∑N(l)

k=l al,kunk converges to 0 in F as l → ∞. Let
us define Ψl ∈ C1(R) by Ψl :=

∑N(l)
k=l al,kΦnk . Then Ψl(0) = 0 and liml→∞Ψ′l(x) = 1F (x)

for any x ∈ R. Furthermore, by Fatou’s lemma, (4.21) and (EM1)p,

Γ〈u〉 ◦ u−1(F ) =

ˆ
R

lim
l→∞
|Ψ′l(t)|

p (
Γ〈u〉 ◦ u−1

)
(dt)

≤ lim inf
l→∞

ˆ
X

|Ψ′l(u(x))|p Γ〈u〉(dx)

= lim inf
l→∞

Γ〈Ψl(u)〉(X) ≤ lim inf
l→∞

E
(
Ψl(u)

)
= 0,

which completes the proof.

The following theorem gives arguably the strongest possible forms of the strong locality
of p-energy measures.
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Theorem 4.17 (Strong locality of energy measures). Assume that (E ,D) satisfies (2.3),
(2.6) and (Cla)p, that (F , ‖ · ‖E,1) is a Banach space, and that {Γ〈f〉}f∈D satisfies (CL1).
Let u, u1, u2, v ∈ D, a, a1, a2, b ∈ R and A ∈ B.
(a) If A ⊆ u−1(a), then Γ〈u〉(A) = 0.
(b) If A ⊆ (u− v)−1(a), then Γ〈u〉(A) = Γ〈v〉(A).
(c) If A ⊆ u−1

1 (a1) ∪ u−1
2 (a2), then

ΓE〈u1 + u2 + v〉(A) + ΓE〈v〉(A) = ΓE〈u1 + v〉(A) + ΓE〈u2 + v〉(A). (4.24)

If in addition {Γ〈f〉}f∈D satisfies (Cla)p, then for any A ⊆ u−1
1 (a1) ∪ u−1

2 (a2),

ΓE〈u1 + u2; v〉(A) = ΓE〈u1; v〉(A) + ΓE〈u2; v〉(A). (4.25)

(d) If {Γ〈f〉}f∈D satisfies (Cla)p and A ⊆ (u1 − u2)−1(a) ∪ v−1(b), then

ΓE〈u1; v〉(A) = ΓE〈u2; v〉(A) and ΓE〈v;u1〉(A) = ΓE〈v;u2〉(A). (4.26)

Proof. (a): This is immediate from Theorem 4.16.
(b): This follows from (a) and the triangle inequality for ΓE〈 · 〉(A)1/p.
(c): Set Ai := A ∩ u−1

i (ai), i ∈ {1, 2}. We see from (b) that

ΓE〈u1 + u2 + v〉(A) + ΓE〈v〉(A)

= ΓE〈u2 + v〉(A1) + ΓE〈u1 + v〉(A2) + ΓE〈v〉(A)

= ΓE〈u2 + v〉(A1) + ΓE〈u1 + v〉(A2) + ΓE〈u1 + v〉(A1) + ΓE〈u2 + v〉(A2)

= ΓE〈u1 + v〉(A) + ΓE〈u2 + v〉(A),

which proves (4.24). Note that ΓE〈u1 + u2〉(A) = ΓE〈u1〉(A) + ΓE〈u2〉(A) by (4.24) in
the case v = 0. Next assume that {Γ〈f〉}f∈D satisfies (Cla)p. By using this equality and
applying (4.24) with v replaced by tv for t ∈ (0,∞), we have

ΓE〈u1 + u2 + tv〉(A)− ΓE〈u1 + u2〉(A)

t
+ tp−1ΓE〈v〉(A)

=
ΓE〈u1 + tv〉(A)− ΓE〈u1〉(A)

t
+

ΓE〈u2 + tv〉(A)− ΓE〈u2〉(A)

t
,

which implies (4.25) by letting t ↓ 0.
(d): The proof will be very similar to that of Proposition 3.30-(a). By applying (4.24)

with u2 − u1, tv, u1 for t ∈ (0,∞) in place of u1, u2, v, we have

ΓE〈u1 + tv〉(A)− ΓE〈u1〉(A)

t
=

ΓE〈u2 + tv〉(A)− ΓE〈u2〉(A)

t
,

which implies the former equality in (4.26) by letting t ↓ 0. This equality in turn with
v, 0, u1 − u2 in place of u1, u2, v yields the latter equality in (4.26) by the linearity of
ΓE〈v; · 〉(A).
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5 p-Energy measures associated with self-similar p-energy
forms

In this section, we focus on the self-similar case. We will introduce the self-similarity
for p-energy forms and construct p-energy measures with respect to self-similar p-energy
forms. Some fundamental properties of p-energy measures will be shown.

5.1 Self-similar structure and related notions

We first recall standard notation and terminology on self-similar structures (see [Kig01,
Chapter 1] for example). Throughout this section, we fix a compact metrizable space K,
a finite set S with #S ≥ 2 and a continuous injective map Fi : K → K for each i ∈ S.
We set L := (K,S, {Fi}i∈S).

Definition 5.1. (1) Let W0 := {∅}, where ∅ is an element called the empty word, let
Wn := Sn = {w1 . . . wn | wi ∈ S for i ∈ {1, . . . , n}} for n ∈ N and let W∗ :=⋃
n∈N∪{0}Wn. For w ∈ W∗, the unique n ∈ N ∪ {0} with w ∈ Wn is denoted by |w|

and called the length of w. For w, v ∈ W∗, w = w1 . . . wn1 , v = v1 . . . vn2 , we define
wv ∈ W∗ by wv := w1 . . . wn1v1 . . . vn2 (w∅ := w, ∅v := v).

(2) We set Σ := SN = {ω1ω2ω3 . . . | ωi ∈ S for i ∈ N}, which is always equipped with the
product topology of the discrete topology on S, and define the shift map σ : Σ → Σ
by σ(ω1ω2ω3 . . . ) := ω2ω3ω4 . . . . For i ∈ S we define σi : Σ→ Σ by σi(ω1ω2ω3 . . . ) :=
iω1ω2ω3 . . . . For ω = ω1ω2ω3 . . . ∈ Σ and n ∈ N∪{0}, we write [ω]n := ω1 . . . ωn ∈ Wn.

(3) For w = w1 . . . wn ∈ W∗, we set Fw := Fw1 ◦ · · · ◦ Fwn (F∅ := idK), Kw := Fw(K),
σw := σw1 ◦ · · · ◦ σwn (σ∅ := idΣ) and Σw := σw(Σ).

(4) A finite subset Λ of W∗ is called a partition of Σ if and only if Σw ∩ Σv = ∅ for any
w, v ∈ Λ with w 6= v and Σ =

⋃
w∈Λ Σw.

Definition 5.2. L = (K,S, {Fi}i∈S) is called a self-similar structure if and only if there
exists a continuous surjective map χ : Σ → K such that Fi ◦ χ = χ ◦ σi for any i ∈ S.
Note that such χ, if it exists, is unique and satisfies {χ(ω)} =

⋂
n∈NK[ω]n for any ω ∈ Σ.

In the following definition, we recall the definition of post-critically finite self-similar
structures introduced by Kigami in [Kig93], which is mainly dealt with in Subsection 8.3.

Definition 5.3. Let L = (K,S, {Fi}i∈S) be a self-similar structure.

(1) We define the critical set CL and the post-critical set PL of L by

CL := χ−1
(⋃

i,j∈S, i 6=jKi ∩Kj

)
and PL :=

⋃
n∈N σ

n(CL). (5.1)

L is called post-critically finite, or p.-c.f. for short, if and only if PL is a finite set.
(2) We set V0 := χ(PL), Vn :=

⋃
w∈Wn

Fw(V0) for n ∈ N and V∗ :=
⋃
n∈N∪{0} Vn.
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The set V0 should be considered as the “boundary" of the self-similar set K; indeed,
by [Kig01, Proposition 1.3.5-(2)], we have

Kw ∩Kv = Fw(V0) ∩ Fv(V0) for any w, v ∈ W∗ with Σw ∩ Σv = ∅. (5.2)

According to [Kig01, Lemma 1.3.11], Vn−1 ⊆ Vn for any n ∈ N, and V∗ is dense in K if
V0 6= ∅.

The family of cells {Kw}w∈W∗ describes the local topology of a self-similar structure.
Indeed, {Kn,x}n≥0, where Kn,x :=

⋃
w∈Wn;x∈Kw Kw, forms a fundamental system of neigh-

borhoods of x ∈ K [Kig01, Proposition 1.3.6]. Moreover, the proof of [Kig01, Proposition
1.3.6] implies that any metric d on K giving the original topology of K satisfies

lim
n→∞

max
w∈Wn

diam(Kw, d) = 0. (5.3)

Let us recall the notion of self-similar measures.

Definition 5.4 (Self-similar measures). Let L = (K,S, {Fi}i∈S) be a self-similar structure
and let (θi)i∈S ∈ (0, 1)S satisfy

∑
i∈S θi = 1. A Borel probability measure m on K is said

to be a self-similar measure on L with weight (θi)i∈S if and only if the following equality
(of Borel measures on K) holds:

m =
∑
i∈S

θi(Fi)∗m. (5.4)

Proposition 5.5 ([Kig01, Section 1.4] and [Kig09, Theorem 1.2.7]). Let L = (K,S, {Fi}i∈S)
be a self-similar structure and let (θi)i∈S ∈ (0, 1)S satisfy

∑
i∈S θi = 1. Then there ex-

ists a self-similar measure m on L with weight (θi)i∈S. If K 6= V0
K, then m(Kw) = θw

and m(Fw(V0
K

)) = 0 for any w ∈ W∗, where θw := θw1 · · · θwn for w = w1 · · ·wn ∈ W∗
(θ∅ := 1).

5.2 Self-similar p-energy forms and p-energy measures

In this subsection, we introduce the self-similarity for p-energy forms on self-similar struc-
tures and define the p-energy measures associated with a given self-similar p-energy form.
In the rest of this subsection, we fix a self-similar structure L = (K,S, {Fi}i∈S), a σ-
algebra B which contains B(K), a measure m on B with m(O) > 0 for any non-empty
open subset O of K, p ∈ (1,∞) and a p-energy form (E ,F) on (K,m) with F ⊆ L0(K,m).
Also, we assume that K is connected.

Definition 5.6 (Self-similar p-energy form). Let ρ = (ρi)i∈S ∈ (0,∞)S. A p-energy form
(E ,F) on (K,m) is said to be self-similar on (L,m) with weight ρ if and only if the
following hold:

F ∩ C(K) = {f ∈ C(K) | f ◦ Fi ∈ F for any i ∈ S}, (5.5)

E(f) =
∑
i∈S

ρiE(f ◦ Fi) for any u ∈ F ∩ C(K). (5.6)
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Note that for any partition Λ of Σ, (5.6) implies

E(f) =
∑
w∈Λ

ρwE(f ◦ Fw), u ∈ F ∩ C(K), (5.7)

where ρw := ρw1 · · · ρwn for w = w1 . . . wn ∈ W∗. Indeed, (5.7) follows from an induction
with respect to maxw∈Λ |w|.

In the rest of this subsection, we assume that (E ,F) is a self-similar p-energy form on
L with weight ρ = (ρi)i∈S. We can see that the two-variable version E(f ; g) also has the
following self-similarity.

Proposition 5.7. Assume that (E ,F ∩ C(K)) satisfies (Cla)p. Then

E(f ; g) =
∑
i∈S

ρiE(f ◦ Fi; g ◦ Fi) for any f, g ∈ F ∩ C(K). (5.8)

Proof. For any f, g ∈ F ∩ C(K) and t > 0, we have

E(f + tg)− E(f)

t
=
∑
i∈S

ρi
E
(
f ◦ Fi + t(g ◦ Fi)

)
− E(f ◦ Fi)

t
.

Letting t ↓ 0 yields (5.8).

Next we will see that p-energy measures are naturally introduced by virtue of the
self-similarity of (E ,F) (see also [Hin05, MS23+]). For f ∈ F ∩ C(K), we define a finite
measure m

(n)
E 〈f〉 on Wn = Sn by putting m

(n)
E 〈f〉({w}) := ρwE(f ◦ Fw) for each w ∈ Wn.

Then, by (5.7), {m(n)
E 〈f〉}n≥0 satisfies the consistency condition and hence Kolmogorov’s

extension theorem yields a measure mE〈f〉 on Σ = SN such that mE〈f〉(Σw) = ρwE(f ◦Fw)
for any w ∈ W∗. In particular, mE〈f〉(Σ) = E(f). Basic properties of mE〈 · 〉 are collected
in the following proposition.

Proposition 5.8. (a) Assume that (E ,F ∩ C(K)) satisfies (GC)p. Then, for any A ∈
B(K), (mE〈 · 〉(A),F ∩ C(K)) is a p-energy form on (K,m) satisfying (GC)p.

(b) Assume that (E ,F∩C(K)) satisfies (Cla)p. Then, for any A ∈ B(K), (mE〈 · 〉(A),F∩
C(K)) is a p-energy form on (K,m) satisfying (Cla)p. In particular, for any f, g ∈
F ∩ C(K), the following limit exists in R:

mE〈f ; g〉(A) :=
1

p

d

dt
mE〈f + tg〉(A)

∣∣∣∣
t=0

, (5.9)

Moreover, mE〈f ; g〉 is a singed measure on (Σ,B(Σ)).

Proof. (a): Let n1, n2 ∈ N, q1 ∈ (0, p] and q2 ∈ [p,∞]. For any T = (T1, . . . , Tn2) : Rn1 →
Rn2 satisfying (2.1) and any u = (u1, . . . , un1) ∈

(
F ∩ C(K)

)n1 ,∥∥(mE〈Tl(u)〉(A)1/p
)n2

l=1

∥∥
`q2
≤
∥∥(mE〈uk〉(A)1/p

)n1

k=1

∥∥
`q1
, A ∈ B(K). (5.10)
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If A = Σw for some w ∈ W∗, then (5.10) is clearly true by (GC)p for (E ,F). By a similar
argument using the reverse Minkowski inequality on `q1/p and the Minkowski inequality
on `q2/p as in (2.20), (5.10) holds on the finitely additive class generated by {Σw}w∈W∗ .
Hence the monotone class theorem implies that (5.10) holds for any A ∈ B(Σ).

(b): Note that a special case of (5.10) proves (Cla)p for (mE〈 · 〉(A),F ∩ C(K)); see
also Proposition 2.2-(e), (f). Then the derivative in (5.9) exists by Proposition 3.5 and
(5.10). In addition, mE〈f ; g〉 turns out to be a signed measure on (Σ,B(Σ)) by Proposition
4.6. (Even when (E ,F) does not satisfy (GC)p, this argument together with the triangle
inequality for E1/p shows (5.10) in the the case (n1, n2, q1, q2) = (2, 1, p, p) and T1(x, y) =
x+ y, i.e., the triangle inequality on F ∩ C(K) for mE〈 · 〉(A)1/p.)

We now define a finite Borel measure ΓE〈f〉 on K by

ΓE〈f〉(A) := mE〈f〉 ◦ χ−1(A) := mE〈f〉(χ−1(A)), A ∈ B(K) (5.11)

where χ : Σ → K is the same map as in Definition 5.2. The following proposition states
basic properties and the self-similarity of {ΓE〈f〉}f∈F∩C(K).

Proposition 5.9. Let {ΓE〈f〉}f∈F∩C(K) be the measures defined by (5.11).

(a) {ΓE〈f〉}f∈F∩C(K) satisfies ΓE〈f〉(K) = E(f), in particular (EM1)p, and (EM2)p.
(b) For any f ∈ F ∩ C(K), any w ∈ W∗ and any n ∈ N ∪ {0},

ρwE(f ◦ Fw) ≤ ΓE〈f〉(Kw) ≤
∑

v∈Wn;Kv∩Kw 6=∅

ρvE(f ◦ Fv). (5.12)

(c) Assume that (E ,F∩C(K)) satisfies (GC)p and let n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞].
Then for any T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfying (2.1), any u = (u1, . . . , un1) ∈(
F ∩ C(K)

)n1 and any Borel measurable function ϕ : K → [0,∞], we have∥∥∥∥∥
((ˆ

K

ϕdΓE〈Tl(u)〉
)1/p

)n2

l=1

∥∥∥∥∥
`q2

≤

∥∥∥∥∥
((ˆ

K

ϕdΓE〈uk〉
)1/p

)n1

k=1

∥∥∥∥∥
`q1

. (5.13)

In particular Proposition 2.2 with (
´
K
ϕdΓE〈 · 〉,F ∩ C(K)) in place of (E ,F) holds

provided ‖ϕ‖sup <∞.
(d) The following equality holds:

ΓE〈f〉 =
∑
i∈S

ρiΓE〈f ◦ Fi〉 ◦ F−1
i for any f ∈ F ∩ C(K). (5.14)

(e) Assume that (E ,F ∩ C(K)) satisfies (Cla)p. Then {ΓE〈f〉}f∈F∩C(K) also satisfies
(Cla)p and

ΓE〈f ; g〉 =
∑
i∈S

ρiΓE〈f ◦ Fi; g ◦ Fi〉 ◦ F−1
i for any f, g ∈ F ∩ C(K). (5.15)

(f) Assume that (E ,F ∩C(K)) satisfies (Cla)p. Then mE〈f ; g〉 ◦ χ−1 = ΓE〈f ; g〉 for any
f, g ∈ F ∩ C(K).
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Proof. (a): We easily have ΓE(K) = mE〈f〉(χ−1(K)) = mE〈f〉(Σ) = E(f). The proof of
(EM2)p will be included in the proof of (c) below.

(b): This statement is the same as [MS23+, Lemma 9.15], which is easily proved by
noting that Σw ⊆ χ−1(Kw) ⊆

⋃
v∈Wn;Kv∩Kw 6=∅Σv.

(c): Assume that (E ,F) satisfies (GC)p. Let us fix T = (T1, . . . , Tn2) : Rn1 → Rn2

satisfying (2.1) and u = (u1, . . . , un1) ∈
(
F ∩ C(K)

)n1 . Let B ∈ B(K). By (GC)p for
(mE〈 · 〉(χ−1(B)),F ∩ C(K)) (see Proposition 5.8-(a)), we obtain∥∥(ΓE〈Tl(u)〉(B)1/p

)n2

l=1

∥∥
`q2
≤
∥∥(ΓE〈uk〉(B)1/p

)n1

k=1

∥∥
`q1
, B ∈ B(K). (5.16)

Again by a similar argument as in (2.20), we see that (5.13) holds for any non-negative
Borel measurable simple function ϕ on K. We get the desired extension, (5.13) for any
Borel measurable function ϕ : K → [0,∞], by the monotone convergence theorem.

(d): The proof is very similar to [Shi24, Proof of Theorem 7.5]. Let k ∈ N, w =
w1 . . . wk ∈ Wk and n ∈ N. We see that∑

i∈S

ρimE〈f ◦ Fi〉(σ−1
i (Σw)) = ρw1mE〈f ◦ Fw1〉(σ−1

w1
(Σw)) = ρw1mE〈f ◦ Fw1〉(Σw2...wk)

= ρw1ρw2...wkE((f ◦ Fw1) ◦ Fw2...wk) = mE〈f〉(Σw)

Since w ∈ W∗ is arbitrary, by Dynkin’s π-λ theorem, we deduce that

mE〈f〉(A) =
∑
i∈S

ρimE〈f ◦ Fi〉 ◦ σ−1
i (A), A ∈ B(Σ).

We obtain (5.14) by χ ◦ σi = Fi ◦ χ.
(e): Assume that (E ,F) satisfies (Cla)p. Then {ΓE〈f〉}f∈F∩C(K) satisfies (Cla)p by

(5.16) (see also Proposition 2.2-(e),(f)). Now we obtain (5.15) by letting t ↓ 0 in

ΓE〈f + tg〉(A) =
∑
i∈S

ρiΓE〈f ◦ Fi + t(g ◦ Fi)〉
(
F−1
i (A)

)
.

(f): This is immediate from (5.11), (4.5) and (5.9).

We next prove the chain rule (CL2) for ΓE〈 · 〉. Such a chain rule is also obtained
in [BV05], but we provide here a self-contained proof because there are some differences
from the framework of [BV05].

Theorem 5.10 (Chain rule). Assume that R1K ⊆ E−1(0) and that (E ,F∩C(K)) satisfies
(2.3), (2.6) and (Cla)p. Then {ΓE〈f〉}f∈F∩C(K) satisfies (CL2), i.e., for any n ∈ N,
u ∈ F ∩ C(K), v = (v1, . . . , vn) ∈

(
F ∩ C(K)

)n, Φ ∈ C1(R) and Ψ ∈ C1(Rn), we have
Φ(u),Ψ(v) ∈ F ∩ C(K) and

dΓE〈Φ(u); Ψ(v)〉 =
n∑
k=1

sgn
(
Φ′(u)

)
|Φ′(u)|p−1

∂kΨ(v) dΓE〈u; vk〉. (5.17)
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Proof. We easily obtain Φ(u),Ψ(v) ∈ F by Corollary 2.4-(a) and R1K ⊆ E−1(0). To
show (5.17), we will prove

lim
l→∞

∣∣ρwE(Φ(u ◦ Fw); Ψ(v ◦ Fw)
)
− Sl(w)

∣∣ = 0 for any w ∈ W∗, (5.18)

where x0 ∈ K is fixed and

Sl(w) :=
∑
τ∈Wl

ρwτE
(

Φ′(u◦Fwτ (x0))·(u◦Fwτ );
n∑
k=1

∂kΨ(v◦Fwτ (x0))·(vk◦Fwτ )
)
, l ∈ N∪{0}.

We need some preparations to prove (5.18). Note that, for any z ∈ W∗ and x ∈ K,

Φ
(
u(Fz(x))

)
− Φ

(
u(Fz(x0))

)
=
[
u(Fz(x))− u(Fz(x0))

](
Φ′
(
u(Fz(x0))

)
+

ˆ 1

0

[
Φ′
(
u(Fz(x0)) + t

(
u(Fz(x))− u(Fz(x0))

))
− Φ′(u(Fz(x0)))

]
dt

)
.

In particular,

Φ(u ◦ Fz)− ûz = Φ
(
u(Fz(x0)

)
− Φ′

(
u(Fz(x0))

)
u(Fz(x0)) +DzIz,

where ûz, Dz, Iz ∈ C(K) are given by

ûz(x) := Φ′
(
u(Fz(x0))

)
· (u ◦ Fz)(x),

Dz(x) := u(Fz(x))− u(Fz(x0)),

Iz(x) :=

ˆ 1

0

[
Φ′
(
u(Fz(x0)) + tDz(x)

)
− Φ′

(
u(Fz(x0))

)]
dt, x ∈ K.

Hence we have
∣∣ρwE(Φ(u ◦ Fw); Ψ(v ◦ Fw)

)
− Sl(w)

∣∣ ≤ A1,l + A2,l, where

v̂z(x) :=
n∑
k=1

∂kΨ
(
v(Fz(x0))

)
· (vk ◦ Fz)(x) for z ∈ W∗, x ∈ K,

A1,l :=
∑
τ∈Wl

ρwτ
∣∣E(Φ(u ◦ Fwτ ); Ψ(v ◦ Fwτ )

)
− E

(
Φ(u ◦ Fwτ ); v̂wτ

)∣∣ ,
A2,l :=

∑
τ∈Wl

ρwτ
∣∣E(Φ(u ◦ Fwτ ); v̂wτ

)
− E

(
ûwτ ; v̂wτ

)∣∣ .
(Note that ûz, v̂z ∈ F by (5.5).) Next we show liml→∞Ai,l = 0 to obtain (5.18). By
Corollary 2.4-(a), Iz ∈ F and there exists a constant Cu,Φ ∈ (0,∞) depending only on
p, ‖u‖sup , ‖Φ′‖sup,[−2‖u‖sup,2‖u‖sup] such that E(Iz) ≤ Cu,ΦE(u ◦ Fz) and E

(
Φ(u ◦ Fz)

)
≤

Cu,ΦE(u ◦ Fz). Therefore, for any l ∈ N ∪ {0},∑
τ∈Wl

ρwτE
(
Φ(u ◦ Fwτ )− ûw

)
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=
∑
τ∈Wl

ρwτE(DwIw)

≤ 2p−1
∑
τ∈Wl

ρwτ

(
‖Iw‖psup E(Dw) + ‖Dw‖psup E(Iw)

)
≤ 2p−1

(
max
τ ′∈Wl

‖Iwτ ′‖psup + max
τ ′∈Wl

‖Dwτ ′‖psup

) ∑
τ∈Wl

ρwτ

(
E(Dwτ ) + Cu,ΦE(u ◦ Fwτ )

)
≤ 2p−1(1 + Cu,Φ)E(u)

(
max
τ ′∈Wl

‖Iwτ ′‖psup + max
τ ′∈Wl

‖Dwτ ′‖psup

)
.

Since u and Φ are uniformly continuous onK, we have from (5.3) that both maxτ ′∈Wl
‖Iwτ ′‖sup

and maxτ ′∈Wl
‖Dwτ ′‖sup converge to 0 as l→∞, and hence

lim
l→∞

∑
τ∈Wl

ρwτE
(
Φ(u ◦ Fwτ )− ûwτ

)
= 0. (5.19)

Similarly, we can show that

lim
l→∞

∑
τ∈Wl

ρwτE
(
Ψ(v ◦ Fwτ )− v̂wτ

)
= 0. (5.20)

Then, by (3.11), (3.12) and Hölder’s inequality, we have

A1,l . E(u ◦ Fw)(p−1)/p

(∑
τ∈Wl

ρwτE(Ψ(v ◦ Fwτ )− v̂wτ )

)1/p

,

and

A2,l .
∑
τ∈Wl

ρwτE(u ◦ Fwτ )(p−1−αp)/pE
(
Φ(u ◦ Fwτ )− ûwτ

)αp/pE(v̂wτ)1/p

≤ E(u ◦ Fw)(p−1−αp)/p

(∑
τ∈Wl

ρwτE(Φ(u ◦ Fwτ )− ûwτ )

)αp/p(∑
τ∈Wl

ρwτE
(
v̂wτ
))1/p

. E(u ◦ Fw)(p−1−αp)/p

(∑
τ∈Wl

ρwτE(Φ(u ◦ Fwτ )− ûwτ )

)αp/p

max
k∈{1,...,n}

E(vk ◦ Fw)1/p.

Combining these estimates with (5.19) and (5.20), we obtain liml→∞Ai,l = 0 and thus
(5.18) holds.

By the uniform continuities of Φ′, ∂Ψk and the fact that mE〈f ; g〉(Σw) = ρwE(f ◦
Fw; g ◦ Fw) for any f, g ∈ F ∩ C(K) and w ∈ W∗, we easily observe that

lim
l→∞

∣∣∣∣∣
n∑
k=1

ˆ
Σw

sgn
(
Φ′(u ◦ χ)

)
|Φ′(u ◦ χ)|p−1

∂kΨ(v ◦ χ) dmE〈u; vk〉 − Sl(w)

∣∣∣∣∣ = 0.
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Hence, by (5.18) and the Dynkin class theorem,

dmE〈Φ(u); Ψ(v)〉 =
n∑
k=1

sgn
(
Φ′(u ◦ χ)

)
|Φ′(u ◦ χ)|p−1

∂kΨ(v ◦ χ) dmE〈u; vk〉. (5.21)

Then we obtain the desired equality (5.17) by (5.21) and Proposition 5.9-(f).

In the case n = 1, Ψ = Φ and v1 = u in the theorem above, by noting that the proof
of (5.17) does not need (Cla)p for (E ,F), we get the following corollary.

Corollary 5.11. Assume that R1K ⊆ E−1(0) and that (E ,F ∩ C(K)) satisfies (2.3)
and (2.6). Then {ΓE〈f〉}f∈F∩C(K) satisfies (CL1), i.e., for any u ∈ F ∩ C(K) and any
Φ ∈ C1(R), we have Φ(u) ∈ F and

dΓE〈Φ(u)〉 = |Φ′(u)|p dΓE〈u〉. (5.22)

We also have the following representation formula (see also [Cap03, Theorem 4.1]).

Proposition 5.12 (Representation formula). Assume that R1K ⊆ E−1(0) and that (E ,F)
satisfies (2.3), (2.6) and (Cla)p. For any u, ϕ ∈ F ∩ C(K),

ˆ
X

ϕdΓE〈u〉 = E(u;uϕ)−
(
p− 1

p

)p−1

E
(
|u|

p
p−1 ;ϕ

)
. (5.23)

Proof. Define Φ ∈ C1(R) by Φ(x) := |x|p/(p−1). Note that Φ′(x) = p
p−1

sgn(x) |x|1/(p−1).
By Theorem 5.10, we see that

E(u;uϕ)−
(
p− 1

p

)p−1

E(Φ(u);ϕ)

=

ˆ
K

u dΓE〈u;ϕ〉+

ˆ
K

ϕdΓE〈u〉 −
(
p− 1

p

)p−1 ˆ
K

sgn
(
Φ′(u)

)
|Φ′(u)|p−1

dΓE〈u;ϕ〉

=

ˆ
K

u dΓE〈u;ϕ〉+

ˆ
K

ϕdΓE〈u〉 −
(
p− 1

p

)p−1(
p

p− 1

)p−1 ˆ
K

sgn(u) |u| dΓE〈u;ϕ〉

=

ˆ
K

ϕdΓE〈u〉.

In the following corollaries, we recall useful consequences of the chain rule in Theorem
5.10, which are immediate from Theorems 4.16 and 4.17.

Corollary 5.13. Assume that R1K ⊆ E−1(0), that (E ,F ∩ C(K)) satisfies (2.3), (2.6)
and (Cla)p, and that (F , ‖ · ‖E,1) is a Banach space. Then, for any u ∈ F ∩ C(K), the
Borel measure ΓE〈u〉 ◦ u−1 on R defined by ΓE〈u〉 ◦ u−1(A) := ΓE〈u〉(u−1(A)), A ∈ B(R),
is absolutely continuous with respect to the Lebesgue measure on R.

Corollary 5.14. Assume that R1K ⊆ E−1(0), that (E ,F∩C(K)) satisfies (2.3), (2.6) and
(Cla)p, and that (F , ‖ · ‖E,1) is a Banach space. Let u, u1, u2, v ∈ F∩C(K), a, a1, a2, b ∈ R
and A ∈ B(K).
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(a) If A ⊆ u−1(a), then ΓE〈u〉(A) = 0.
(b) If A ⊆ (u− v)−1(a), then ΓE〈u〉(A) = ΓE〈v〉(A).
(c) If A ⊆ u−1

1 (a1) ∪ u−1
2 (a2), then

ΓE〈u1 + u2 + v〉(A) + ΓE〈v〉(A) = ΓE〈u1 + v〉(A) + ΓE〈u2 + v〉(A), (5.24)
ΓE〈u1 + u2; v〉(A) = ΓE〈u1; v〉(A) + ΓE〈u2; v〉(A). (5.25)

(d) If A ⊆ (u1 − u2)−1(a) ∪ v−1(b), then

ΓE〈u1; v〉(A) = ΓE〈u2; v〉(A) and ΓE〈v;u1〉(A) = ΓE〈v;u2〉(A). (5.26)

5.3 Extensions of self-similar p-energy measures

As in the previous subsection, we fix a self-similar structure L = (K,S, {Fi}i∈S), a σ-
algebra B which contains B(K), a measure m on B with m(O) > 0 for any non-empty
open subset O of K, p ∈ (1,∞) and a self-similar p-energy form (E ,F) on (L,m) with
weight (ρi)i∈S ∈ (0,∞)S. We always equip F with ‖ · ‖E,1 and assume thatK is connected.

In this setting, we discuss extensions of self-similar p-energy measures to F ∩ C(K)
F
.

Lemma 5.15. Assume that F equipped with ‖ · ‖E,1 is a Banach space and that m is a
self-similar measure on K. Let u ∈ F and {un}n∈N ⊆ F ∩ C(K). If {un}n∈N converges
in F to u, then {un ◦ Fw}n∈N converges in F to u ◦ Fw for any w ∈ W∗. In particular,

u ◦ Fw ∈ F ∩ C(K)
F

for any u ∈ F ∩ C(K)
F
and any w ∈ W∗. (5.27)

E(u) =
∑
i∈S

ρiE(u ◦ Fi) for any u ∈ F ∩ C(K)
F
. (5.28)

Proof. Let {un}n∈N satisfy limn→∞ ‖u− un‖E,1 = 0. Then we easily see from the self-
similarity of m that {un ◦Fw}n∈N converges in Lp(K,m) to u ◦Fw for any w ∈ W∗. Since
E(un ◦Fw− uk ◦Fw) ≤ ρ−1

w E(un− uk) for any n, k ∈ N by (5.6), {un ◦Fw}n∈N is a Cauchy
sequence in F . Therefore, it has to converge to u ◦ Fw in F , which shows (5.27). By
letting n→∞ in (5.6) for un, we obtain (5.28).

Once one obtains the identity (5.28), in a similar way using Kolmogorov’s extension
theorem as in the previous subsection, one can define a finite Borel measure mE〈u〉 on Σ

for each u ∈ F ∩ C(K)
F
so that mE〈u〉(Σw) = ρwE(u◦Fw) for any w ∈ W∗. The following

lemma states the triangle inequality for mE〈 · 〉(A)1/p on F ∩ C(K)
F
.

Lemma 5.16. Assume that F equipped with ‖ · ‖E,1 is a Banach space and that m is a

self-similar measure on K. Then for any u, v ∈ F ∩ C(K)
F
and any A ∈ B(Σ),

mE〈u+ v〉(A)1/p ≤ mE〈u〉(A)1/p + mE〈v〉(A)1/p.

Proof. One can easily obtain the desired triangle inequality by following the argument in
the proof of a special case of Proposition 5.9-(c).
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Now we identify the p-energy measures {ΓE〈u〉}u∈F∩C(K)
F obtained by applying Propo-

sition 4.11 for the measures defined in (5.11) with {mE〈u〉 ◦ χ−1}
u∈F∩C(K)

F .

Proposition 5.17. Assume that F equipped with ‖ · ‖E,1 is a Banach space and that m

is a self-similar measure on K. Then for any u ∈ F ∩ C(K)
F
and any A ∈ B(K),

ΓE〈u〉(A) = mE〈u〉(χ−1(A)). (5.29)

Proof. The equality (5.29) for u ∈ F ∩ C(K) is obvious from the definition of ΓE〈u〉
in (5.11). Then the desired assertion immediately follows from (4.18), Lemma 5.16 and
supA∈B(Σ) mE〈u〉(A) ≤ E(u).

We conclude this section by seeing that self-similar p-energy measures can be extended
to a localized version of F in Definition 5.19 below. To this end, we need the following
lemma.

Lemma 5.18 (Weak locality of self-similar p-energy measures; [MS23+, Lemma 9.6]).
Assume that F equipped with ‖ · ‖E,1 is a Banach space and that m is a self-similar measure

on K. Let U be an open subset of K. If u, v ∈ F ∩ C(K)
F

satisfy u = v m-a.e. on U ,
then ΓE〈u〉(U) = ΓE〈v〉(U).

Proof. The proof is exactly the same as [MS23+, Lemma 9.6], but we recall the details
here for the reader’s convenience. By the inner regularity of ΓE〈u〉 and ΓE〈v〉 (see, e.g.,
[Dud, Theorem 7.1.3]), it suffices to show ΓE〈u〉(A) = ΓE〈v〉(A) for any closed subset A
of U . Let d be a metric on K giving the original topology of K. By (5.3), we can choose
δ ∈ (0, distd(A,K \U)) and N ∈ N so that maxw∈Wn diam(Kw, d) < δ for any n ≥ N . For
n ∈ N, define Cn := {w ∈ Wn | Σw ∩ χ−1(A) 6= ∅}. Since u ◦ Fw = v ◦ Fw (m-a.e. on K)
for any n ≥ N and any w ∈ Cn, we have

mE〈u〉(ΣCn) =
∑
w∈Cn

ρwE(u ◦ Fw) =
∑
w∈Cn

ρwE(v ◦ Fw) = mE〈v〉(ΣCn).

Since {ΣCn}n∈N is a decreasing sequence satisfying
⋂
n∈N ΣCn = χ−1(A) (see [Hin05, Proof

of Lemma 4.1] or [MS23+, Proof of Proposition 9.3]), we obtain ΓE〈u〉(A) = ΓE〈v〉(A) by
letting n→∞ in the equality above.

Definition 5.19. Let U be a non-empty open subset of K.

(1) We define a linear subspace Floc(U) of L0(U,m|U) by

Floc(U) :=

{
f ∈ L0(U,m|U)

∣∣∣∣ f = f# m-a.e. on V for some f# ∈ F for
each relatively compact open subset V of U

}
. (5.30)

(2) Assume that F equipped with ‖ · ‖E,1 is a Banach space and that m is a self-similar
measure on K. In this setting, for each f ∈ Floc(U), we further define a measure
ΓE〈f〉 on U as follows. We first define ΓE〈f〉(E) := ΓE〈f#〉(E) for each relatively
compact Borel subset E of U , with A ⊆ U and f# ∈ F as in (5.30) chosen so that
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E ⊆ A; this definition of ΓE〈f〉(E) is independent of a particular choice of such A
and f# by Lemma 5.18. We then define ΓE〈f〉(E) := limn→∞ ΓE〈f〉(E ∩An) for each
E ∈ B|U , where {An}n∈N is a non-decreasing sequence of relatively compact open
subsets of U such that

⋃
n∈NAn = U ; it is clear that this definition of ΓE〈f〉(E) is

independent of a particular choice of {An}n∈N, coincides with the previous one when
E is relatively compact in U , and gives a Radon measure on U .

5.4 Self-similar p-energy form as a fixed point

In this subsection, we present a standard method to construct a self-similar p-energy
form. The main result of this subsection (Theorem 5.21) is essentially the same as the
fixed point theorem in [Kig00, Theorem 1.5], but we present the details to show a useful
version of this fixed point theorem where a fixed point is explicitly given as a limit.

As in the previous subsection, we fix a self-similar structure L = (K,S, {Fi}i∈S), a
σ-algebra B which contains B(K), a measure m on B with m(O) > 0 for any non-empty
open subset O of K and p ∈ (1,∞), and a linear subspace F of Lp(K,m). We assume
that K is connected and that F satisfies the following property:

u ◦ Fw ∈ F for any u ∈ F and w ∈ W∗.

We define

Ep(F) := {E : F → [0,∞) | (E ,F) is a p-energy form on (K,m)}.

Definition 5.20. Let ρ = (ρi)i∈S. For n ∈ N ∪ {0}, we define Sρ,n : Ep(F)→ Ep(F) by

Sρ,n(E)(u) :=
∑
w∈Wn

ρwE(u ◦ Fw) for E ∈ Ep(F) and u ∈ F . (5.31)

(Note that the triangle inequality for Sρ,n(E)1/p can be shown easily.) Set Sρ := Sρ,1 for
simplicity. Clearly, Sρ,n = Snρ := Sρ ◦ Sρ ◦ · · · ◦ Sρ︸ ︷︷ ︸

n

.

The desired self-similar p-energy form with weight ρ will be constructed as a non-
trivial fixed point of Sρ. The following theorem, which can be regarded as a version of
[Kig00, Theorem 1.5] in a specific situation, describes when we can find such a fixed point
and how it is obtained.

Theorem 5.21. Let ρ = (ρi)i∈S and let E0 ∈ Ep(F). Assume that F equipped with
‖ · ‖E0,1 is a separable Banach space and that there exists a constant C ∈ [1,∞) such that

C−1E0(u) ≤ Sρ,n(E0)(u) ≤ CE0(u) for any u ∈ F and any n ∈ N ∪ {0}. (5.32)

Then there exists {nk}k∈N ⊆ N with nk < nk+1 for any k ∈ N such that the following limit
exists in [0,∞) for any u ∈ F :

E(u) := lim
k→∞

1

nk

nk−1∑
j=0

Sρ,j(E0)(u). (5.33)
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Furthermore, (E ,F) is a p-energy form on (K,m) satisfying

C−1E0(u) ≤ E(u) ≤ CE0(u) for any u ∈ F and any n ∈ N ∪ {0}, (5.34)

where C is the constant in (5.32), and

E(u) =
∑
w∈Wn

ρwE(u ◦ Fw) for any u ∈ F and any n ∈ N ∪ {0}. (5.35)

Proof. The Set En := n−1
∑n−1

j=0 Sρ,j(E0) for n ∈ N for simplicity. Then it is clear that
En ∈ Ep(F). Let C be a countable dense subset of F . Since {En(u)}n∈N is bounded in
[0,∞) for any u ∈ F by (5.32), by a standard diagonal procedure, there exists {nk}k∈N ⊆ N
with nk < nk+1 for any k ∈ N such that {Enk(u′)}k∈N is convergent in [0,∞) for any u′ ∈ C .
Let u ∈ F , ε > 0 and u∗ ∈ C satisfy E0(u − u∗)1/p < ε. Then for any k, l ∈ N, by the
triangle inequality for En( · )1/p and (5.32),∣∣Enk(u)1/p − Enl(u)1/p

∣∣
≤
∣∣Enk(u)1/p − Enk(u∗)1/p

∣∣+
∣∣Enk(u∗)1/p − Enl(u∗)1/p

∣∣+
∣∣Enl(u)1/p − Enl(u∗)1/p

∣∣
≤ 2C1/pε+

∣∣Enk(u)1/p − Enl(u)1/p
∣∣ ,

whence lim supk∧l→∞
∣∣Enk(u)1/p − Enl(u)1/p

∣∣ ≤ 2C1/pε. Therefore {Enk(u)}k∈N is conver-
gent in [0,∞) for any u ∈ F , so the limit in (5.33) exists. It is clear that (E ,F) is a
p-energy form on (K,m) satisfying (5.34).

Let us show (5.35). For any n ∈ N and any u ∈ F , we easily see that

1

n
E0(u) + Sρ(En)(u) =

1

n
E0(u) +

1

n

n−1∑
l=0

Sρ,l+1(E0)(u) = En(u) +
1

n
Sρ,n(E0)(u). (5.36)

Since limk→∞ Sρ(Enk)(u) = Sρ(E)(u) and limk→∞ n
−1
k Sρ,nk(E0)(u) = 0 by (5.32), we obtain

Sσp(E) = E by letting n→∞ along {nk}k∈N in (5.36). Hence (5.35) holds.

By virtue of the explicit representation (5.35), the resulting p-energy form (E ,F)
inherits some nice properties of (E0,F). In the following proposition, we see that (GC)p
and the invariance under good transformations are examples of such properties.

Proposition 5.22. Assume the same conditions as in Theorem 5.21 and let E be given
by (5.35).

(a) If (E0,F) satisfies (GC)p, then (E ,F) also satisfies (GC)p.
(b) Let T be a family of Borel measurable maps from K to K. Assume that u ◦ T ∈ F

and E0(u ◦T ) = E0(u) for any u ∈ F and any T ∈ T . Furthermore, we assume that

F−1
w ◦ T ◦ Fw ∈ T for any w ∈ W∗. (5.37)

Then E(u ◦ T ) = E(u) for any u ∈ F and any T ∈ T .
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Proof. (a): Let n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2

satisfy (2.1). Let u = (u1, . . . , un1) ∈ F . Then Tl(uk ◦ Fw) = Tl(uk) ◦ Fw ∈ F for any
k ∈ {1, . . . , n1} and any w ∈ W∗ by (GC)p for (E0,F) and Lemma 5.32. If q2 <∞, then
by a similar estimate as (2.20),

n2∑
l=1

Sρ(E0)
(
Tl(u)

)q2/p =

n2∑
l=1

[∑
i∈S

ρiE0(Tl(u) ◦ Fi)

]q2/p

≤

∑
i∈S

ρi

[
n2∑
l=1

E0
(
Tl(u) ◦ Fi

)q2/p]p/q2q2/p

(by the triangle ineq. for ‖ · ‖`q2/p)

(GC)p
≤

∑
i∈S

ρi

[
n1∑
k=1

E0(uk ◦ Fi)q1/p
]p/q1q2/p

(2.19)
≤

 n1∑
k=1

[∑
i∈S

ρiE0(uk ◦ Fi)

]q1/p
p
q1
· q2
p

=

(
n1∑
k=1

Sρ(E0)(uk)
q1/p

)q2/q1

,

whence
∥∥(Sρ(E0)(Tl(u))1/p

)n2

l=1

∥∥
`q2
≤
∥∥(Sρ(E0)(uk)

1/p
)n1

k=1

∥∥
`q1

. The case q2 =∞ is similar,
so (Sρ(E0),F) satisfies (GC)p. Similarly, one can easily show that (Sρ,n(E0),F) satisfies
(GC)p for any n ∈ N. Hence (GC)p for (E ,F) holds by (5.35) and Proposition 2.9-(b).

(b): By (5.35), it suffices to prove Sρ,n(E0)(u ◦ T ) = Sρ,n(E0)(u) for any u ∈ F and
any T ∈ T . We immediately see that

Sρ,n(E0)(u ◦ T ) =
∑
w∈Wn

ρwE0((u ◦ T ) ◦ Fw)

=
∑
w∈Wn

ρwE0((u ◦ Fw) ◦ F−1
w ◦ T ◦ Fw)

(5.37)
=

∑
w∈Wn

ρwE0(u ◦ Fw) = Sρ,n(E0)(u),

which completes the proof.

Also, (E ,F) in Theorem 5.21 turns out to be strongly local under a mild condition.

Proposition 5.23. Assume the same conditions as in Theorem 5.21 and let E be given
by (5.35). If {u ∈ F | E0(u) = 0} = R1K, then {u ∈ F | E(u) = 0} = R1K and (E ,F)
satisfies the strongly local property (SL1).

Proof. It is immediate from (5.34) that {u ∈ F | E(u) = 0} = R1K . We will show (SL1)
for (E ,F). Let u1, u2, v ∈ F and a1, a2 ∈ R. Set Ai := suppm[ui − ai1K ] for i ∈ {1, 2}
and assume that A1 ∩ A2 = ∅. By (5.3), there exists n ∈ N such that (

⋃
w∈Wn[A1] Kw) ∩

(
⋃
w∈Wn[A2] Kw) = ∅, where Wn[Ai] := {w ∈ Wn | Kw ∩Ai 6= ∅}. Note that ui ◦Fw = ai1K

for w ∈ Wn \Wn[Ai]. This together with E(1K) = 0 and (5.35) yields that

E(u1 + u2 + v)
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=
∑

w∈Wn[A1]

ρwE(u1 ◦ Fw + v ◦ Fw) +
∑

w∈Wn[A2]

ρwE(u2 ◦ Fw + v ◦ Fw)

+
∑

w∈Wn\(Wn[A1]∪Wn[A2])

ρwE(v ◦ Fw)

= E(u1 + v) + E(u2 + v)−
∑

w∈Wn\Wn[A1]

ρwE(v ◦ Fw)−
∑

w∈Wn\Wn[A2]

ρwE(v ◦ Fw)

+
∑

w∈Wn\(Wn[A1]∪Wn[A2])

ρwE(v ◦ Fw)

= E(u1 + v) + E(u2 + v)− E(v),

which shows (SL1).

6 p-Resistance forms and nonlinear potential theory

In this section, we will introduce the notion of p-resistance form as a special class of p-
energy forms, and investigate harmonic functions with respect to a p-resistance form. In
particular, we prove fundamental results on taking the operation of traces of p-resistance
forms, weak comparison principle and Hölder continuity estimates for harmonic functions.
We also show the elliptic Harnack inequality for non-negative harmonic functions under
some assumptions, and introduce the notion of p-resistance metric with respect to a given
p-resistance form.

Throughout this section, we fix p ∈ (1,∞), a non-empty set X, a linear subspace F of
RX and E : F → [0,∞). (This setting corresponds to choosing m as the counting measure
on X in the previous sections.)

6.1 Basics of p-resistance forms

The next definition is a Lp-analogue of the notion of resistance form; see [Kig01, Kig03,
Kig12] for details on resistance forms.

Definition 6.1 (p-Resistance form). The pair (E ,F) of F ⊆ RX and E : F → [0,∞)
is said to be a p-resistance form on X if and only if it satisfies the following conditions
(RF1)p-(RF5)p:

(RF1)p F is a linear subspace of RX containing R1X and E( · )1/p is a seminorm on F
satisfying {u ∈ F | E(u) = 0} = R1X .

(RF2)p The quotient normed space (F/R1X , E1/p) is a Banach space.
(RF3)p If x 6= y ∈ X, then there exists u ∈ F such that u(x) 6= u(y).
(RF4)p For any x, y ∈ X,

RE(x, y) := R(E,F)(x, y) := sup

{
|u(x)− u(y)|p

E(u)

∣∣∣∣ u ∈ F \ R1X} <∞. (6.1)
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(RF5)p (E ,F) satisfies (GC)p.

Remark 6.2. (1) The notion of 2-resistance form coincides with the original notion of
resistance form (see [Kig01, Definition 2.3.1] for the definition of resistance forms)
although the condition (RF5)2 is stronger than (RF5) in [Kig01, Definition 2.3.1].
Indeed, we can obtain (RF5)2 by [Kig12, Theorem 3.14] and the explicit definition of
ELm in [Kig12, Proposition 3.8].

(2) Let (E ,F) be a p-resistance form on a finite set V . Then F = RV by (RF1)p, (RF3)p
and (RF5)p (see also [Kig12, Proposition 3.2]), so we say simply that E is a p-resistance
form on V if V is a finite set.

Example 6.3. (1) Consider the same setting as in Example 3.10-(1) and suppose that
Ω is a bounded domain satisfying the strong local Lipschitz condition (see [AF, Para-
graph 4.9]). Then the p-energy form (

´
Ω
|∇f |p dx,W 1,p(Ω)) is a p-resistance form on

Ω if and only if p > D. Indeed, (RF1)p and (RF5)p are clear from the definition
(we used the boundedness of Ω to ensure R1Ω ⊆ Lp(Ω)), (RF2)p and (RF3)p follow
from [AF, Theorem 3.3 and Corollary 3.4] for any p ∈ (1,∞). If p > D, then we can
use the Morrey-type inequality [AF, Lemma 4.28] to verify (RF4)p. Conversely, the
supremum in (6.1) is not finite when p ≤ D. To see it, we can assume that x = 0 ∈ Ω.
Let δ ∈ (0,∞) be small enough so that B(0, δ) ⊆ Ω and y 6∈ B(0, δ). For all large
n ∈ N so that n−1 < δ, define un ∈ C(Ω) by

un(z) :=

(
log |z|−1 − log δ−1

log n− log δ−1

)+

∧ 1, z ∈ Ω.

Then we easily see that un(0) = 1, un(y) = 1 and un ∈ W 1,p(Ω) with
ˆ

Ω

|∇un|p dz ≤
∣∣∣∣ 1

log (nδ)

∣∣∣∣p ˆ
B(0,δ)\B(0,n−1)

|z|−p dz = |SD−1|
∣∣∣∣ 1

log (nδ)

∣∣∣∣p ˆ δ

1
n

r−p+D−1 dr

=

{
|SD−1| |log (nδ)|−(p−1) if p = D,
|SD−1|
D−p |log (nδ)|−p

(
δD−p − n−(D−p)

)
if p < D,

where |SD−1| is the volume of the (D − 1)-dimensional unit sphere. In particular,
|un(x)−un(y)|p
‖|∇un|‖pLp(Ω)

→∞ as n→∞, so (RF4)p does not hold.

(2) The construction of a regular p-energy form on a compact metric space (K, d) in
[Kig23, Theorem 3.21] needs the assumption p > dimARC(K, d), where dimARC(K, d)
is the Ahlfors regular conformal dimension of (K, d). (See Definition 8.5-(4) for the
definition of dimARC(K, d). The same condition p > dimARC(K, d) is also assumed
in [Shi24].) This condition p > dimARC(K, d) plays the same role as p > D in (1)
above (see also [CCK24, Theorem 1.1]). In Theorem 8.19, we will see that p-energy
forms constructed in [Kig23, Theorem 3.21] are indeed p-resistance forms. We also
show that p-energy forms on p.-c.f. self-similar sets in [CGQ22, Theorem 5.1] under
the condition (R) in [CGQ22, p. 18] are p-resistance forms in Theorem 8.42.
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(3) Here we recall typical p-resistance forms on finite sets given in [KS23+, Example 2.2-
(1)] because these examples are important to construct self-similar p-resistance forms
on p.-c.f. self-similar structures in Subsection 8.3. Let V be a non-empty finite set.
Note that in this case E is a p-resistance form on V if and only if E : RV → [0,∞)
satisfies (RF1)p and (RF5)p; indeed, (RF3)p is obvious for F = RV , (RF2)p and
(RF4)p are easily implied by (RF1)p and dim(F/R1V ) < ∞. Now, consider any
functional E : RV → [0,∞) of the form

E(u) =
1

2

∑
x,y∈V

Lxy |u(x)− u(y)|p (6.2)

for some L = (Lxy)x,y∈V ∈ [0,∞)V×V such that Lxy = Lyx for any x, y ∈ V . It is
obvious that E satisfies (RF1)p if and only if the graph (V,EL) is connected, where
EL := {{x, y} | x, y ∈ V , x 6= y, Lxy > 0}. It is also easy to see that E satisfies (RF5)p.
It thus follows that E is a p-resistance form on V if and only if (V,EL) is connected.
Note that, while any 2-resistance form on V is of the form (6.2) with p = 2, the
counterpart of this fact for p 6= 2 is NOT true unless #V ≤ 2.

In the rest of this section, we assume that (E ,F) is a p-resistance form on X. Then
the following proposition is immediate from the definition of RE and Theorem 3.22.

Proposition 6.4. (1) For any u ∈ F and any x, y ∈ X,

|u(x)− u(y)|p ≤ RE(x, y)E(u). (6.3)

(2) R1/p
E is a metric on X.

(3) (F/R1X , E1/p) is a uniformly convex Banach space, and thus it is reflexive.

In particular, X can be regarded as a metric space equipped with R1/p
E . We equip X

with the topology induced from R
1/p
E . Then we note that F ⊆ C(X).

We introduce the regularity of p-resistance forms as follows.

Definition 6.5 (Regularity). Assume that X is locally compact. (E ,F) is said to be
regular if and only if F ∩ Cc(X) is dense in Cc(X) with respect to the uniform norm.

The regularity ensures the existence of cut-off functions.

Proposition 6.6. Assume that X is locally compact and that (E ,F) is regular. For any
open subsets U, V of X with V X compact and V X ⊆ U , there exists ψ ∈ F ∩ Cc(X) such
that 0 ≤ ψ ≤ 1, ψ = 1 on an open neighborhood of V X and supp[ψ] ⊆ U . In particular,
F ∩ Cc(X) is a special core.

Proof. Since X is locally compact, we can pick open subsets Ω1,Ω2 of X such that V X ⊆
Ω1 ⊆ Ω2, Ω2

X ⊆ U and Ω2
X is compact. By Urysohn’s lemma, there exists ψ0 ∈ Cc(X)

satisfying 0 ≤ ψ0 ≤ 1, ψ0 = 1 on Ω1, and supp[ψ0] ⊆ U . Since (E ,F) is regular,
for any ε > 0 there exists ψε ∈ F ∩ Cc(X) such that ‖ψ0 − ψε‖sup < ε. Now define
ψ :=

[
(1− 2ε)−1(ψε− ε)+

]
∧ 1, then ψ ∈ F by (RF1)p and Proposition 2.2-(b). The other

desired properties of ψ are obvious.
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We need the following notation to define traces of a p-resistance form later.

Definition 6.7. Let B be a non-empty subset of X. Define a linear subspace F|B of F
by F|B =

{
u|B

∣∣ u ∈ F}.
The following proposition is useful to discuss boundary conditions on finite sets.

Proposition 6.8. For any subset B of X with 2 ≤ #B <∞, we have F|B = RB.

Proof. It suffices to show that 1Bx ∈ F|B for any x ∈ B by virtue of (RF1)p. Let x ∈ B.
For each y ∈ B \ {x}, by (RF1)p and (RF2)p, there exists uy ∈ F satisfying uy(x) = 1
and uy(y) = 0. Let f :=

∑
y∈B\{x}(u

+
y ∧ 1) and g :=

∑
y∈B\{x}

(
(1 − uy)

+ ∧ 1
)
. Then

f, g ∈ F by (RF1)p and (RF5)p. Since f(x) = #B − 1, f |B\{x} ≤ #B − 2, g(x) = 0 and
g|B\{x} ≥ 1, the function h ∈ F given by

h :=
(
f − (#B − 2)(g+ ∧ 1)

)+ ∧ 1

satisfies h|B = 1Bx and hence 1Bx ∈ F|B.

The next definition is introduced to deal with Dirichlet-type boundary conditions.

Definition 6.9. For a non-empty subset B ⊆ X, define

F0(B) := {u ∈ F | u(x) = 0 for any x ∈ X \B}, BF :=
⋂

u∈F0(X\B)

u−1(0).

For basic properties of BF , see [Kig12, Chapters 2, 5 and 6]. Here we only recall the
following results, which will be used later.

Proposition 6.10 ([Kig12, Theorems 2.5 and 6.3]). Let B be a non-empty subset of X.

(a) CF :=
{
B
∣∣ B ⊆ X,B = BF

}
satisfies the axiom of closed sets and it defined a

topology on X. Moreover, {x} ∈ CF for any x ∈ X.
(b) For any B ⊆ X and x 6∈ BF , there exists u ∈ F such that u ∈ F0(X \ B), u(x) = 1

and 0 ≤ u ≤ 1.
(c) Assume that X is locally compact and that (E ,F) is regular. Then B = BF for any

closed set B of X.

Proof. The statements (a) and (b) follow from [Kig12, Theorem 2.4 and Lemma 2.5]. The
argument showing (R1) ⇒ (R2) in [Kig12, Proof of Theorem 6.3] proves (c).

For B ⊆ X and x 6∈ BF , we define

RE(x,B) := R(E,F)(x,B) := sup

{
|u(x)|p

E(u)

∣∣∣∣ u ∈ F0(X \B), u(x) 6= 0

}
<∞. (6.4)

Note that RE(x, {y}) = RE(x, y) for y ∈ X \ {x} by Proposition 6.10-(a).
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6.2 Harmonic functions and traces of p-resistance forms

In this subsection, we consider harmonic functions with respect to p-resistance forms and
traces of p-resistance forms to subsets of the original domains.

The following proposition states that the variational and distributional formulations
of harmonic functions coincide for p-resistance forms.

Proposition 6.11. Let h ∈ F and B ⊆ X. Then the following conditions are equivalent:

(1) E(h) = inf{E(u) | u ∈ F , u|B = h|B}.
(2) E(h;ϕ) = 0 for any ϕ ∈ F0(X \B).

Proof. Let ϕ ∈ F0(X \ B) and set E(t) := E(h + tϕ) for t ∈ R. Then E is differentiable
by Proposition 3.5. If E(h) = inf{E(u) | u ∈ F , u|B = h|B}, then E takes its minimum at
t = 0. Hence pE(h;ϕ) = d

dt
E(t)

∣∣
t=0

= 0, which implies E(h;ϕ) = 0 and proves (1) ⇒ (2).
Conversely, suppose that E(h;ϕ) = 0 for any ϕ ∈ F0(X \ B). Let v ∈ F with

v|B = h|B. Then E(h)− E(h; v) = E(h;h− v) = 0. By (3.11) and Young’s inequality,

E(h) = E(h; v) ≤ E(h)(p−1)/pE(v)1/p ≤ p− 1

p
E(h) +

1

p
E(v),

which implies E(h) ≤ E(v). Therefore, E(h) = inf{E(u) | u ∈ F , u|B = h|B} and the
implication (2) ⇒ (1) is proved.

Definition 6.12 (E-harmonic functions). Let B ⊆ X and h ∈ F . We say that h ∈ F is
E-subharmonic on X \B if and only if

E(h;ϕ) ≤ 0 for any ϕ ∈ F0(X \B) with ϕ ≥ 0. (6.5)

We say that h ∈ F is E-superharmonic on X \ B if and only if −h is E-subharmonic on
X \B. If h is E-subharmonic and E-superharmonic on X \B, i.e., h satisfies either (and
hence both) of (1) and (2) in Proposition 6.11, then h is called E-harmonic on X \B. We
set HE,B := {h ∈ F | h is E-harmonic on X \B}.

E-harmonic functions with given boundary values uniquely exist, and their energies
under E define a new p-resistance form on the boundary set, as follows. This new p-
resistance form is called the trace of (E ,F) on the boundary set.

Theorem 6.13. Let B ⊆ X be non-empty, and define E|B : F|B → [0,∞) by

E|B(u) := inf{E(v) | v ∈ F , v|B = u}, u ∈ F|B. (6.6)

Then (E|B,F|B) is a p-resistance form on B and RE|B = RE |B×B. Moreover, for any
u ∈ F|B there exists a unique hEB[u] ∈ F such that hEB[u]

∣∣
B

= u and E
(
hEB[u]

)
= E|B(u),

so that hEB(F|B) = HE,B, and

hEB[au+ b1B] = ahEB[u] + b1X for any u ∈ F|B and any a, b ∈ R, (6.7)
E|B(u; v) = E

(
hEB[u];hEB[v]

)
for any u, v ∈ F|B, (6.8)

E|B(f |B; g|B) = E(f ; g) for any f ∈ HE,B and any g ∈ F , (6.9)

where E|B(u; v) := 1
p

d
dt
E|B(u+ tv)

∣∣
t=0

for u, v ∈ F|B (recall (3.8)).
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Remark 6.14. The map hEB[ · ] does not satisfy either hEB[u+ v] ≤ hEB[u] + hEB[u] for any
u, v ∈ F|B or hEB[u + v] ≥ hEB[u] + hEB[u] for any u, v ∈ F|B in general, unless p = 2 or
#B ≤ 2.

Proof. We first show the desired existence of hEB[u] for any u ∈ F|B. Let us fix y∗ ∈ B
and let α := inf

{
E(v)

∣∣ v ∈ F with v|B = u
}
∈ [0,∞). Then there exists {vn}n∈N such

that vn ∈ F , vn|B = u and E(vn) ≤ α + n−1 for any n ∈ N. Note that vk+vl
2
∈ F also

satisfies
(
vk+vl

2

)∣∣
B

= u for any k, l ∈ N. In the case p ∈ (1, 2], we see that

E(vk − vl)1/(p−1)
(2.7)
≤ 2

(
E(vk) + E(vl)

)1/(p−1) − E(vk + vl)
1/(p−1)

≤ 2
(
2α + k−1 + l−1

)1/(p−1) − 2p/(p−1)α1/(p−1)

−−−−→
k∧l→∞

2(2α)1/(p−1) − 2p/(p−1)α1/(p−1) = 0. (6.10)

Similarly, in the case p ∈ [2,∞), we have

E(vk − vl)
(2.9)
≤ 2

(
E(vk)

1/(p−1) + E(vl)
1/(p−1)

)p−1 − E(vk + vl)

≤ 2
(
(α + k−1)1/(p−1) + (α + l−1)1/(p−1)

)p−1 − 2pα

−−−−→
k∧l→∞

2
(
2α1/(p−1)

)p−1 − 2pα = 0. (6.11)

Consequently, {vn}n∈N is a Cauchy sequence in (F/R1X , E1/p). By (RF2)p, there exists
h ∈ F such that h(y∗) = u(y∗) and limn→∞ E(h− vn) = 0. For any y ∈ B, by (RF4)p,

|h(y)− u(y)|p = |h(y)− vn(y)|p = |(h− vn)(y)− (h− vn)(y∗)|p ≤ RE(y, y∗)E(h−vn)→ 0,

and hence h|B = u. In particular, h is a minimizer of α. Suppose that g ∈ F also
satisfies g|B = u and E(g) = α. Then a similar estimate to (6.10) or to (6.11) imply that
E(h − g) = 0. Since h − g ∈ F0(X \ B) and B 6= ∅, we have h = g =: hEB[u] by (RF1)p.
The property (6.7) immediately follows from (RF1)p for (E ,F).

Next we prove that (E|B,F|B) is a p-resistance form on B. It is clear that E|B(au) =
|a|p E|B(u) for any u ∈ F|B. Let us show the triangle inequality for E|B( · )1/p, Since
(hEB[u] + hEB[v])

∣∣
B

= u+ v for any u, v ∈ F|B, we see that

E|B(u+ v)1/p = E
(
hEB[u+ v]

)1/p ≤ E
(
hEB[u] + hEB[v]

)1/p

≤ E
(
hEB[u]

)1/p
+ E

(
hEB[v]

)1/p
= E|B(u)1/p + E|B(v)1/p.

By (6.7), we easily see that F|B contains R1B. If u ∈ F|B satisfies E|B(u) = 0, then
hEB[u] ∈ R1X and hence hEB[u]

∣∣
B

= u ∈ R1B. Thus (RF1)p for (E|B,F|B) holds. To prove
(RF2)p for (E|B,F|B), let {un} ⊆ F|B satisfy limn∧m→∞ E|B(un − um) = 0. Then, by the
triangle inequality for E|B( · )1/p, we easily see that {E|B(un)}n∈N is a Cauchy sequence
in [0,∞). By (Cla)p for (E ,F) and a similar argument to (6.10) (or to (6.11)), we have
limn∧m→∞ E

(
hEB[un] − hEB[um]

)
= 0. Hence there exists h ∈ F such that limn→∞ E(h −

hEB[un]) = 0 by (RF2)p for (E ,F). Then E|B(h|B−un) ≤ E(h−hEB[un])→ 0, which proves
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the completeness of
(
F|B/R1B, E|B( · )1/p

)
. The condition (RF3)p for F|B is clear from

that of F . The inequality RE|B ≤ RE |B×B (and hence (RF4)p for (E|B,F|B)) follows from
the following estimate:

|u(x)− u(y)|p

E|B(u)
=

∣∣hEB[u](x)− hEB[u](y)
∣∣p

E(hEB[u])
≤ RE(x, y) for any x, y ∈ B, u ∈ F|B.

To show the converse inequality RE|B ≥ RE |B×B, let x, y ∈ B and let u ∈ F \ R1X .
Suppose that u(x) 6= u(y). Then u|B ∈ F|B \ R1B and E(u) ≥ E|B(u|B) > 0. Therefore,

|u(x)− u(y)|p

E(u)
≤ |u|B(x)− u|B(y)|p

E|B(u|B)
≤ RE|B(x, y).

The same estimate is clear if u(x) = u(y), so taking the supremum over u ∈ F\R1X yields
RE(x, y) ≤ RE|B(x, y). Lastly, we prove (RF5)p for (E|B,F|B). Let n1, n2 ∈ N, q1 ∈ (0, p],
q2 ∈ [p,∞], u = (u1, . . . , un1) ∈

(
F|B

)n1 , and suppose that T = (T1, . . . , Tn2) : Rn1 → Rn2

satisfies (2.1). Note that Tl(u) = Tl
(
hEB[u1], . . . , hEB[un1 ]

)∣∣
B
∈ F|B. Therefore, if q2 <∞,

then (
n2∑
l=1

E|B
(
Tl(u)

)q2/p)1/q2

≤

(
n2∑
l=1

E
(
Tl
(
hEB[u1], . . . , hEB[un1 ]

))q2/p)1/q2

≤

(
n1∑
k=1

E
(
hEB[uk]

)q1/p)1/q1

=

(
n1∑
k=1

E|B(uk)
q1/p

)1/q1

.

The case q2 =∞ is similar, so (E|B,F|B) satisfies (GC)p.
We conclude the proof by showing (6.8) and (6.9). By Proposition 3.5, we know that

lim
t↓0

E|B(u± tv)− E|B(u)

±t
=

d

dt
E|B(u+ tv)

∣∣∣∣
t=0

,

and

lim
t↓0

E
(
hEB[u]± thEB[v]

)
− E

(
hEB[u]

)
±t

= pE
(
hEB[u];hEB[v]

)
.

For any t > 0, we have

E
(
hEB[u]− thEB[v]

)
− E

(
hEB[u]

)
−t

≤ E|B(u− tv)− E|B(u)

−t

≤ E|B(u+ tv)− E|B(u)

t
≤
E
(
hEB[u] + thEB[v]

)
− E

(
hEB[u]

)
t

,

and hence we obtain (6.8) by letting t ↓ 0. If f ∈ HE,B, i.e., hEB[f |B] = f , then E(f ; g) =
E(f ;hEB[g]) = E|B(f |B; g|B) since g − hEB[g|B] ∈ F0(X \ B) for any g ∈ F . This proves
(6.9).

The following proposition states a compatibility of the operation taking traces.
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Proposition 6.15. Let A,B be subsets of X such that ∅ 6= A ⊆ B. Then (E|B|A,F|B|A) =

(E|A,F|A) and hEB ◦ h
E|B
A = hEA for any u ∈ F|A. In particular, hE|BA [u] = hEA[u]

∣∣
B
.

Proof. Clearly, we have F|B|A = F|A. For any u ∈ F|A, we see that

E|A(u) = E
(
hEA[u]

)
≥ min

{
E(v)

∣∣ v ∈ F such that v|B = hEA[u]
∣∣
B

}
= E|B

(
hEA[u]

∣∣
B

)
≥ min

{
E|B(w)

∣∣ w ∈ F|B such that w|A = hEA[u]
∣∣
A

= u
}

= E|B|A(u) = E|B
(
h
E|B
A [u]

)
= E

(
hEB
[
h
E|B
A [u]

])
≥ min

{
E(v)

∣∣∣ v ∈ F such that v|A =
(
hEB ◦ h

E|B
A

)
[u]
∣∣
A

= u
}

= E|A(u),

which implies E|A(u) = E|B|A(u) and E
(
hEA[u]

)
= E

(
(hEB ◦ h

E|B
A )[u]

)
. Since restrictions of

both functions hEA[u] and (hEB ◦h
E|B
A )[u] to A are u, the uniqueness in Theorem 6.13 implies

hEA[u] =
(
hEB ◦ h

E|B
A

)
[u]. Considering the restriction to B yields hE|BA [u] = hEA[u]

∣∣
B
.

The following theorem presents an expression of (E ,F) as the “inductive limit” of its
traces {E|V }V⊆X,1≤#V <∞ to finite subsets, which is a straightforward extension of the
counterpart for resistance forms given in [Kaj, Corollary 2.37]. This expression can be
applied to get a few useful results on convergences of the seminorm E1/p.

Theorem 6.16. It holds that

F =

{
u ∈ RX

∣∣∣∣ sup
V⊆X;1≤#V <∞

E|V (u|V ) <∞
}
, (6.12)

E(u) = sup
V⊆X;1≤#V <∞

E|V (u|V ) for any u ∈ F . (6.13)

Proof. Let us define (E∗,F∗) by

E∗(u) := sup
V⊆X;1≤#V <∞

E|V (u|V ), u ∈ RX ,

and F∗ := {u ∈ RX | E∗(u) < ∞}. Then E1/p
∗ is clearly a seminorm on F∗ and {u ∈ F∗ |

E∗(u) = 0} = R1X . We first show that, for any V ⊆ X with 1 ≤ #V < ∞ and any
u ∈ RV ,

hEV [u] ∈ F∗ and E|V (u) = min{E∗(v) | v ∈ F , v|V = u} = E∗
(
hEV [u]

)
, (6.14)

both of which are obtained by seeing that, for any U ⊆ X with 1 ≤ #U <∞,

E|U
(
hEV [u]

∣∣
U

)
≤ E

(
hEV [u]

)
= E|V (u).

Indeed, taking the supremum over U , we get E∗
(
hEV [u]

)
≤ E|V (u) and hence (6.14) holds.

(The converse E|V (u) ≤ E∗
(
hEV [u]

)
is clear from the definition.) We also note that E∗
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satisfies (Cla)p since (E|Y ,F|Y ) is a p-resistance form for each Y ⊆ X and E|V (u|V ) ≤
E|U(u|U) for any U, V ⊆ X with ∅ 6= V ⊆ U and u ∈ RU .

The inclusion F ⊆ F∗ and E∗ ≤ E (on F) easily follow from the following estimate:

E|V (u|V ) = E
(
hEV [u|V ]

)
≤ E(u) for any u ∈ F and V ⊆ X with 1 ≤ #V <∞.

To show F∗ ⊆ F and E ≤ E∗, let u ∈ F∗, let us choose a subset Vn ⊆ X for each n ∈ N
such that 1 ≤ #Vn <∞ and E|Vn(u|Vn) ≥ E∗(u)− n−1, and set un := hEVn [u|Vn ]. Then

E∗(u)− n−1 ≤ E|Vn(u|Vn)
(6.14)
= E∗(un)

(6.14)
≤ E∗(u),

which implies that limn→∞ E∗(un) = limn→∞ E(un) = E∗(u). Using (Cla)p for E∗ and
E∗
(
u+un

2

)
≥ E∗(un), we easily obtain limn→∞ E∗(u− un) = 0 similarly as (6.10) or (6.11).

We next show that {un}n∈N is a Cauchy sequence in (F/R1X , E1/p). From (Cla)p for E ,
limn→∞ E(un) = limn→∞ E∗(un) = E∗(u) and

E(uk + ul) ≥ E
(
hEVk∪Vl [(uk + ul)|Vk∪Vl ]

)
≥ 2pE|Vk∪Vl(u|Vk∪Vl)

(6.14)
= 2pE∗(uk+l),

we can obtain limk∧l→∞ E(uk−ul) = 0 similarly as (6.10) or (6.11). Hence, by (RF1)p for
(E ,F), there exists v ∈ F such that limn→∞ E(v−un) = 0. By E∗ ≤ E on F , we conclude
that limn→∞ E∗(v − un) = 0, which together with the triangle inequality for E1/p

∗ and
limn→∞ E∗(u− un) = 0 implies that E∗(u− v) = 0 and thus u− v ∈ R1X . In particular,
u = (u− v) + v ∈ F∗ and E(u) = limn→∞ E(un) = E∗(u), completing the proof.

Corollary 6.17. Let u ∈ F and let {un}n∈N ⊆ F .
(a) Assume that limn→∞(un(x) − un(y)) = u(x) − u(y) for any x, y ∈ X. Then E(u) ≤

lim infn→∞ E(un).
(b) limn→∞ E(u− un) = 0 if and only if lim supn→∞ E(un) ≤ E(u) and limn→∞(un(x)−

un(y)) = u(x)− u(y) for any x, y ∈ X.

Proof. Suppose that u, un ∈ F , n ∈ N, satisfy limn→∞(un(x) − un(y)) = u(x) − u(y) for
any x, y ∈ X. For any ε > 0, by Theorem 6.16, there exists V ⊆ X with 1 ≤ #V < ∞
such that E|V (u|V ) > E(u)− ε. Then we have

lim
n→∞

E|V (un|V ) = E|V (u|V ) > E(u)− ε,

since RV is a finite-dimensional vector space, E|V ( · )1/p is a seminorm on RV and
limn→∞maxx,y∈V |(un(x)− un(y))− (u(x)− u(y))| = 0. In particular, there exists N1 ∈
N (depending on ε) such that E(un) ≥ E|V (un|V ) > E(u) − ε for any n ≥ N1

and hence lim infn→∞ E(un) ≥ E(u), proving (a). Next, in addition, we assume that
lim supn→∞ E(un) ≤ E(u). Then limn→∞ E(un) = E(u). Since {u+un

2
}n∈N satisfies the

same conditions as {un}n∈N, we obtain limn→∞ E
(
u+un

2

)
= E(u). Similar to (6.10) or

(6.11), we have from (Cla)p for E that limn→∞ E(u− un) = 0. The converse part of (b) is
clear from (6.3).
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Corollary 6.18. (a) Let {ϕn}n∈N ⊆ C(R) satisfy limn→∞ ϕn(t) = t and |ϕn(t)− ϕn(s)| ≤
|t− s| for any n ∈ N, s, t ∈ R. Then {ϕn(u)}n∈N ⊆ F and limn→∞ E(u−ϕn(u)) = 0
for any u ∈ F .

(b) Let u ∈ F , {un}n∈N ⊆ F and ϕ ∈ C(R) satisfy limn→∞ E(u−un) = 0, limn→∞ un(x) =
u(x) for some x ∈ X, |ϕ(t)− ϕ(s)| ≤ |t− s| for any s, t ∈ R and ϕ(u) = u. Then
{ϕ(un)}n∈N ⊆ F and limn→∞ E(u− ϕ(un)) = 0.

Proof. The statement (a) is immediate from Corollary 6.17 and (RF5)p, so we show (b).
Since, under the assumptions of (b), for any y ∈ X,

|u(y)− un(y)| ≤ RE(x, y)1/pE(u− un)1/p + |u(x)− un(x)| −−−→
n→∞

0,

we get limn→∞ ϕ(un(y)) = u(y). By (RF5)p, we have ϕ(un) ∈ F and lim supn→∞ E(ϕ(un)) ≤
limn→∞ E(un) = E(u), so Corollary 6.17 yields limn→∞ E(u− ϕ(un)) = 0.

If X is separable, then we have the following useful version of Theorem 6.16.

Proposition 6.19. Assume that X (equipped with the topology induced by R1/p
E ) is sep-

arable. Let {Vn}n∈N∪{0} be a increasing sequence of finite subsets of X with V∗
X

= X,
where V∗ :=

⋃
n∈N∪{0} Vn. We define (E ′,F ′) by

F ′ :=
{
u ∈ C(X)

∣∣∣ lim
n→∞

E|Vn(u|Vn) <∞
}
, (6.15)

E ′(u) := lim
n→∞

E|Vn(u|Vn) ∈ [0,∞), u ∈ F ′; (6.16)

note that {E|Vn(u|Vn)}n∈N∪{0} is non-decreasing since Vn ⊆ Vn+1. Then (E ′,F ′) = (E ,F).
Moreover,

lim
n→∞

E
(
u− hEVn [u|Vn ]

)
= 0 for any u ∈ F , and (6.17)

E(u; v) = lim
n→∞

E|Vn(u|Vn ; v|Vn) for any u, v ∈ F . (6.18)

Proof. By Theorem 6.16, E ′ ≤ E and F ⊆ F ′ are clear. To show the converse, let
u ∈ F ′, set un := hEVn(u|Vn) ∈ F and fix x0 ∈ V0. We can assume that u(x0) = 0
by considering u − u(x0) instead of u. A similar estimate to (6.10) or (6.11) for E and
(RF2)p together imply that limn→∞ E(v − un) = 0 for some v ∈ F with v(x0) = 0. Since
|v(x)− u(x)|p ≤ RE(x, x0)E(u−un) for any x ∈ V∗ and any n ∈ N with x ∈ Vn by (6.3), we
have v|V∗ = u|V∗ . By V∗

X
= X and u, v ∈ C(X) (see (6.3)), we conclude that u = v ∈ F

and thus F = F ′, E(u) = E ′(u) and limn→∞ E(u − un) = 0, i.e., (E ′,F ′) = (E ,F) and
(6.17) hold. The convergence in (6.18) is immediate from (6.17), (3.11) and (3.12).

Based on Proposition 7.4, a standard machinery for constructing the “inductive limit”
of p-energy forms on p.-c.f. self-similar structures can be stated in Theorems 6.21 and 6.22
below, which are extensions of the counterpart for resistance forms given in [Kaj, Lemma
2.24, Theorem 2.25 and Corollary 2.43]. This approach will be used in Subsection 8.3,
where the construction of p-energy forms due to [CGQ22] is reviewed. See also [Kig01,
Sections 2.2, 2.3 and 3.3] for the details in the case p = 2.
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Definition 6.20 (Compatible sequence of p-resistance forms on finite sets). Let Vn be
a non-empty finite set and let E (n) be a p-resistance form on Vn for each n ∈ N ∪ {0}.
We say that the sequence S := {(Vn, E (n))}n∈N∪{0} is a compatible sequence of p-resistance
forms if and only if Vn ⊆ Vn+1 and E (n+1)|Vn = E (n) for any n ∈ N ∪ {0}.

Theorem 6.21. Let S = {(Vn, E (n))}n∈N∪{0} be a compatible sequence of p-resistance
forms. We define V∗ :=

⋃
n∈N∪{0} Vn,

FS :=
{
u ∈ RV∗

∣∣∣ lim
n→∞

E (n)(u|Vn) <∞
}
, and (6.19)

ES(u) := lim
n→∞

E (n)(u|Vn), u ∈ FS . (6.20)

Then (ES ,FS) is a p-resistance form on V∗ and ES |Vn = E (n) for any n ∈ N ∪ {0}.

Proof. Noting that {E (n)(u|Vn)}n∈N∪{0} is non-decreasing for any u ∈ RV∗ , we easily obtain
(RF1)p for (ES ,FS). To see (RF5)p for (ES,∗,FS), fix n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞]
and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfying (2.1). Let u = (u1, . . . , un1) ∈ Fn1

S . Then,
for any l ∈ {1, . . . , n2}, (GC)p for E (n) implies that

E (n)(Tl(u)|Vn)1/p ≤
∥∥(E (n)(Tl(u|Vn))1/p

)n2

l=1

∥∥
`q2

≤
∥∥(E (n)(uk|Vn)1/p

)n1

k=1

∥∥
`q1
≤
∥∥(ES,∗(uk)1/p

)n1

k=1

∥∥
`q1

<∞.

By letting n → ∞, we obtain (GC)p for (ES ,FS), i.e., (RF5)p for (ES ,FS) holds. Before
proving (RF2)p-(RF4)p for (ES ,FS), we shall show the following claim:

For any n ∈ N ∪ {0} and any u ∈ RVn , there exists a unique hSVn [u] ∈ FS such
that hSVn [u]

∣∣
Vn

= u and ES
(
hSVn [u]

)
= min{ES(v) | v ∈ FS , v|Vn = u} = E (n)(u). (6.21)

To prove (6.21), by (RF1)p and (RF5)p for (ES ,FS), we first note that #{v ∈ FS | ES(v) =
α} ≤ 1, where α := min{ES(v) | v ∈ FS , v|Vn = u}. (Recall the arguments in (6.10) and
(6.11).) Hence it suffices to show the existence of the minimizer realizing α. For any
k2 ≥ k1 ≥ n, we have hE(k2)

Vn [u]
∣∣
Vk1

= hE
(k1)

Vn [u] by E (k2)|Vk1
= E (k1) and Proposition 6.15,

which implies that u∗(x) := hE
(k)

Vn [u](x) for x ∈ Vk with k ≥ n is well-defined. Clearly,
u∗|Vn = u. For any k ≥ n, we have E (k)(u∗|Vk) = E (k+1)(u∗|Vk+1

) by Proposition 6.15
again, whence u∗ ∈ FS and ES(u∗) = E (n)(u). Since E (n)(u) ≤ ES(v) for any v ∈ FS with
v|Vn = u, we also get ES(u∗) = α, so hSVn [u] := u∗ is the desired function.

Now let us go back to the proof of (RF2)p-(RF4)p.

(RF3)p: This is immediate since FS |Vn = RVn for any n ∈ N ∪ {0} by (6.21).
(RF4)p: Let x, y ∈ V∗ with x 6= y and let n ∈ N ∪ {0} satisfy x, y ∈ Vn. Let u :=

hE
n

{x,y}
[
1
{x,y}
x

]
∈ RVn . Then for any v ∈ FS with v|{x,y} = 1

{x,y}
x ,

ES(v)
(6.21)
≥ E (n)(v|Vn) ≥ REn(x, y)−1 = E (n)(u)

(6.21)
= ES

(
hSVn [u]

)
.

Therefore, we have

RES (x, y) = ES
(
hSVn [u]

)−1
= RE(n)(x, y) <∞. (6.22)
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(RF2)p: Fix x∗ ∈ V∗ and let {uk}k∈N be such that uk ∈ FS , uk(x∗) = 0 and limk∧l→∞ ES(uk−
ul) = 0. From (RF4)p, {uk(x)}k∈N is a Cauchy sequence in R for any x ∈ V∗, so we
define u ∈ RV∗ by u(x) := limk→∞ uk(x). For any ε > 0 there exists N0 ∈ N such that
supk,l≥N0

ES(uk − ul) ≤ ε. Since E (n)( · )1/p is a norm on the finite-dimensional vector
space RVn/R1Vn , we obtain

E (n)(u|Vn − ul|Vn) ≤ lim inf
k→∞

ES(uk − ul) ≤ ε for any l ≥ N0 and any n ∈ N ∪ {0}.

Since n ∈ N ∪ {0} is arbitrary, we conclude that u ∈ FS and liml→∞ ES(u − ul) = 0,
which proves that (FS/R1V∗ , E

1/p
S ) is a Banach space.

Now we know that (ES ,FS) is a p-resistance form on V∗. Then (6.21) means that
hSVn = hESVn [u] for any u ∈ RVn , whence ES |Vn = E (n) by (6.21) again.

The following theorem yields a p-resistance form on the completion of (X,R
1/p
E ).

Theorem 6.22. Let (X̂, d̂) be the completion of the metric space (X,R
1/p
E ). We define

F̂ ⊆ RX̂ and Ê : F̂ → [0,∞) by

F̂ :=
{
u ∈ C(X̂)

∣∣ u|X ∈ F}, (6.23)

Ê(u) := E(u|X), u ∈ F̂ . (6.24)

Then (Ê , F̂) is a p-resistance form on X̂, R1/p

Ê
= d̂, and the map F̂ 3 u 7→ u|X ∈ F is a

linear isomorphism.

Proof. Set R̂(x, y) := d̂(x, y)p for convenience, then R̂
∣∣
X×X = RE . For any u ∈ F , we

know that u is uniformly continuous with respect to d̂ by (6.3) for (E ,F), so there exists
a unique û ∈ C(X̂) satisfying û|X = u and then û ∈ F̂ . This implies that the map
F̂ 3 u 7→ u|X ∈ F is a bijection and thus it is a linear isomorphism. Also, for u ∈ F̂ , we
define the continuous function ηu : X̂×X̂ → R by ηu(x, y) := |u(x)− u(y)|p−R̂(x, y)Ê(u).
Since ηu|X×X ≤ 0 by (6.3) for RE , the continuity of ηu yields

|u(x)− u(y)|p ≤ R̂(x, y)Ê(u), x, y ∈ X̂ × X̂. (6.25)

Now we show (RF1)p-(RF5)p for (Ê , F̂).

(RF1)p: Clearly, F̂ is a linear subspace of RX̂ containing R1X̂ and Ê( · )1/p is a semi-
norm on F̂ . By 1X̂ |X = 1X and (RF1)p for (E ,F), it holds that {u ∈ F̂ | Ê(u) = 0} =
R1X̂ .

(RF2)p: This is immediate from (RF2)p for (E ,F) since F̂ 3 u 7→ u|X ∈ F is a linear
isomorphism.

(RF5)p: This is immediate from (RF5)p for (E ,F).
(RF3)p and (RF4)p: Let x, y ∈ X̂ with x 6= y and let {xn}n≥0, {yn}n≥0 ⊆ X satisfy

limn→∞ R̂(x, xn) = limn→∞ R̂(y, yn) = 0. We can assume that xn 6= yn for any n ≥ 0.
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Let un ∈ F̂ be the unique function satisfying un|X = hE{xn,yn}
[
1
{xn,yn}
xn

]
. Then {Ê(un)}n≥0

is bounded in [0,∞) since Ê(un) = RE(xn, yn)−1 = R̂(xn, yn)−1 → R̂(x, y)−1 as n → ∞.
Also, it is easy to see that 0 ≤ un ≤ 1. From (6.25) and the Arzelá–Ascoli theorem,
there exist a subsequence {unk}k and u∗ ∈ C(X̂) such that limk→∞ ‖u∗ − unk‖sup,X̂ = 0.
A similar argument as in the proof of (RF2)p for (ES ,FS) in Theorem 6.21 implies that
u∗ ∈ F̂ and limk→∞ Ê(u∗ − unk) = 0. Now we define u ∈ F̂ by u := u∗ − u∗(y) so that
u(y) = 0. Then we have from (6.25) that

|u(xnk)− u(ynk)− 1|p ≤ R̂(xnk , ynk)Ê(u− unk) −−−→
k→∞

0,

whence u(x) = 1, in particular, (RF3)p holds. By (6.25) again, we obtain RÊ(x, y) ≤
R̂(x, y) < ∞, so (RF4)p holds. Moreover, this also shows RÊ(x, y) = R̂(x, y) = Ê(u)−1.

Corollary 6.23. Let S = {(Vn, E (n))}n∈N∪{0} be a compatible sequence of p-resistance
forms and let (K, d) be the completion of (V∗, R1/p

ES ), where (ES ,FS) is the p-resistance form
on V∗ =

⋃
n∈N∪{0} Vn given in Theorem 6.21. We define F̂S ⊆ RK and ÊS : F̂S → [0,∞)

by

F̂S :=
{
u ∈ C(K)

∣∣ u|V∗ ∈ FS} =
{
u ∈ C(K)

∣∣∣ lim
n→∞

E (n)(u|Vn) <∞
}
, (6.26)

ÊS(u) := ES(u|V∗) = lim
n→∞

E (n)(u|Vn), u ∈ F̂S . (6.27)

Then (ÊS , F̂S) is a p-resistance form on K, R1/p

ÊS
= d, and the map F̂S 3 u 7→ u|V∗ ∈ FS

is a linear isomorphism. In particular, ÊS
∣∣
Vn

= E (n) for any n ∈ N ∪ {0}.

Proof. We obtain the desired assertions by applying Theorem 6.22 with V∗, (ES ,FS)
in place of X, (E ,F). Also, by ES |Vn = E (n) (see Theorem 6.21) and the fact that
F̂S 3 u 7→ u|V∗ ∈ FS is a linear isomorphism, we have ÊS

∣∣
Vn

= E (n).

We conclude this subsection with the strong locality of p-resistance forms.

Definition 6.24 (Strong locality for p-resistance form). We say that (E ,F) is strongly
local if and only if E(u1; v) = E(u2; v) for any u1, u2, v ∈ F with either suppX [u1−u2−a1X ]
or suppX [v − b1X ] is compact and (u1(x) − u2(x) − a)(v(x) − b) = 0 for any x ∈ X for
some a, b ∈ R.

In the following proposition, we discuss relations among the strong locality in Defini-
tion 6.24, (SL1) and (SL2) of (E ,F).

Proposition 6.25. (a) If (E ,F) is strongly local (in the sense of Definition 6.24), then
(E ,F) satisfies the strongly local property (SL2).
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(b) If (E ,F) is regular and strongly local (in the sense of Definition 6.24), then for
any u1, u2, v ∈ F with either suppX [u1 − a11X ] or suppX [u2 − a21X ] compact and
(u1(x)− a1)(u2(x)− a2) = 0 for any x ∈ X for some a1, a2 ∈ R,

E(u1 + u2 + v) + E(v) = E(u1 + v) + E(u2 + v).

In particular, (E ,F) satisfies the strongly local property (SL1).
(c) Assume that (E ,F) is regular and satisfies the strongly local property (SL2). Then

(E ,F) is strongly local (in the sense of Definition 6.24).

Proof. (a): If u1, u2, v ∈ F and a, b ∈ R satisfy suppX [u1−u2−a1X ]∩suppX [v−b1X ] = ∅,
then it is immediate that (u1(x)− u2(x)− a)(v(x)− b) = 0 for any x ∈ X. Hence (E ,F)
satisfies the strongly local property (SL2).

(b): Let ϕn ∈ C(R) be given by ϕn(t) := t−(− 1
n
)∨(t∧ 1

n
) for each n ∈ N. Set u1,n(x) :=

ϕn(u1(x)− a1) and u2,n(x) := ϕn(u2(x)− a2). Then ui,n ∈ F and limn→∞ E(ui− ui,n) = 0
for i ∈ {1, 2} by Corollary 6.18-(a) and (RF1)p. Furthermore, suppX [u1,n]∩ suppX [u2,n] =
∅ and either suppX [u1,n] or suppX [u2,n] is compact. By (a), Proposition 3.30-(b) and
Proposition 6.6, we have E(u1,n + u2,n + v) + E(v) = E(u1,n + v) + E(u2,n + v) for any
v ∈ F . We obtain the desired assertion by letting n→∞.

(c): Set vn(x) := ϕn(v(x) − b) for each n ∈ N, where ϕn is the same as in the proof
of (b). Then vn ∈ F and limn→∞ E(v − vn) = 0 by Corollary 6.18-(a) and (RF1)p.
Furthermore, suppX [u1 − u2 − a1X ] ∩ suppX [vn] = ∅ and either suppX [u1 − u2 − a1X ] or
suppX [vn] is compact. Hence, by (SL2), it follows that E(u1; vn) = E(u2; vn). We obtain
E(u1; v) = E(u2; v) by letting n→∞.

6.3 Weak comparison principles

In this subsection, we show some weak comparison principles in this context. The first
one is an application of the strong subadditivity.

Proposition 6.26 (Weak comparison principle I). Let B be a non-empty subset of X.
Then, for any u, v ∈ F|B satisfying u(y) ≤ v(y) for any y ∈ B, it holds that

hEB[u](x) ≤ hEB[v](x) for any x ∈ X. (6.28)

In particular,
inf
B
u ≤ hEB[u](x) ≤ sup

B
u for any x ∈ X. (6.29)

Proof. Let f := hEB[u] and g := hEB[v]. We will prove f ∧g = f , which immediately implies
(6.28). Since (f ∧ g)|B = u and (f ∨ g)|B = v, we have

E(f) ≤ E(f ∧ g) and E(g) ≤ E(f ∨ g).

By the strong subadditivity in (2.5), we obtain E(f ∧ g) = E(f) (and E(f ∨ g) = E(g)),
which together with the uniqueness in Theorem 6.13, we have f ∧ g = f .
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We can extend the weak comparison principle above to arbitrary open subsets (see
Proposition 6.30 below) if (E ,F) is regular and strongly local. This version of weak
comparison principle will be used to prove the strong comparison principle on p.-c.f. self-
similar structures in a forthcoming paper [KS.b]. We begin with some preparations.

Definition 6.27. Let U be a non-empty open subset of X.

(1) Define

Floc(U) :=

{
f ∈ RU

∣∣∣∣ f1V = f#1V for some f# ∈ F for each
relatively compact open subset V of U

}
.

(2) Assume that (E ,F) is strongly local. Let V ⊆ U be an open subset. A function
h ∈ Floc(U) is said to be E-harmonic on V if E(h#;ϕ) = 0 for any ϕ ∈ F0(V ) with
supp[ϕ] compact (with respect to the metric topology of R1/p

E ), where h# ∈ F satisfies
h1supp[ϕ] = h#1supp[ϕ].

Remark 6.28. (1) If X =: K comes from a self-similar structure and the topology in-
duced by R1/p

E coincides with the original topology of K, then the definition of Floc(U)
above is the same as (5.30) by virtue of F ⊆ C(K).

(2) By the strong locality of (E ,F), the value E(h#;ϕ) is independent of a particular
choice of h#.

We need the following proposition to achieve the desired weak comparison principle.

Proposition 6.29. Assume that X is locally compact and that (E ,F) is regular and
strongly local. Let U be a non-empty open subset of X and let u ∈ F satisfy u(x) = 0 for
any x ∈ ∂XU = U

X \ U . Then u1U ∈ F .

Proof. Define ϕn ∈ C(R) by ϕn(t) := t−
(

1
n

)
∨
(
t∧ 1

n

)
and set An := U ∩ suppX [ϕn(u)] for

each n ∈ N. Since u|∂U = 0, An = U
X ∩ suppX [ϕn(u)] and thus An is a compact subset

of U . By Proposition 6.6, there exists vn ∈ F such that 1An ≤ vn ≤ 1U . Then we easily
obtain ϕn(u)1U = ϕn(u)vn, hence by Corollary 6.18-(a) and Proposition 2.2-(d) we have
ϕn(u)1U ∈ F . By the strong locality and Corollary 6.18-(a), {ϕn(u)1U}n∈N is a Cauchy
sequence in (F/R1X , E1/p). Thus, by (RF2)p and (6.3), {ϕn(u)1U}n∈N converges in norm
in (F/R1X , E1/p) to its pointwise limit u1U , whence u1U ∈ F .

Now we can state the desired version of the weak comparison principle.

Proposition 6.30 (Weak comparison principle II). Assume that X is locally compact
and that (E ,F) is regular and strongly local. Let U be non-empty open subset of X such
that UX is compact and U 6= X. If u, v ∈ C(U

X
) ∩ Floc(U) are E-harmonic on U and

u(x) ≤ v(x) for any x ∈ ∂XU = U
X \ U , then u(x) ≤ v(x) for any x ∈ UX .

Proof. We first observe that ∂XO 6= ∅ for any non-empty open subset of X such that OX

is compact and O 6= X. To this end, suppose that ∂XO = ∅ and then show O = X.
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We see from Proposition 3.26 that there exists ϕ ∈ F ∩ Cc(X) such that ϕ|O = 1 and
ϕ|X\O = 0 since O = O

X is compact. By the strong locality for (E ,F) and (RF1)p, we
have E(ϕ) = 0 and hence ϕ ∈ R1X . Therefore, X \O = ∅ since O is non-empty.

Let us go back to the proof. Since u and v are uniformly continuous on U
X and

∂XU 6= ∅, for any ε > 0 there exists δ > 0 such that

V :=
{
x ∈ U

∣∣∣ dist
R

1/p
E

(x, ∂XU) > δ
}
6= ∅,

and u(x) ≤ v(x) + ε for any x ∈ UX \ V . Then V is a relatively compact open subset
of U and hence there exist u#, v# ∈ F such that u1V = u#1V and v1V = v#1V . Define
f := u#− (u#− v#)+1X\V , g := v# + (u#− v#)+1X\V . Then f, g ∈ F by u#(x) ≤ v#(x)
for any x ∈ ∂XV 6= ∅, Propositions 2.2-(b) and 6.29. We also have f, g ∈ HE,X\V by the
strong locality for (E ,F). Since f(x) = (u# ∧ v#)(x) ≤ (u# ∨ v#)(x) = g(x) for any
x ∈ X \ V , Proposition 6.26 implies that u(x) = u#(x) = f(x) ≤ g(x) = v#(x) = v(x)

for any x ∈ V . Therefore, we conclude that u(x) ≤ v(x) + ε for any x ∈ UX . Since ε > 0
is arbitrary, we complete the proof.

6.4 Hölder regularity of harmonic functions

In this subsection, we present a sharp Hölder regularity estimate on E-harmonic functions
and prove that R1/(p−1)

E is a metric on X.
As an application of Proposition 3.9, we can show the following Hölder continuity

estimate for E-harmonic functions.

Theorem 6.31. Let B be a non-empty subset of X. Then for any x ∈ X \ BF and any
y ∈ X \ {x},

hEB∪{x}
[
1
B∪{x}
B

]
(y) ≤ RE(x, y)1/(p−1)

RE(x,B)1/(p−1)
. (6.30)

Moreover, for any h ∈ HE,B with supB |h| <∞, any x ∈ X \BF and any y ∈ X,

|h(x)− h(y)| ≤ RE(x, y)1/(p−1)

RE(x,B)1/(p−1)
osc
B

[h]. (6.31)

Proof. To show (6.30), on one hand, we see that

−E|B∪{x}(1B;1x) = E|B∪{x}(1B;1B∪{x})− E|B∪{x}(1B;1x)

= E|B∪{x}(1B;1B) = RE(x,B)−1. (6.32)

On the other hand,

− E|B∪{x}(1B;1x)

= −E
(
hEB∪{x}[1B];hEB∪{x,y}[1x]

)
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= −E|B∪{x,y}
(
hEB∪{x}[1B]

∣∣
B∪{x,y};1x

)
≥ −E|B∪{x,y}

((
hEB∪{x}[1B](y) · hE{x,y}[1y]

)∣∣
B∪{x,y};1x

)
(by Proposition 3.9)

= −hEB∪{x}[1B](y)p−1E|B∪{x,y}
(
hE{x,y}[1y]

∣∣
B∪{x,y};1x

)
= hEB∪{x}[1B](y)p−1RE(x, y)−1.

(6.33)

Here, we used 1{x,y} − hE{x,y}[1y] = hE{x,y}[1x] (see Remark 6.14) in the last equality. We
obtain (6.30) by combining (6.32) and (6.33).

Next we prove (6.31). Let x ∈ X \ BF , y ∈ X and h ∈ HE,B with supB |h| <∞. We
can assume that x 6= y. Then we see that

h− h(x) ≤ hEB∪{x}

[
(h− h(x))+

∣∣
B∪{x}

]
(by Propositions 6.26 and 6.15)

≤ hEB∪{x}

[
osc
B

[h] · 1B∪{x}B

]
(by Proposition 6.26 and (h− h(x))+(x) = 0)

= osc
B

[h] · hEB∪{x}
[
1
B∪{x}
B

]
.

Similarly, we have

h− h(x) ≥ −hEB∪{x}
[
(h− h(x))−

∣∣
B∪{x}

]
≥ − osc

B
[h] · hEB∪{x}

[
1
B∪{x}
B

]
.

Hence, by combining with (6.30), we get (6.31).

Using Theorem 6.31, we can show the triangle inequality for R1/(p−1)
E .

Corollary 6.32. R1/(p−1)
E : X ×X → [0,∞) is a metric on X.

Definition 6.33 (p-Resistance metric). We define R̂p,E := R
1/(p−1)
E . We call R̂p,E the

p-resistance metric of (E ,F).

Proof of Corollary 6.32. It suffices to proveRE(x, z)1/(p−1) ≤ RE(x, y)1/(p−1)+RE(y, z)
1/(p−1)

for any x, y, z ∈ X with #{x, y, z} = 3. By (6.30) withB = {z}, we have hE{x,z}
[
1
{x,z}
x

]
(y) ≤

RE(x,y)1/(p−1)

RE(x,z)1/(p−1) . By exchanging the roles of x and z, we get hE{x,z}
[
1
{x,z}
z

]
(y) ≤ RE(y,z)1/(p−1)

RE(x,z)1/(p−1) .

Since 1X = hE{x,z}
[
1
{x,z}
x

]
+ hE{x,z}

[
1
{x,z}
z

]
, we have

1 ≤ RE(x, y)1/(p−1)

RE(x, z)1/(p−1)
+
RE(y, z)

1/(p−1)

RE(x, z)1/(p−1)
,

which proves the desired triangle inequality for R1/(p−1)
E .

Example 6.34. Let p ∈ (1,∞) and (E ,F) be a p-resistance form on the unit open interval
(0, 1) given by

F := W 1,p(0, 1) and E(u) :=

ˆ 1

0

|∇u|p dx.
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(Recall Example 6.3-(1).) For any x, y ∈ (0, 1) with 0 < x < y < 1, we easily see that
u ∈ W 1,p(0, 1) defined by u(t) := (y − x)−1(t − x)1[x,y](t), t ∈ (0, 1), is E-harmonic on
(0, 1) \ {x, y}. Therefore we have RE(x, y) = (y − x)p−1 and the p-resistance metric R̂p,E
coincides with the Euclidean metric on (0, 1). In particular, the Hölder regularity estimate
(6.31) is sharp. This example also shows that exponent 1/(p−1) in the p-resistance metric
is sharp, that is, Rα

E is not a metric for α > 1/(p− 1) in general.

6.5 Elliptic Harnack inequality for non-negative harmonic func-
tions

Throughout this subsection, we assume the existence of p-energy measures {Γ〈u〉}u∈F
(dominated by (E ,F)) satisfying (Cla)p. For simplicity, set R̂p := R̂p,E = R

1/(p−1)
E .

In this subsection, we establish the elliptic Harnack inequality for non-negative E-
superharmonic functions (Theorem 6.37) under some extra analytic conditions. The fol-
lowing two lemmas are key ingredients of the proof of Theorem 6.37.

Lemma 6.35 (Two-point estimate). Assume that there exist a Borel measure µ on X,
β,Q ∈ (0,∞) with β > Q and A,C ∈ [1,∞) such that for any (x, s) ∈ X × (0,∞) and
any u ∈ F ,

0 < µ
(
BR̂p

(x, r)
)
≤ C

(r
s

)Q
µ
(
BR̂p

(x, s)
)

for any r ∈ [s,∞), (6.34)

and ˆ
B
R̂p

(x,s)

∣∣∣∣∣u(y)−
 
B
R̂p

(x,s)

u dµ

∣∣∣∣∣
p

µ(dy) ≤ Csβ
ˆ
B
R̂p

(x,As)

dΓ〈u〉. (6.35)

Then there exists Ã, C̃ ∈ [1,∞) such that for any (x, s) ∈ X×(0,∞), any y, z ∈ BR̂p
(x, s)

and any u ∈ F ,

|u(y)− u(z)|p ≤ C̃
sβ

µ
(
BR̂p

(x, Ãs)
) ˆ

B
R̂p

(x,Ãs)

dΓ〈u〉. (6.36)

Proof. The proof will be done by a standard telescopic argument (see, e.g., [HK98, Proof
of Lemma 5.17]). For y ∈ BR̂p

(x, s) and n ∈ N ∪ {0}, set By,n := BR̂p
(y, 2−ns), ABy,n :=

BR̂p
(y, 2−nAs) and uy,i :=

ffl
By,i

u dµ. Then for any n ∈ N,

|uy,n − uy,0| ≤
n∑
i=1

|uy,i − uy,i−1| ≤
n∑
i=1

( 
By,i−1

|u− uy,i|p dµ

)1/p

(6.34)
.

n∑
i=1

( 
By,i

|u− uy,i|p dµ

)1/p

(6.35)
.

n∑
i=1

(
(2−is)β

µ(By,i)

ˆ
ABy,i

dΓ〈u〉

)1/p

,
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where we used Hölder’s inequality in the second inequality. Letting n→∞, we obtain

|u(y)− uy,0| .
∞∑
i=1

(
(2−is)β

µ(By,i)

ˆ
ABy,i

dΓ〈u〉

)1/p

(6.34)
.

(
sβ

µ(ABy,0)

ˆ
ABy,0

dΓ〈u〉

)1/p ∞∑
i=1

2−i(β−Q)/p

(6.34)
.

(
sβ

µ(BR̂p
(x, (A+ 1)s))

ˆ
B
R̂p

(x,(A+1)s)

dΓ〈u〉

)1/p

. (6.37)

Similarly, for any y, z ∈ BR̂p
(x, s), we have from (6.35) that

|uy,0 − uz,0|

≤

∣∣∣∣∣uy,0 −
 
B
R̂p

(x,2s)

u dµ

∣∣∣∣∣+

∣∣∣∣∣uz,0 −
 
B
R̂p

(x,2s)

u dµ

∣∣∣∣∣
≤

( 
B
R̂p

(y,s)

∣∣∣∣∣u−
 
B
R̂p

(x,2s)

u dµ

∣∣∣∣∣
p

dµ

)1/p

+

( 
B
R̂p

(z,s)

∣∣∣∣∣u−
 
B
R̂p

(x,2s)

u dµ

∣∣∣∣∣
p

dµ

)1/p

(6.34)
.

( 
B
R̂p

(x,2s)

∣∣∣∣∣u−
 
B
R̂p

(x,2s)

u dµ

∣∣∣∣∣
p

dµ

)1/p

(6.34),(6.35)
.

(
sβ

µ
(
BR̂p

(x, 2As)
) ˆ

B
R̂p

(x,2As)

dΓ〈u〉

)1/p

. (6.38)

By (6.37) and (6.38),

|u(y)− u(z)|p . |u(y)− uy,0|p + |uy,0 − uz,0|p + |u(z)− uz,0|p

.
sβ

µ
(
BR̂p

(x, 2As)
) ˆ

B
R̂p

(x,2As)

dΓ〈u〉,

which shows (6.36).

Lemma 6.36 (Log-Caccioppoli type inequality). Assume that {Γ〈u〉}u∈F satisfies the
chain rule (CL2). Then there exists C ∈ (0,∞) (depending only on p) such that for any
(x, s) ∈ X× (0,∞), any ε > 0 and any u ∈ F that is E-superharmonic in BR̂p

(x, 2s) with
u ≥ 0 and E(u) = Γ〈u〉(X).

ˆ
B
R̂p

(x,s)

dΓ〈Φε(u)〉 ≤ C inf
{
E(ϕ)

∣∣ ϕ ∈ F , ϕ|B
R̂p

(x,s) = 1, suppX [ϕ] ⊆ BR̂p
(x, 2s)

}
,

(6.39)
where Φε ∈ C1(R) is any function satisfying Φε(x) = log (x+ ε)− log ε for x ∈ [0,∞).
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Proof. Let ϕ ∈ F satisfy ϕ|B
R̂p

(x,s) = 1, suppX [ϕ] ⊆ BR̂p
(x, 2s) and

E(ϕ) = inf
{
E(ϕ)

∣∣ ϕ ∈ F , ϕ|B
R̂p

(x,s) = 1, suppX [ϕ] ⊆ BR̂p
(x, 2s)

}
,

which exists by Theorem 6.13. Let ε > 0 and set uε := u + ε. Note that ϕpu1−p
ε ∈ F by

Proposition 2.2-(d) and Corollary 2.4-(a). We see that
ˆ
B
R̂p

(x,s)

dΓ〈Φε(u)〉 ≤
ˆ
B
R̂p

(x,2s)

ϕp dΓ〈Φε(u)〉

(CL2)
=

1

p− 1

ˆ
B
R̂p

(x,2s)

ϕp dΓ〈uε;u1−p
ε 〉

(CL2)
=

1

1− p

(ˆ
B
R̂p

(x,2s)

dΓ〈uε;ϕpu1−p
ε 〉 −

ˆ
B
R̂p

(x,2s)

u1−p
ε dΓ〈uε;ϕp〉

)
(∗)
≤ 1

1− p

(
E(uε;ϕ

pu1−p
ε )−

ˆ
B
R̂p

(x,2s)

u1−p
ε dΓ〈uε;ϕp〉

)
(∗∗)
≤ −1

1− p

ˆ
B
R̂p

(x,2s)

u1−p
ε dΓ〈uε;ϕp〉

(CL2)
=

p

p− 1

ˆ
B
R̂p

(x,2s)

ϕp−1 dΓ〈Φε(u);ϕ〉

(4.13)
≤ p

p− 1

(
1

2

ˆ
B
R̂p

(x,2s)

ϕp dΓ〈Φε(u)〉

)(p−1)/p(
2p−1

ˆ
B
R̂p

(x,2s)

dΓ〈ϕ〉

)1/p

≤ p

p− 1

(
p− 1

2p

ˆ
B
R̂p

(x,2s)

ϕp dΓ〈Φε(u)〉+
2p−1

p

ˆ
B
R̂p

(x,2s)

dΓ〈ϕ〉

)
,

where we used Theorem 4.17 and Γ〈uε〉(X) = E(uε) in (∗), the fact that uε is E-
superharmonic in BR̂p

(x, 2s) in (∗∗), and Young’s inequality in the last inequality. Hence
we obtain

´
B
R̂p

(x,s)
dΓ〈Φε(u)〉 ≤ p−12pE(ϕ).

With these preparations, we can show the desired elliptic Harnack inequality as follows.

Theorem 6.37 (Elliptic Harnack inequality). Assume that there exist a Borel measure
µ on X, β,Q ∈ (0,∞) with β > Q and A,C ∈ [1,∞) such that the following conditions
are satisfied.

(i) µ satisfies (6.34) and (6.35) holds for any (x, s) ∈ X × (0,∞) and any u ∈ F .
(ii) For any (x, s) ∈ X × (0,∞) with BR̂p

(x, s) 6= X,

inf
{
E(ϕ)

∣∣ ϕ ∈ F , ϕ|B
R̂p

(x,s) = 1, suppX [ϕ] ⊆ BR̂p
(x, 2s)

}
≤ C

µ
(
BR̂p

(x, s)
)

sβ
.

(6.40)
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(iii) {Γ〈u〉}u∈F satisfies the chain rule (CL2).

Then there exist CH ∈ (0,∞) and δH ∈ (0, 1) such that the following hold. Let (x, s) ∈
X × (0,∞) with BR̂p

(x, δ−1
H s) 6= X and let u ∈ F with u ≥ 0. If Γ〈u〉(X) = E(u) and u

is E-superharmonic in BR̂p
(x, δ−1

H s), then

sup
B
R̂p

(x,s)

u ≤ CH inf
B
R̂p

(x,s)
u. (6.41)

Proof. Let ε > 0 and δH := (2Ã)−1, where Ã is the constant in Lemma 6.35. Set uε := u+ε,
Mε := supB

R̂p
(x,s) uε andmε := infB

R̂p
(x,s) uε. By combining (6.36), (6.39) and (6.40), there

exists C0 ∈ (0,∞) independent of x, s, u, ε such that

sup
B
R̂p

(x,s)

log uε − inf
B
R̂p

(x,s)
log uε ≤ C0,

whence log
(
Mε

mε

)
≤ C0. In particular,Mε/mε ≤ eC0 . We obtain (6.41) by letting ε ↓ 0.

7 Self-similar p-resistance forms and p-energy measures

In this section, we investigate p-resistance forms by focusing on the self-similar case as
in Section 5. Throughout this section, we fix p ∈ (1,∞) and a self-similar structure
L = (K,S, {Fi}i∈S) with S ≥ 2 and assume that K is connected.

7.1 Self-similar p-resistance forms

We first introduce the notion of self-similar p-resistance form. Note that the topology
induced the p-resistance metric may be different from the original topology of K. We
always equip K with its original topology.

Definition 7.1 (Self-similar p-resistance form). Let ρ = (ρi)i∈S ∈ (0,∞)S and let (E ,F)
be a p-resistance form on K. We say that (E ,F) is a self-similar p-resistance form on L
with weight ρ if and only if F ⊆ C(K) and (E ,F) satisfies (5.5) and (5.6).

In the rest of this section, we also fix a self-similar p-resistance form (E ,F) on L with
weight ρ = (ρi)i∈S ∈ (0,∞)S.

The following properties of the p-resistance metric are elementary.

Proposition 7.2. (1) For any x, y ∈ K,

RE(Fw(x), Fw(y)) ≤ ρ−1
w RE(x, y) (7.1)

(2) If mini∈S ρi > 1 and diam(K, R̂p,E) < ∞, then R̂p,E is compatible with the original
topology of K. In particular, V∗ is dense in (K, R̂p,E).
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(3) If mini∈S ρi > 1 and L is a p.-c.f. self-similar structure, then R̂p,E is compatible with
the original topology of K. In particular, V∗ is dense in (K, R̂p,E).

Remark 7.3. In the case p = 2, mini∈S ρi > 1 and L is a p.-c.f. self-similar structure,
then it is known that there exists c ∈ (0,∞) such that for any x, y ∈ K and any w ∈ W∗,

RE(Fw(x), Fw(y)) ≥ cρ−1
w RE(x, y); (7.2)

see [Kig03, Theorem A.1]. Such a result is also true for p-resistance form. See Theorem
B.10.

Proof. (1): It is immediate from (5.6). (See [Kig01, Lemma 3.3.5] for the case p = 2.)
(2): We can follow the argument in [Kig09, Proof of Proposition B.2] to show that

R̂p,E is compatible with the original topology of K. (Note that the condition that F is
dense in C(K) in [Kig09, (RFA3)] is not used in [Kig09, Proposition B.2].) Then V∗ is
dense in (K, R̂p,E) since V∗

K
= K by [Kig01, Lemma 1.3.11].

(3): We can follow the argument in [Kig01, Proof of Theorem 3.3.4]; see also Lemma
8.41.

The following proposition presents compatible sequences of p-resistance forms having
a self-similarity.

Proposition 7.4. Assume that R̂p,E is compatible with the original topology of K. Let
n ∈ N ∪ {0} and let Λ be a partition of Σ. Define Vn,Λ :=

⋃
w∈Λ Fw(Vn). Then for any

u ∈ F|Vn,Λ,
E|Vn,Λ(u) =

∑
w∈Λ

ρwE|Vn(u ◦ Fw). (7.3)

Moreover, for any w ∈ Λ,

hEVn,Λ(u) ◦ Fw = hEVn(u ◦ Fw). (7.4)

In particular, for any m ∈ N ∪ {0} and any u ∈ F|Vn+m,

E|Vn+m(u) =
∑
w∈Wm

ρwE|Vn(u ◦ Fw). (7.5)

Proof. Note that (7.5) follows from (7.3) by choosing Λ = Wm and that S :=
{

(Vn,Λ, EVn,Λ)
}
n∈N∪{0}

is a compatible sequence of p-resistance forms by Proposition 6.15. Let u ∈ F|Vn,Λ . Then
we see that

E|Vn,Λ(u) = min
{
E(v)

∣∣ v ∈ F with v|Vn,Λ = u
}

(5.7)
= min

{∑
w∈Λ

ρwE(v ◦ Fw)

∣∣∣∣∣ v ∈ F with v|Vn,Λ = u

}
≥
∑
w∈Λ

ρw min
{
E(v)

∣∣ v ∈ F with v|Vn = u ◦ Fw
}

=
∑
w∈Λ

ρwE|Vn(u ◦ Fw).
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To prove the converse, we define v ∈ C(K) = C(K, R̂p,E) so that v ◦ Fw = hEVn [u ◦ Fw]
for any w ∈ Λ; note that such v is well-defined by (5.2). Then v|Vn,Λ = u and v ∈ FS by
(5.5). Since

E|Vn,Λ(u) ≤ E(v)
(5.7)
=
∑
w∈Λ

ρwE(v ◦ Fw) =
∑
w∈Λ

ρwE
(
hEVn [u ◦ Fw]

)
=
∑
w∈Λ

ρwE|Vn(u ◦ Fw),

we have (7.3). Next we prove (7.4). We have E
(
hEVn,Λ [u] ◦ Fw

)
≥ E

(
hEVn [u ◦ Fw]

)
for any

w ∈ Λ. Since

E|Vn,Λ(u) = E
(
hEVn,Λ [u]

)
=
∑
w∈Λ

ρwE
(
hEVn,Λ [u] ◦ Fw

)
≥
∑
w∈Λ

ρwE
(
hEVn [u ◦ Fw]

)
=
∑
w∈Λ

ρwE|Vn(u ◦ Fw) = E|Vn,Λ(u),

we obtain E
(
hEVn,Λ [u] ◦ Fw

)
= E

(
hEVn [u ◦ Fw]

)
for any w ∈ Λ. The uniqueness in Theorem

6.13 implies hEVn,Λ [u] ◦ Fw = hEVn [u ◦ Fw].

The following corollary is an immediate consequence of Proposition 6.19.

Corollary 7.5. Assume that L = (K,S, {Fi}i∈S) is a p.-c.f. self-similar structure and
that R̂p,E is compatible with the original topology of K. Then

F =
{
u ∈ C(K)

∣∣∣ lim
n→∞

E|Vn(u|Vn) <∞
}
. (7.6)

E(u; v) = lim
n→∞

E|Vn(u|Vn ; v|Vn) for any u, v ∈ F . (7.7)

The following proposition gives characterizations of E-harmonic functions on K \ Vn.

Proposition 7.6. Assume that R̂p,E is compatible with the original topology of K. Let
n ∈ N ∪ {0}. Then for each h ∈ C

(
K, R̂p,E

)
, the following two conditions are equivalent

to each other:

(1) h ∈ HE,Vn.

(2) h ◦ Fw ∈ HE,V0 for any w ∈ Wn.

If in addition L = (K,S, {Fi}i∈S) is a p.-c.f. self-similar structure, then (1) (or (2)) is
also equivalent to the following condition:

(3) For any m ∈ N with m > n and any x ∈ Vm \ Vn,∑
w∈Wm;x∈Fw(V0)

ρwE|V0

(
h ◦ Fw|V0 ;1V0

F−1
w (x)

)
= 0. (7.8)

Proof. To see (1) ⇒ (2), let us fix w ∈ Wn and let ϕ ∈ F0(K \ V0). Then (Fw)∗ϕ ∈ F by
(5.5) and (Fw)∗ϕ ∈ F0(K \ Vn) by (5.2). By (5.6), we have

0 = E(h; (Fw)∗ϕ) = ρwE(h ◦ Fw;ϕ),
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which implies h ◦ Fw ∈ HE,V0 . The converse implication (2) ⇒ (1) is obvious from (5.6).
Next we prove the equivalence of (1) and (3) for a p.-c.f. self-similar structure L.

We first show (1) ⇒ (3). For any m > n and any ϕ ∈ F0(K \ Vn), we note that
hEVm [ϕ|Vm ]

∣∣
Vn

= 0. Then, for any h ∈ HE,Vn , we have from (7.5) that

0 = E|Vm(h|Vm ;ϕ|Vm) =
∑
w∈Wm

ρwE|V0

(
h ◦ Fw|V0 ;ϕ ◦ Fw|V0

)
for any ϕ ∈ F0(K \ V0).

By choosing ϕ ∈ F0(K \ Vn) so that ϕ|Vm = 1Vmx for x ∈ Vm \ Vn, we obtain (3). We
next suppoes that h ∈ C(K) satisfies (7.8) and fix ϕ ∈ F0(K \ Vn) in order to show the
converse implication (3) ⇒ (1). For m > n, we see from (7.5), ϕ|Vn = 0 and (7.8) that

E|Vm(h|Vm ;ϕ|Vm) =
∑
w∈Wm

ρwE|V0

(
h ◦ Fw|V0 ;ϕ ◦ Fw|V0

)
=
∑
w∈Wm

∑
y∈V0

ϕ(Fw(y))ρwE|V0

(
h ◦ Fw|V0 ;1V0

y

)
=

∑
x∈Vm\Vn

ϕ(x)
∑

w∈Wm;x∈Fw(V0)

ρwE|V0

(
h ◦ Fw|V0 ;1V0

F−1
w (x)

)
= 0.

By letting m→∞, we obtain E(h;ϕ) = 0 and hence h ∈ HE,Vn .

Thanks to the self-similarity, we can get the following localized version of the weak
comparison principle (Proposition 6.26).

Proposition 7.7 (A localized weak comparison principle). Assume that R̂p,E is compatible
with the original topology of K. Let n ∈ N ∪ {0}, w ∈ Wn, and let u, v ∈ HE,Vn satisfy
u(x) ≤ v(x) for any x ∈ Fw(V0). Then u(x) ≤ v(x) for any x ∈ Kw.

Proof. This is immediate from a combination of Proposition 6.26 and the implication from
(1) to (2) in Proposition 7.6.

Next we will show a new monotonicity on the equal weight of the p-resistance form on
a p.-c.f. self-similar structure in p. We need the following basic result, which is immediate
from (5.2) and Proposition 2.9-(a).

Proposition 7.8. Let k ∈ N ∪ {0} and let E be a p-resistance form on Vk. Define
Sρ(E) : RVk+1 → [0,∞) by

Sρ(E)(u) :=
∑
i∈S

ρiE(u ◦ Fi), u ∈ RVk . (7.9)

Then Sρ(E) is a p-resistance form on Vk+1.

The following theorem states the desired monotonicity. (See also Theorem 8.31 for a
similar result in another framework including the generalized Sierpiński carpets.)
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Theorem 7.9. Let p, q ∈ (1,∞) with p ≤ q and let ρs ∈ (1,∞) for each s ∈ {p, q}.
Assume that K is connected, that L is a p.-c.f. self-similar structure and that (Es,Fs) is
a self-similar s-resistance form on L with weight (ρs)i∈S for each s ∈ {p, q}. Then

ρ1/(p−1)
p ≤ ρ1/(q−1)

q . (7.10)

Proof. We start by some preparations on discrete energies. Let s ∈ {p, q}. For any
s-resistance form Es on V0 and n ∈ N, we define Sρs,n(Es) : RVn → [0,∞) by

Sρs,n(Es)(u) := ρns
∑
v∈Wn

Es(u ◦ Fv), u ∈ RVn .

Note that Snρs,1 = Sρs,n and that Sρs,n(E) is also a s-resistance form on Vn by Proposition
7.8. We also define a s-resistance form Es,n on Vn by

Es,n(u) := ρns
∑
v∈Wn

∑
{x,y}∈V0

|u(Fv(x))− u(Fv(y))|s , u ∈ RVn .

Then Sρs,n(Es,0) = Es,n. Since both Es,0( · )1/s and Es|V0( · )1/s are norms on the finite-
dimensional vector space RV0/R1V0 , there exists a constant Cs ≥ 1 depending only on s
and #V0 such that

C−1
s Es,0(u) ≤ Es|V0(u) ≤ CsEs,0(u) for any u ∈ RV0 . (7.11)

Since Sρs,n(Es|V0) = Es|Vn by (7.5), we have from (7.11) that

C−1
s Es,n(u) ≤ Es|Vn(u) ≤ CsEs,n(u) for any n ∈ N ∪ {0} and any u ∈ RVn . (7.12)

Now we move to the proof of (7.10). Let us fix x0, y0 ∈ V0 with x0 6= y0 and set B :=
{x0, y0}. Then we can find w ∈ W∗ so that B ∩ Kw = ∅ and hp,w := hp ◦ Fw 6∈ R1K ,
where hp := h

Ep
V0

[1x0 ]. (If hp ◦ Fw ∈ R1K for any w ∈ W∗ with B ∩ Kw = ∅, then we
can easily obtain a contradiction by using (6.3) and [Kig01, Theorem 1.6.2], where the
connectedness of K is used.) Since c := infx∈Kw REp(x,B) > 0 and 0 ≤ hp ≤ 1 by (6.29),
for any n ∈ N,
Eq|Vn(hp,w|Vn)

(7.12)
≤ CqEq,n(hp,w|Vn)

= Cqρ
n
q

∑
v∈Wn

∑
{x,y}∈E0

|hp(Fwv(x))− hp(Fwv(y))|q−p · |hp,w(Fv(x))− hp,w(Fv(y))|p

(6.31)
≤ Cqρ

n
q

∑
w∈Wn

∑
{x,y}∈E0

(
REp(Fwv(x), Fwv(y))

REp(Fwv(x), B)

) q−p
p−1

· |hp,w(Fw(x))− hp,w(Fw(y))|p

(7.1)
≤
(
Cqc

−(q−p)/(p−1) sup
x,y∈K

REp(x, y)(q−p)/(p−1)
)(
ρqρ
−(q−1)/(p−1)
p

)n
Ep,n(hp,w|Vn)

(7.12)
≤
(
CpCqc

−(q−p)/(p−1) sup
x,y∈K

REp(x, y)(q−p)/(p−1)
)(
ρqρ
−(q−1)/(p−1)
p

)nEp(hp,w). (7.13)

Since both Ep(hp,w) and Eq(hp,w) are not equal to 0, we conclude that ρqρ
−(q−1)/(p−1)
p ≥ 1

by letting n→∞ in (7.13). This proves the desired monotonicity (7.10).
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7.2 Associated self-similar p-energy measures and Poincaré in-
equality

In this subsection, we show a Poincaré type inequality in terms of self-similar p-energy
measures under some geometric assumptions on the p-resistance metric.

Recall that we fix a self-similar p-resistance form (E ,F) on L with weight ρ = (ρi)i∈S ∈
(0,∞)S. We also let {ΓE〈u〉}u∈F be the associated p-energy measures defined in (5.11).
In the following definition, we introduce natural scales {Λs}s∈(0,1] with respect to the
p-resistance metric R̂p,E =: R̂p. See [Kig09, Kig20] for further details on scales.

Definition 7.10. (1) We define Λ
R̂p
1 := {∅},

ΛR̂p
s :=

{
w
∣∣∣ w = w1 . . . wn ∈ W∗ \ {∅}, (ρw1...wn−1)−1/(p−1) > s ≥ ρ−1/(p−1)

w

}
for each s ∈ (0, 1). (Note that {ΛR̂p

s }s∈(0,1] is the scale associated with the weight
function g(w) := ρ

−1/(p−1)
w ; see [Kig20, Definition 2.3.1].)

(2) For each (s, x) ∈ (0, 1] × K, we define Λ
R̂p
s,0(x) := {w ∈ Λ

R̂p
s | x ∈ Kw} and

U
R̂p
0 (x, s) :=

⋃
w∈Λ

R̂p
s,0(x)

Kw. Inductively, for M ∈ N, define Λ
R̂p
s,M(x) := {w ∈ Λ

R̂p
s |

Kw ∩ U R̂p
M−1(x, s) 6= ∅} and U R̂p

M (x, s) :=
⋃
w∈Λ

R̂p
s,M (x)

Kw.

It is easy to see that lims↓0 min{|w| | w ∈ Λ
R̂p
s } = ∞, that Λ

R̂p
s is a partition of Σ

for any s ∈ (0, 1], and that Λ
R̂p
s1 ≤ Λ

R̂p
s2 for any s1, s2 ∈ (0, 1] with s1 ≤ s2. By [Kig20,

Proposition 2.3.7], for any x ∈ K and anyM ∈ N∪{0}, {U R̂p
M (x, s)}s∈(0,1] is non-decreasing

in s and forms a fundamental system of neighborhoods of x in K.
The following lemma is standard; see, e.g., [BB, Lemma 4.17].

Lemma 7.11. Let q ∈ [1,∞) and let (Y,A, µ) be a measure space. For any f ∈ L1(Y, µ)
and any E ∈ A with µ(A) ∈ (0,∞),

 
E

∣∣∣∣f −  
E

f dµ

∣∣∣∣q dµ ≤ 2q inf
a∈R

 
E

|f − a|q dµ. (7.14)

Now we can present a Poincaré inequality in this context.

Proposition 7.12 ((p, p)-Poincaré inequality for self-similar p-resistance form). Assume
that there exist α1, α2 ∈ (0,∞) such that for any (x, s) ∈ K × (0, 1],

BR̂p
(x, α1s) ⊆ U

R̂p
M∗

(x, s) ⊆ BR̂p
(x, α2s). (7.15)

Let µ be a Borel probability measure on K satisfying the following condition:

inf
(x,s)∈K×(α1,∞)

µ
(
BR̂p

(x, s)
)
> 0. (7.16)
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Then there exist C,A ∈ (0,∞) with A ≥ 1 such that for any (x, s) ∈ K × (0,∞) and any
u ∈ Floc(BR̂p

(x,As)),

 
B
R̂p

(x,s)

∣∣∣∣∣u(y)−
 
B
R̂p

(x,s)

u dµ

∣∣∣∣∣
p

µ(dy) ≤ Csp−1ΓE〈u〉(BR̂p
(x,As)). (7.17)

Proof. We can assume that α1 ≤ α2 and α1 ≤ 1 without loss of generality. Set c∗ :=(
inf(x,s)∈K×(α1,∞) µ

(
BR̂p

(x, s)
))−1 ∈ (0,∞) and A := α−1

1 (α2 ∨ diam(K, R̂p)). We first
consider the case s ∈ (α1,∞). In this case BR̂p

(x,As) = K and

 
B
R̂p

(x,s)

∣∣∣∣∣f −
 
B
R̂p

(x,s)

f dµ

∣∣∣∣∣
p

dµ
(7.14)
≤ 2p

 
B
R̂p

(x,s)

∣∣∣∣f −  
K

f dµ

∣∣∣∣p dµ
≤ 2pc∗

ˆ
K

∣∣∣∣f −  
K

f dµ

∣∣∣∣p dµ
≤ 2pc∗

ˆ
K

 
K

|u(y)− u(z)|p µ(dy)µ(dz)

(6.3)
≤ 2pc∗ diam(K, R̂p)

p−1E(u) = C1ΓE〈u〉(K),

where we used Hólder’s inequality in the third inequality and set C1 := 2pc∗ diam(K, R̂p)
p−1.

This shows (7.17).
Next let s ∈ (0, α1]. Let U be a relatively compact open subset of K such that

U ⊇ U
R̂p
M∗

(x, α−1
1 s) and let u# ∈ F satisfy u = u# on U . For any y, z ∈ BR̂p

(x, s), there

exists {v(i)}2M∗+1
i=1 ⊆ Λ

R̂p

α−1
1 s,M∗

(x) such that y ∈ Kv(1), z ∈ Kv(2M∗+1) andKv(i)∩Kv(i+1) 6= ∅
for each i ∈ {1, 2, . . . , 2M∗}. Let us fix xi ∈ Kv(i)∩Kv(i+1) and qi ∈ V0 so that xi = Fv(i)(qi).
We note that, for any y′, z′ ∈ Kv(i),

|u(y′)− u(z′)|p =
∣∣∣u(Fv(i)(F

−1
v(i)(y

′)))− u(Fv(i)(F
−1
v(i)(z

′)))
∣∣∣p

≤ RE(F
−1
v(i)(y

′), F−1
v(i)(z

′))E(u# ◦ Fv(i))

(5.12)
≤ diam(K, R̂p)

p−1ρ−1
v(i)ΓE〈u

#〉(Kv(i)) = diam(K, R̂p)
p−1ρ−1

v(i)ΓE〈u〉(Kv(i)).

Hence

|u(y)− u(z)|p

≤ (2M∗ + 1)p−1

(
|u(y)− u(x1)|p +

2M∗−1∑
i=1

|u(xi)− u(xi+1)|p + |u(x2M∗)− u(z)|p
)

(6.3)
≤
(
(2M∗ + 1) diam(K, R̂p)

)p−1
2M∗+1∑
i=1

ρ−1
v(i)ΓE〈u〉(Kv(i))

≤ C2s
p−1ΓE〈u〉

(
2M∗+1⋃
i=1

Kv(i)

)
≤ C2s

p−1ΓEp〈u〉(BR̂(x, α−1
1 α2s)), (7.18)
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where C2 :=
(
(2M∗ + 1)α−1

1 diam(K, R̂p)
)p−1. Now we see that

 
B
R̂p

(x,s)

∣∣∣∣∣u(y)−
 
B
R̂p

(x,s)

u dµ

∣∣∣∣∣
p

µ(dy)

≤
 
B
R̂p

(x,s)

 
B
R̂p

(x,s)

|u(y)− u(z)|p µ(dz)µ(dy)
(7.18)
≤ C2s

p−1ΓE〈u〉(BR̂p
(x,As)),

where we used Hölder’s inequality in the first inequality. This completes the proof.

8 Constructions of p-energy forms satisfying the gener-
alized p-contraction property

In the preceding sections, we have established fundamental results on p-energy forms sat-
isfying the generalized p-contraction property (GC)p, in particular p-Clarkson’s inequality
(Cla)p. In this section, we would like to describe how to get a good p-energy form satisfy-
ing these properties in a few settings inspired by [Kig23] and [CGQ22]. (See also [KS.a]
for another approach toward such a construction.)

8.1 Construction of p-energy forms on p-conductively homoge-
neous compact metric spaces

In this subsection, we verify that p-energy forms on p-conductively homogeneous compact
metric spaces constructed in [Kig23] satisfy (GC)p. We mainly follow the notation and
terminology of [Kig23] in this and the next subsections. We refer to [Kig23, Chapter 2]
and [Kig20, Chapters 2 and 3] for further details.

Throughout this subsection, we fix a locally finite, non-directed infinite tree (T,ET )
in the usual sense (see [Kig23, Definition 2.1] for example), and fix a root φ ∈ T of T .
(Here T is the set of vertices and ET is the set of edges.) For any w ∈ T \ {φ}, we use
φw to denote the unique simple path in T from φ to w.

Definition 8.1 ([Kig23, Definition 2.2]). (1) For w ∈ T , define π : T → T by

π(w) :=

{
wn−1 if w 6= φ and φw = (w0, . . . , wn),
φ if w = φ.

Set S(w) := {v ∈ T | π(v) = w} \ {w}. Moreover, for k ∈ N, we define Sk(w)
inductively as

Sk+1(w) =
⋃

v∈S(w)

Sk(v).

For A ⊆ T , define Sk(A) :=
⋃
w∈A S

k(A).
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(2) For w ∈ T and n ∈ N ∪ {0}, define |w| := min{n ≥ 0 | πn(w) = φ} and Tn := {w ∈
T | |w| = n}.

(3) Define Σ := {(ωn)n≥0 | ωn ∈ Tn and ωn = π(ωn+1) for all n ∈ N ∪ {0}}. For ω =
(ωn)n≥0 ∈ Σ, we write [ω]n for ωn ∈ Tn. For w ∈ T , define Σw := {(ωn)n≥0 ∈ Σ |
ω|w| = w}. For A ⊆ T , define ΣA :=

⋃
w∈A Σw.

Let us recall the definition of a partition parametrized by a rooted tree (see [Kig20,
Definition 2.2.1] and [Sas23, Lemma 3.6]).

Definition 8.2 (Partition parametrized by a tree). Let K be a compact metrizable topo-
logical space without isolated points. A family of non-empty compact subsets {Kw}w∈T
of K is called a partition of K parametrized by the rooted tree (T,ET , φ) if and only if it
satisfies the following conditions:

(P1) Kφ = K and for any w ∈ T , #Kw ≥ 2 and Kw =
⋃
v∈S(w) Kv.

(P2) For any w ∈ Σ,
⋂
n≥0K[ω]n is a single point.

In the rest of this subsection, we fix a compact metrizable topological space without
isolated points K, a locally finite rooted tree (T,ET , φ) satisfying #{v ∈ T | {v, w} ∈
ET} ≥ 2 for any w ∈ T , a partition {Kw}w∈T parametrized by (T,ET , φ), a metric d on
K with diam(K, d) = 1, and a Borel probability measure m on K. Now we introduce a
graph approximation {(Tn, E∗n)}n∈N∪{0} of K (see [Kig23, Proposition 2.8 and Definition
2.5-(3)]).

Definition 8.3. For n ∈ N ∪ {0} and A ⊆ Tn, define

E∗n :=
{
{v, w}

∣∣ v, w ∈ Tn, v 6= w,Kv ∩Kw 6= ∅
}
,

and E∗n(A) =
{
{v, w} ∈ E∗n

∣∣ v, w ∈ A}. Let dn be the graph distance of (Tn, E
∗
n). For

M ∈ N ∪ {0} and w ∈ Tn, define

ΓM(w) := {v ∈ Tn | dn(v, w) ≤M} and UM(x;n) :=
⋃

w∈Tn;x∈Kw

⋃
v∈ΓM (w)

Kv.

To state geometric assumptions in [Kig23], we need the following definition (see [Kig20,
Definitions 2.2.1 and 3.1.15].)

Definition 8.4. (1) The partition {Kw}w∈T is said to be minimal if and only if Kw \⋃
v∈T|w|\{w} 6= ∅ for any w ∈ T .

(2) The partition {Kw}w∈T is said to be uniformly finite if and only if supw∈T #Γ1(w) <
∞. We set L∗ := supw∈T #Γ1(w).

We also recall the following standard notion on metric measure spaces (see, e.g., [Hei,
Kig20, MT] for further background).

Definition 8.5. (1) The measure m is said to be volume doubling with respect to the
metric d if and only if there exists CD ∈ (0,∞) such that

m(Bd(x, 2r)) ≤ CD m(Bd(x, r)) for any (x, r) ∈ K × (0,∞). (8.1)

The constant CD is called the doubling constant of m.
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(2) Let Q ∈ (0,∞). The measure m is said to be Q-Ahlfors regular with respect to the
metric d if and only if there exists CAR ∈ [1,∞) such that

C−1
AR r

Q ≤ m(Bd(x, r)) ≤ CAR r
Q for any (x, r) ∈ K × (0, diam(K, d)). (8.2)

The measure m is simply said to be Ahlfors regular (with respect to d) if there exists
Q ∈ (0,∞) such that m is Q-Ahlfors regular. Also, the metric d is said to be Q-
Ahlfors regular if there exists a Borel measure µ on K which is Q-Ahlfors regular
with respect to d.

(3) A metric ρ on K is said to be quasisymmetric to d, ρ ∼
QS

d for short, if and only if

there exists a homeomorphism η : [0,∞)→ [0,∞) such that

ρ(x, b)

ρ(x, a)
≤ η

(
d(x, b)

d(x, a)

)
for any x, a, b ∈ K with x 6= a.

(4) The Ahlfors regular conformal dimension of (K, d) is the value dimARC(K, d) defined
as

dimARC(K, d) := inf

{
Q > 0

∣∣∣∣∣ there exists a metric ρ onK such that
ρ ∼

QS
d and ρ is Q-Ahlfors regular

}
.

If m is Ahlfors regular, then it is clearly volume doubling. It is well known that the
existence of a Q-Ahlfors regular m on (K, d) implies that the Hausdorff dimension of
(K, d) is Q.

Now we recall basic geometric conditions in [Kig23]. The conditions (1), (2) and (3)
below are important to follow the rest of this paper.

Assumption 8.6 ([Kig23, Assumption 2.15]). Let (K,O) be a connected compact metriz-
able space, {Kw}w∈T a partition parametrized by the rooted tree (T, φ), d a metric on K
that is compatible with the topology O and diam(K, d) = 1 and m a Borel probability
measure on K. There exist M∗ ∈ N and r∗ ∈ (0, 1) such that the following conditions
(1)–(5) hold.

(1) Kw is connected for any w ∈ T , {Kw}w∈T is minimal and uniformly finite, and
infm≥0 minw∈Tm #S(w) ≥ 2.

(2) There exist ci ∈ (0,∞), i ∈ {1, . . . , 5}, such that the following conditions (2A)-(2C)
are true.

(2A) For any w ∈ T ,
c1r
|w|
∗ ≤ diam(Kw, d) ≤ c2r

|w|
∗ . (8.3)

(2B) For any n ∈ N and x ∈ K,

Bd(x, c3r
n
∗ ) ⊆ UM∗(x;n) ⊆ Bd(x, c4r

n
∗ ). (8.4)

(In [Kig20], the metric d is called M∗-adapted if the condition (8.4) holds.)
(2C) For any n ∈ N and w ∈ Tn, there exists xw ∈ Kw satisfying

Kw ⊇ Bd(xw, c5r
n
∗ ). (8.5)
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(3) There exist m1 ∈ N, γ1 ∈ (0, 1) and γ ∈ (0, 1) such that

m(Kw) ≥ γm(Kπ(w)) for any w ∈ T , (8.6)

and
m(Kv) ≤ γ1m(Kw) for any w ∈ T and v ∈ Sm1(w). (8.7)

Furthermore, m is volume doubling with respect to d and

m(Kw) =
∑

v∈S(w)

m(Kv) for any w ∈ T . (8.8)

(4) There exists M0 ≥M∗ such that for any w ∈ T , k ≥ 1 and v ∈ Sk(w),

ΓM∗(v) ∩ Sk(w) ⊆
{
v′ ∈ T|v|

∣∣∣∣ there exist l ≤ M0 and (v0, . . . , vl) ∈ Sk(w)l+1

such that (vj−1, vj) ∈ E∗|v| for any j ∈ {1, . . . , l}

}
.

(5) For any w ∈ T , π(ΓM∗+1(w)) ⊆ ΓM∗(π(w)).

We record a simple consequence of (8.8) in the next proposition.

Proposition 8.7. Assume that the Borel probability measure m satisfies (8.8). Then
m(Kv ∩Kw) = 0 for any v, w ∈ T with v 6= w and |v| = |w|.

Proof. Let n ∈ N∪{0} and v, w ∈ Tn such that v 6= w. Enumerate Tn as {z(1), z(2), . . . , z(ln)}
such that z(1) = v and z(2) = w, where ln = #Tn. Inductively, we define K̃z(j) by

K̃z(1) = Kz(1)

and

K̃z(j+1) = Kz(j+1) \

(
k⋃
i=1

K̃z(i)

)
.

Then
{
K̃z(j)

}ln
j=1

is a disjoint family of Borel sets and
⋃ln
j=1 K̃z(j) = K. Therefore,

1 = m(K) =
ln∑
j=1

m
(
K̃z(j)

)
.

On the other hand,(8.8) implies that

1 = m(Kφ) =
ln∑
j=1

m
(
Kz(j)

)
.

Therefore, we conclude that m
(
Kz(j) \ K̃z(j)

)
= 0 for any j ∈ {1, . . . , ln}. In particular,

0 = m
(
Kz(2) \ K̃z(2)

)
= m

(
Kw \

(
Kw \ (Kv ∩Kw)

))
= m(Kv ∩Kw),

which completes the proof.
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Next we introduce conductance, neighbor disparity constants and the notion of p-
conductive homogeneity in Definitions 8.10, 8.8 and 8.11, following [Kig23, Sections 2.2,
2.3 and 3.3]. We will state some definitions and statements below for any p ∈ (0,∞) or
p ∈ [1,∞), but on each such occasion we will explicitly declare that we let p ∈ (0,∞) or
p ∈ [1,∞). Our main interest lies in the case p ∈ (1,∞).

Definition 8.8 ([Kig23, Definitions 2.17 and 3.4]). Let p ∈ (0,∞), n ∈ N ∪ {0} and
A ⊆ Tn.

(1) Define Enp,A : RA → [0,∞) by

Enp,A(f) :=
∑

{u,v}∈E∗n(A)

|f(u)− f(v)|p , f ∈ RA.

We write Enp (f) for Enp,Tn(f).
(2) For A0, A1 ⊆ A, define capnp (A0, A1;A) by

capnp (A0, A1;A) := inf
{
Enp,A(f)

∣∣ f ∈ RA, f |Ai = i for i ∈ {0, 1}
}
.

(3) (Conductance constant) For A1, A2 ⊆ A and k ∈ N ∪ {0}, define

Ep,k(A1, A2, A) := capn+k
p

(
Sk(A1), Sk(A2);Sk(A)

)
.

For M ∈ N, define EM,p,k := supw∈T Ep,k({w}, T|w| \ ΓM(w), T|w|).

Let us recall the notion of covering system, which will be used to define neighbor
disparity constants and the notion of conductive homogeneity.

Definition 8.9 ([Kig23, Definitions 2.26-(3) and 2.29]). Let NT , NE ∈ N.
(1) Let n ∈ N∪{0} and A ⊆ Tn. A collection {Gi}ki=1 with Gi ⊆ Tn is called a covering of

(A,E∗n(A)) with covering numbers (NT , NE) if and only if A =
⋃k
i=1 Gk, maxx∈A #{i |

x ∈ Gi} ≤ NT and for any (u, v) ∈ E∗n(A), there exists l ≤ NE and {w(1), . . . , w(l +
1)} ⊆ A such that w(1) = u, w(l+ 1) = v and (w(i), w(i+ 1)) ∈

⋃k
j=1 E

∗
n(Gj) for any

i ∈ {1, . . . , l}.
(2) Let J ⊆

⋃
n∈N∪{0}{A | A ⊆ Tn}. The collection J is called a covering system with

covering number (NT , NE) if and only if the following conditions are satisfied:
(i) supA∈J #A <∞.
(ii) For any w ∈ T and k ∈ N, there exists a finite subset N ⊆J ∩T|w|+k such that

N is a covering of
(
Sk(w), E∗|w|+k(S

k(w))
)
with covering numbers (NT , NE).

(iii) For any G ∈ J and k ∈ N ∪ {0}, if G ⊆ Tn, then there exists a finite subset
N ⊆ J ∩ Tn+k such that N is a covering of

(
Sk(G), E∗n+k(S

k(G))
)
with

covering numbers (NT , NE).
The collection J is simply said to be a covering system if and only if there exist
(NT , NE) ∈ N2 such that J is a covering system with covering number (NT , NE).

Definition 8.10 ([Kig23, Definitions 2.26-(1),(2) and 2.29]). Let p ∈ (0,∞), n ∈ N and
A ⊆ Tn.
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(1) For k ∈ N ∪ {0} and f : Tn+k → R, define Pn,kf : Tn → R by

(Pn,kf)(w) :=
1∑

v∈Sk(w) m(Kv)

∑
v∈Sk(w)

f(v)m(Kv), w ∈ Tn.

(Note that Pn,kf depends on the measure m.)
(2) (Neighbor disparity constant) For k ∈ N ∪ {0}, define

σp,k(A) := sup
f : Sk(A)→R

Enp,A(Pn,kf)

En+k
p,Sk(A)

(f)
.

(3) Let J ⊆
⋃
n≥0{A | A ⊆ Tn} be a covering system. Define

σ
J
p,k,n := max{σp,k(A) | A ∈J , A ⊆ Tn} and σ

J
p,k := sup

n∈N∪{0}
σ

J
p,k,n.

Definition 8.11 ([Kig23, Definition 3.4]). Let p ∈ [1,∞). The compact metric space K
(with a partition {Kw}w∈T and a measure m) is said to be p-conductively homogeneous if
and only if there exists a covering system J such that

sup
k∈N∪{0}

σ
J
p,kEM∗,p,k <∞. (8.9)

When we would like to clarify which partition is considered, we also say that K is p-
conductively homogeneous with respect to {Kw}w∈T .

The next consequence of (8.9) is more important than the original definition of the
p-conductive homogeneity for our purpose.

Theorem 8.12 (A part of [Kig23, Theorem 3.30]). Let p ∈ [1,∞) and assume that
Assumption 8.6 holds. If K is p-conductively homogeneous, then there exist α0, α1 ∈
(0,∞), σp ∈ (0,∞) and a covering system J such that for any k ∈ N ∪ {0},

α0σ
−k
p ≤ EM∗,p,k ≤ α1σ

−k
p and α0σ

k
p ≤ σ

J
p,k ≤ α1σ

k
p . (8.10)

In particular, the constant σp is determined by the following limit:

σp = lim
k→∞

(
EM∗,p,k

)−1/k
. (8.11)

Remark 8.13. The existence of the limit in (8.11) is true without the p-conductive homo-
geneity. Indeed, if (K, d, {Kw}w∈T ) satisfies the conditions Assumption 8.6-(1),(2),(4),(5),
then [Kig23, Theorem 2.23] together with Fekete’s lemma implies the existence of the
limit in (8.11) for any p ∈ (0,∞). For convenience, we call σp the p-scaling factor of
(K, d, {Kw}w∈T ).

We also recall the “Sobolev space” Wp introduced in [Kig23, Lemma 3.13].
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Definition 8.14. Let p ∈ [1,∞). Assume that Assumption 8.6-(1),(2),(4),(5) hold and
let σp be the constant in (8.11).

(1) For n ∈ N ∪ {0}, define Pn : L1(K,m)→ R by Pnf(w) :=
ffl
Kw

f dm, w ∈ Tn.
(2) Define Np : Lp(K,m)→ [0,∞] and a linear subspace Wp of Lp(K,m) by

Np(f) :=

(
sup

n∈N∪{0}
σnpEnp (Pnf)

)1/p

, f ∈ Lp(K,m),

Wp :=
{
f ∈ Lp(K,m)

∣∣ Np(f) <∞
}
,

and we equip Wp the norm ‖ · ‖Wp defined by

‖f‖Wp :=
(
‖f‖pLp(K,m) +Np(f)p

)1/p

, f ∈ Wp.

(3) For a linear subspace D of Wp, we define

Up(D) :=

{
E : D → [0,∞)

∣∣∣∣ E 1/p is a seminorm on D, there exist α0, α1 ∈ (0,∞)
such that α0Np(f) ≤ E (f)1/p ≤ α1Np(f) for any f ∈ D

}
.

For simplicity, set Up := Up(Wp).
(4) For n ∈ N ∪ {0} and A ⊆ Tn, we define Ẽnp,A : Lp(K,m)→ [0,∞) by

Ẽnp,A(f) := σnpEnp,A(Pnf), f ∈ Lp(K,m).

We also set Ẽnp (f) := Ẽnp,Tn(f).

We have the following property on Np thanks to the connectedness of K and Assump-
tion 8.6-(3).

Proposition 8.15. Let p ∈ [1,∞). Assume that Assumption 8.6 holds. Then Np(f) = 0
if and only if there exists c ∈ R such that f(x) = c for m-a.e. x ∈ K.

Proof. It is clear that Np(f) = 0 if f is constant. Suppose that f ∈ Lp(K,m) satisfies
Np(f) = 0. Note that (Tn, E

∗
n) is a connected graph for each n ∈ N ∪ {0} (see [Kig23,

Proposition 2.8]). Therefore, Np(f) = 0 implies that there exists cn ∈ R such that
Pnf(w) = cn for any n ∈ N∪{0} and any w ∈ Tn. By (8.8), we have cn = cn+1 and hence
there exists c ∈ R such that cn = c for any n ∈ N ∪ {0}. Now we let Lf ⊆ K denote the
set of Lebesgue points of f , i.e.,

Lf :=

{
x ∈ K

∣∣∣∣ lim
r↓0

 
Bd(x,r)

|f(x)− f(y)| m(dx) = 0

}
. (8.12)

Then, by the volume doubling property of m and the Lebesgue differentiation theorem
(see, e.g., [Hei, Theorem 1.8]), we have Lf ∈ B(K) and m(K \Lf ) = 0. For any x ∈ Lf

and any n ∈ N ∪ {0}, by Proposition 8.7 and Assumption 8.6-(2),(3),

|f(x)− c| =

∣∣∣∣∣f(x)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣ ≤ 1

m(UM∗(x;n))

ˆ
Bd(x,c4rn∗ )

|f(x)− f(y)| m(dy)
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≤ C

 
Bd(x,c4rn∗ )

|f(x)− f(y)| m(dy),

where we used (8.4) and the volume doubling property of m in the last inequality, and
C ∈ (0,∞) is independent of x, f and n. By letting n → ∞ in the estimate above, we
obtain f(x) = c for any x ∈ Lf , which completes the proof.

As shown in [Shi24, Kig23], Wp is a nice Banach space embedded in C(K) if K is
p-conductively homogeneous and p > dimARC. In general, we can show the following
theorem.

Theorem 8.16. Let p ∈ [1,∞). Assume that (K, d, {Kw}w∈T ,m) satisfies Assumption
8.6 and that K is p-conductively homogeneous. Then Wp is a Banach space and Wp is
dense in Lp(K,m). If p ∈ (1,∞), then Wp is reflexive and separable. Moreover, if in
addition p > dimARC(K, d), then Wp can be identified with a subspace of C(K) and Wp

is dense in C(K) with respect to the uniform norm.

Remark 8.17. By [Kig20, Theorem 4.6.9], the condition p > dimARC(K, d) is equivalent
to σp > 1.

Proof. Note that Wp is a Banach space by [Kig23, Lemma 3.24] and that Wp is dense in
Lp(K,m) by [Kig23, Lemma 3.28].

In the rest of this proof, we assume that p ∈ (1,∞). Let us show that Wp is reflexive.
Theorem 8.12 and [Kig23, Lemma 2.27] together imply that there exists a constant C ∈
(0,∞) such that for any k, l ∈ N, A ⊆ Tk and f ∈ RSl(A),

Ẽkp,A(Pk,lf) ≤ CẼk+l
p,Sl(A)

(f). (8.13)

The rest of the proof is very similar to [MS23+, Proof of Theorem 6.17], so we give a
sketch (see also [Shi24, Theorem 5.9] and the proof of Theorem 8.19-(a) below). Let

‖ · ‖p,n :=
(
‖ · ‖pLp(K,m) + Ẽnp ( · )

)1/p

, which can be regarded as the Lp-norm on K t E∗n.

Also, we consider Ẽnp as a [0,∞]-valued functional on Lp(K,m). From [Dal, Theorem 8.5
and Proposition 11.6], by extracting a subsequence of {Ẽnp }n∈N if necessary, we can assume
that {Ẽnp }n∈N Γ-converges to some p-homogeneous functional Ep : Lp(K,m) → [0,∞] as
n → ∞. Then {‖ · ‖p,n}ninN Γ-converges to ||| · ||| :=

(
‖ · ‖pLp(K,m) + Ep

)1/p as n → ∞,
and hence (||| · |||p,Wp) is a p-energy form on (K,m) satisfying (Cla)p. By using (8.13)
and noting that limk→∞ Pnfk(w) = Pnf(w) for any n ∈ N ∪ {0}, any w ∈ Tn and any
f, fk ∈ Lp(K,m) with limk→∞ ‖f − fk‖Lp(K,m) = 0, we can show that ||| · ||| is a norm on
Wp that is equivalent to ‖ · ‖Wp . Thus,Wp is reflexive by Proposition 3.4 and the Milman–
Pettis theorem. The separability of Wp immediately follows from [AHM23, Proposition
4.1] since Lp(K,m) is separable and the inclusion map ofWp into Lp(K,m) is a continuous
linear injection.

In the case p > dimARC(K, d), Wp can be identified with a subspace of C(K) and is
dense in (C(K), ‖ · ‖sup) by [Kig23, Lemmas 3.15, 3.16 and 3.19].
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Let us introduce an important value, p-walk dimension, which will be a main topic in
Section 9.

Definition 8.18 (p-Walk dimension). Let p ∈ (0,∞). Assume that (K, d, {Kw}w∈T )
satisfies Assumption 8.6-(1),(2),(4),(5). Let r∗ ∈ (0, 1) be the constant in (8.4), let σp be
the p-scaling factor of (K, d, {Kw}w∈T ) (see (8.11) and Remark 8.13). We define τp ∈ R
by

τp :=
log σp

log r−1
∗
. (8.14)

If in addition m is Ahlfors regular with respect to d, then we define dw,p ∈ R by

dw,p := df + τp, (8.15)

where df denotes the Hausdorff dimension of (K, d). We call dw,p the p-walk dimension of
(K, d, {Kw}w∈T ).

Now we prove the main result in this subsection, which is an improvement of [Kig23,
Theorem 3.21].

Theorem 8.19. Let p ∈ (1,∞). Assume that (K, d, {Kw}w∈T ,m) satisfies Assumption
8.6 and that K is p-conductively homogeneous. Then there exist Êp : Wp → [0,∞) and
c ∈ (0,∞) such that the following hold:

(a) (Êp)1/p is a seminorm on Wp and

cNp(f) ≤ Êp(f)1/p ≤ Np(f) for any f ∈ Wp. (8.16)

(b) (Êp,Wp) is a p-energy form on (K,m) satisfying (GC)p.
(c) (Invariance) Let T : (K,B(K),m)→ (K,B(K),m) be Borel measurable and preserve

m, i.e., T−1(A) ∈ B(K) and m(T−1(A)) = m(A) for any A ∈ B(K). Then f ◦ T ∈
Wp and Êp(f ◦ T) = Êp(f) for any f ∈ Wp.

(d) If in addition p > dimARC(K, d), then (Êp,Wp) is a regular p-resistance form on K
and there exist C ∈ [1,∞) such that

C−1d(x, y)τp ≤ RÊp(x, y) ≤ Cd(x, y)τp for any x, y ∈ K. (8.17)

Proof. The most part of the proof will be very similar to that in [Kig23, Theorem 3.21],
but we present the details because we do not assume p > dimARC(K, d) unlike [Kig23,
Theorem 3.21]. Let Êp be a subsequential Γ-limit of {Ẽnp }n with respect to the topology
of Lp(K,m) as in [Kig23, Proof of Theorem 3.21], i.e., there exists a subsequence {Ẽn′p }n′
Γ-converging to Êp with respect to Lp(K,m) as n′ →∞. (Note that such a subsequential
Γ-limit exists by [Dal, Theorem 8.5].)

(a): Êp is p-homogeneous by [Dal, Proposition 11.6]. The triangle inequality for
Êp( · )1/p will be included in the proof of (b), so we shall prove (8.16). From the defi-
nition of the Γ-convergence, it is immediate that Êp(f) ≤ lim infn→∞ Ẽnp (f) ≤ Np(f)p.
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Let us show the former inequality in (8.16). Let f ∈ Wp and let {fn′}n′ be a recovery
sequence of {Ẽnp }n′ at f , i.e., limn′→∞ ‖f − fn′‖Lp(K,m) = 0 and Êp(f) = limn′→∞ Ẽn

′
p (fn′).

Since limn′→∞ Pkfn′(w) = Pkf(w) for any k ∈ N and any w ∈ Tk, by (8.13),

Ẽkp (f) = lim
n′→∞

Ẽkp (fn′) ≤ C lim
n′→∞

Ẽn′p (fn′) = CÊp(f),

where C ∈ (0,∞) is the constant in (8.13). We obtain the desired estimate by taking the
supremum over k ∈ N ∪ {0}.

(b): Let us fix n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2

satisfying (2.1). Define Qn : L1(K,m)→ L1(K,m) by

Qnf :=
∑
w∈Tn

Pnf(w)1Kw for f ∈ L1(K,m). (8.18)

Note that ‖Qn‖Lp(K,m)→Lp(K,m) ≤ 1 by (8.8) and Hölder’s inequality. Let us show
‖f −Qnf‖Lp(K,m) → 0 as n → ∞ for any f ∈ Lp(K,m). Define the Hardy–Littlewood
maximal operator M : Lp(K,m)→ L0(K,m) by

M f(x) = sup
r>0

 
Bd(x,r)

|f(y)| m(dy), x ∈ K.

Since m is volume doubling with respect to d by Assumption 8.6-(3), [HKST, Theo-
rem 3.5.6] implies that there exists a constant C ∈ (0,∞) such that ‖M f‖Lp(K,m) ≤
C ‖f‖Lp(K,m) for any f ∈ Lp(K,m). We also easily see that for any f ∈ Lp(K,m) and
any x ∈ K,

|Qnf(x)| ≤
∑

w∈Tn;x∈Kw

|Pnf(w)| ≤
∑

w∈Tn;x∈Kw

m(Bd(x, 2c2r
n
∗ ))

m(Kw)

 
Bd(x,2c2rn∗ )

|f | dm

≤
∑

w∈Tn;x∈Kw

m(Bd(x, 2c2r
n
∗ ))

m(Bd(xw, c5rn∗ ))
M f(x) ≤ C1M f(x),

where xw ∈ Kw and c2, c5 are the same as in Assumption 8.6-(2) and we used the volume
doubling property in the last inequality, and C1 ∈ (0,∞) is a constant depending only
on supw∈T #Γ1(w), c2, c5 and the doubling constant of m. Let f ∈ Lp(K,m) and let
Lf ⊆ K denote the set of Lebesgue points of f (recall (8.12)). Then Lf ∈ B(K) and
m(K \ Lf ) = 0 by the Lebesgue differentiation theorem for a volume doubling metric
measure space (see, e.g., [Hei, Theorem 1.8]). Since

|f(x)−Qnf(x)| ≤
∑

w∈Tn;x∈Kw

 
Kw

|f(x)− f(y)| m(dy)

≤ C1

 
Bd(x,2c2rn∗ )

|f(x)− f(y)| m(dy),

we have |f(x)−Qnf(x)| → 0 as n→∞ for any x ∈ Lf . Now the dominated convergence
theorem implies ‖f −Qnf‖Lp(K,m) → 0.
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Let u = (u1, . . . , un1) ∈ (Wp)n1 and choose a recovery sequence {uk,n′}n′ of {Ẽn
′

p }n′ at
uk for each k ∈ {1, . . . , n1}. For brevity, we write un′ = (u1,n′ , . . . , un1,n′) and

Pn′un′(v) =
(
Pn′u1,n′(v), . . . , Pn′un1,n′(v)

)
∈ Rn1 , v ∈ Tn′ ,

Qn′un′(v) =
(
Qn′u1,n′(v), . . . , Qn′un1,n′(v)

)
∈ Rn1 , v ∈ Tn′ .

Note that ‖un′ −Qn′uk,n′‖Lp(K,m) → 0 as n′ → ∞ by the fact proved in the previous
paragraph. Similar to an argument in [Kig23, p. 46], by using ‖Qn‖Lp(K,m)→Lp(K,m) ≤ 1
and the estimate (2.21), we have

‖Tl(u)− Tl(Qn′un′)‖Lp(K,m) −−−→
n′→∞

0 for any l ∈ {1, . . . , n2}. (8.19)

Also, we note that

Pn′
(
Tl(Qn′un′)

)
= Tl(Pn′un′) ∈ RTn′ for any l ∈ {1, . . . , n2}. (8.20)

With these preparations, we prove (GC)p for (Êp,Wp). We suppose that q2 < ∞ since
the case q2 =∞ is similar. By (8.19) and (8.20), we see that

n2∑
l=1

Êp
(
Tl(u)

)q2/p (8.19)
≤

n2∑
l=1

lim inf
n′→∞

Ẽn′p
(
Tl(Qn′un′)

)q2/p
(8.20)
≤ lim inf

n′→∞

n2∑
l=1

[
σn
′

p

2

∑
(v,w)∈E∗

n′

|Tl(Pn′un′(v))− Tl(Pn′un′(w))|q2·
p
q2

]q2/p

(2.19)
≤ lim inf

n′→∞

σn′p
2

∑
(v,w)∈E∗

n′

‖T (Pn′un′(v))− T (Pn′un′(v))‖p`q2

q2/p

(2.1)
≤ lim inf

n′→∞

σn′p
2

∑
(v,w)∈E∗

n′

‖Pn′u(v)− Pn′u(v)‖p`q1

q2/p

≤ lim inf
n′→∞

σn′p
2

∑
(v,w)∈E∗

n′

[
n1∑
k=1

|Pn′uk,n′(v)− Pn′uk,n′(w)|p·
q1
p

]p/q1q2/p

(∗)
≤ lim inf

n′→∞

 n1∑
k=1

[
σn
′

p

2

∑
(v,w)∈E∗

n′

|Pn′uk,n′(v)− Pn′uk,n′(w)|p
]q1/p

p
q1
· q2
p

≤

(
n1∑
k=1

lim sup
n′→∞

Ẽn′p (uk,n′)
q1/p

) p
q1
· q2
p

≤

(
n1∑
k=1

Êp(uk)q1/p
) p

q1
· q2
p

, (8.21)

where we used the triangle inequality for the `p/q1-norm on E∗n in (∗). Hence (Êp,Wp)
satisfies (GC)p.
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(c): This is clear from Pnf = Pn(f ◦ T) ∈ RTn for any n ∈ N ∪ {0}, f ∈ Lp(K,m).
(d): In the case p > dimARC(K, d), a combination of (b), [Kig23, Lemmas 3.13, 3.16,

3.19 and Theorem 3.21] and Theorem 8.16 implies that (Êp,Wp) is a regular p-resistance
form on K. Then the estimate (8.17) is exactly the same as [Kig23, (3.21) in Lemma
3.34], so we complete the proof.

Remark 8.20. The construction of EΓ
p in [MS23+, Theorem 6.22] is very similar to that

of Êp in the proof above although the setting and assumption on a ‘partition’ in [MS23+]
is slightly different from ours. Thanks to Proposition 8.7, the operatorsMn and Jn defined
in [MS23+, (6.8) and (6.9)] correspond to Pn and Qn respectively. In particular, (8.19)
and (8.20) for Mn and Jn are also true. Hence we can easily see that the p-energy form
(EΓ
p ,Fp) in [MS23+, Theorem 6.22] also satisfies (GC)p.

Before concluding this subsection, we deal with the capacity upper bound and a
Poincaré-type inequality under the additional assumption on the Ahlfors regularity of
m. In addition to the density ofWp in C(K), we can obtain the following capacity upper
bound under the p-conductive homogeneity of K if p > dimARC(K, d) and m is Ahlfors
regular.

Proposition 8.21 (Capacity upper bound). Let p ∈ (1,∞) and λ ∈ (1,∞). Assume
that Assumption 8.6 holds, that K is p-conductively homogeneous, that p > dimARC(K, d)
and that m is Ahlfors regular. Then there exists C ∈ (0,∞) such that for any (x, r) ∈
K × (0, 1],

inf
{
Np(u)p

∣∣ u ∈ Wp, u|Bd(x,r) = 1, suppK [u] ⊆ Bd(x, λr)
}
≤ C

m(Bd(x, r))

rdw,p
. (8.22)

Proof. Let r∗ ∈ (0, 1) and M∗ ∈ N be the constants in Assumption 8.6. For r ∈ (0, 1],
choose n ∈ N as the minimal number so that c2(M∗ + 1)rn∗ < (λ − 1)r, where c2 is
the constant in (8.3). Let x ∈ K and set Tn(x, r) := Tn[Bd(x, r)] for simplicity. Then,
by the metric doubling property of (K, d), there exists N ∈ N which is independent
of x and r such that #Tn(x, r) ≤ N . By [Kig23, Lemma 3.18] and its proof, for any
w ∈ Tn(x, r) there exists hM∗,w ∈ Wp such that hM∗,w|Kw = 1, suppK [hM∗,w] ⊆ UM∗(w) and
Np(hM∗,w)p . σnp . Now we define ψx,r :=

∑
w∈Tn(x,r) hM∗,w ∈ Wp. Then ψx,r|Bd(x,s) ≥ 1,

suppK [ψx,r] ⊆ Bd(x, λr) and

Np(ψx,r)p ≤ Np−1 max
w∈Tn(x,r)

Np(hM∗,w)p . σnp = rn(df−dw,p)
∗ . rdf−dw,p .

Since m is Ahlfors regular and Np(ψx,r ∧ 1) . Np(ψx,r) by [Kig23, Theorem 3,21], we
obtain (8.22).

We can describe Poincaré-type inequalities in terms of discrete p-energies as follows.

Lemma 8.22. Let p ∈ (1,∞). Assume that Assumption 8.6 holds, that K is p-
conductively homogeneous, and that m is Ahlfors regular. Then there exists a constant
C ∈ (0,∞) such that for any f ∈ Lp(K,m) and any w ∈ T ,ˆ

Kw

∣∣∣∣f(x)−
 
Kw

f dm

∣∣∣∣p m(dx) ≤ Cr|w|dw,p
∗ lim inf

n→∞
Ẽn+|w|
p,Sn(w)(f). (8.23)
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Proof. Set k := |w|. Recall that limn→∞ ‖Qnf − f‖Lp(K,m) = 0 as shown in the proof of
Theorem 8.19-(b). Hence, for any n ∈ N, we see that

1

m(Kw)

∑
v∈Sn(w)

|Pn+kf(v)− Pkf(w)|pm(Kv)

=
1

m(Kw)

∑
v∈Sn(w)

ˆ
Kv

|Qn+kf(x)− Pkf(w)|p m(dx)

=

 
Kw

|Qn+kf(x)− Pkf(w)|p m(dx) −−−→
n→∞

 
Kw

|f(x)− Pkf(w)|p m(dx), (8.24)

where we used Proposition 8.7 in the second equalty. By [Kig23, (5.11) in Theorem 5.11]
and (8.10), there exists C ∈ (0,∞) which is independent of f and n such that

1

m(Kw)

∑
v∈Sn(w)

|Pn+kf(v)− Pkf(w)|pm(Kv) ≤ Crk(dw,p−df)
∗ Ẽn+k

p,Sn(w)(f). (8.25)

We obtain (8.23) by combining (8.24), (8.25), (8.5) and the Ahlfors regularity of m.

Proposition 8.23. Let p ∈ (1,∞). Assume that Assumption 8.6 holds, that K is p-
conductively homogeneous, and that m is Ahlfors regular. Then there exist C, α ∈ (0,∞)
such that for any (x, r) ∈ K × (0, 1] and any f ∈ Lp(K,m),

ˆ
Bd(x,r)

∣∣∣∣f −  
Bd(x,r)

f dm

∣∣∣∣p dm ≤ Crdw,p lim inf
k→∞

Ẽkp,Tk[Bd(x,αr)](f). (8.26)

Proof. Throughout this proof, M∗ ∈ N and r∗ ∈ (0, 1) are the same constants as in
Assumption 8.6. Let (x, r) ∈ K × (0, 1]. We first consider the case r ∈ (c3r∗, 1], where c3

is the constant in (8.4). By applying Lemma 8.22 for w = φ,
ˆ
Bd(x,r)

∣∣∣∣f −  
Bd(x,r)

f dm

∣∣∣∣p dm (7.14)
≤ 2p

ˆ
Bd(x,r)

∣∣∣∣f −  
K

f dm

∣∣∣∣p dm
≤
ˆ
K

∣∣∣∣f −  
K

f dm

∣∣∣∣p dm ≤ C lim inf
n→∞

Ẽnp (f),

where C ∈ (0,∞) is the constant in (8.23). Since diam(K, d) = 1, this shows
(8.26) for any A ≥ c−1

3 r−1
∗ . Hence it suffices to consider the remaining case, i.e.,

r ∈ (0, c3r∗]. Let n ∈ N satisfy c3r
n
∗ ≥ r > c3r

n+1
∗ ,. Set ΓM∗(x;n) := {v ∈ T |

v ∈ ΓM∗(w) for some w ∈ Tn with x ∈ Kw}. Then we see that

ˆ
UM∗ (x;n)

∣∣∣∣∣f(y)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p

m(dy)

≤ 2p−1
∑

w∈ΓM∗ (x;n)

(ˆ
Kw

|f(y)− Pnf(w)|p m(dy) +m(Kw)

∣∣∣∣∣Pnf(w)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p)
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.
∑

w∈ΓM∗ (x;n)

(
rdw,p lim inf

k→∞
Ẽn+k
p,Sk(w)

(f) + rdf

∣∣∣∣∣Pnf(w)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p)

. (8.27)

Note that, by Proposition 8.7,

Pnf(w)−
 
UM∗ (x;n)

f dm =
1

m(UM∗(x;n))

∑
v∈ΓM∗ (x;n)

(Pnf(w)− Pnf(v))m(Kv).

For any w ∈ ΓM∗(x;n), by choosing w′ ∈ ΓM∗(x;n) \ {w} so that Pnf(w) − Pnf(w′) =
maxv∈ΓM∗ (x;n) |Pnf(w)− Pnf(v)|, we have∣∣∣∣∣Pnf(w)−

 
UM∗ (x;n)

f dm

∣∣∣∣∣ ≤ |Pnf(w)− Pnf(w′)| .

Hence, by Hölder’s inequality, (8.10) and [Kig23, (2.17)],∣∣∣∣∣Pnf(w)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p

≤ (2M∗ + 1)p−1Enp,ΓM∗ (x;n)(f)

. rdw,p−df lim inf
k→∞

Ẽn+k
p,Sk(ΓM∗ (x;n))

(f). (8.28)

Note that #ΓM∗(x;n) ≤ LM∗+2
∗ by Assumption 8.6-(1) and that Sk(ΓM∗(x;n)) ⊆

Tn+k[Bd(x, c4r
n
∗ )] ⊆ Tn+k[Bd(x, c

−1
3 r−1
∗ c4r)] by Assumption 8.6-(2), where c4 is the same

as in (8.4). Now we set A := (1 ∨ c4)c−1
3 r−1
∗ . Then, by (8.27) and (8.28),

ˆ
UM∗ (x;n)

∣∣∣∣∣f(y)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p

m(dy)

(8.28)
. rdw,p lim inf

k→∞

∑
w∈ΓM∗ (x;n)

Ẽn+k
p,Sk(ΓM∗ (x;n))

(f) ≤ LM∗+2
∗ rdw,p lim inf

k→∞
Ẽkp,Tk[Bd(x,Ar)](f).

Since
ˆ
Bd(z,s)

∣∣∣∣f(y)−
 
Bd(x,r)

f dm

∣∣∣∣p m(dy)
(7.14)
≤ 2p

ˆ
Bd(z,s)

∣∣∣∣∣f(y)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p

m(dy)

(8.4)
≤ 2p

ˆ
M∗ (x;n)

∣∣∣∣∣f(y)−
 
UM∗ (x;n)

f dm

∣∣∣∣∣
p

m(dy),

we obtain (8.26).

8.2 Construction of self-similar p-energy forms on p-conductively
homogeneous self-similar structures

In this subsection, we construct a self-similar p-resistance form on self-similar structures
under suitable assumptions. Our main result in this subsection, Theorem 8.29, implies
that self-similar p-energy forms constructed in [Kig23, Theorem 4.6] satisfy (GC)p.
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We start with some preparations before constructing self-similar p-resistance forms.
In the following definition, we introduce a good partition parametrized by a rooted tree.

Definition 8.24 ([Kig23, Definition 4.2]). Let L = (K,S, {Fi}i∈S) be a self-similar struc-
ture, let r ∈ (0, 1) and let (js)s∈S ∈ NS. Define

j(w) :=
n∑
i=1

jwi and g(w) := rj(w) for w = w1 . . . wn ∈ Wn.

Define π̃(w1 · · ·wn) := w1 · · ·wn−1 for w = w1 . . . wn ∈ Wn and

Λg
rk

:= {w = w1 · · ·wn ∈ W∗ | g(π̃(w)) > rk ≥ g(w)}.

Set T (r)
k := {(k, w) | w ∈ Λg

rk
}, T (r) :=

⋃
k∈N∪{0} T

(r)
k and define ι : T (r) → W∗ as ι(k, w) =

w. Moreover, define ET (r) ⊆ T (r) × T (r) by

ET (r) :=
{

((k, v), (k + 1, w)) ∈ T (r)
k × T

(r)
k+1

∣∣∣ k ∈ N ∪ {0}, v = w or v = π̃(w)
}
,

so that (T (r), ET (r)) is a rooted tree (see [Kig23, Proposition 4.3]).

In the rest of this subsection, we presume the following assumption on the geometry
of our self-similar structure.

Assumption 8.25. Let L = (K,S, {Fi}i∈S) be a self-similar structure such that #S ≥ 2

and K is connected. Set Kw := Kι(w) for w ∈ T
(r∗)
∗ for simplicity. There exist r∗ ∈

(0, 1) and a metric d giving the original topology of K with diam(K, d) = 1 such that
(K, d, {Kw}w∈T (r∗) ,m) satisfies Assumption 8.6, where m is the self-similar measure on K
with weight (rjsdf

∗ )s∈S and df is the unique number satisfying
∑

s∈S r
jsdf
∗ = 1.

Under Assumption 8.25, we have the df-Ahlfors regularity of m as follows.

Proposition 8.26 ([Kig23, Proposition 4.5]). The value df coincides with the Hausdorff
dimension of (K, d) and m is df-Ahlfors regular with respect to d.

To obtain a self-similar p-energy form on L, we first discuss the self-similarity for
Wp (recall (5.5)). The following lemma can be shown in exactly the same way as [Kig23,
Theorem 4.6-(1)] although the condition p > dimARC(K, d) is assumed in [Kig23, Theorem
4.6].

Lemma 8.27. For any u ∈ Lp(K,m), any k ∈ N ∪ {0} and any n ∈ N ∪ {0} with
n ≥ maxw∈Wk

j(w), ∑
w∈Wk

En−j(w)
p (Pn−j(w)(u ◦ Fw)) ≤ Enp (Pnu). (8.29)

In particular, if in additionK is p-conductively homogeneous (with respect to {Kw}w∈T (r∗)),
then u ◦ Fw ∈ Wp for any u ∈ Wp and any w ∈ W∗, and hence

Wp ∩ C(K) ⊆ {u ∈ C(K) | u ◦ Fi ∈ Wp for any i ∈ S}. (8.30)
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Similar to the case p = 2 (see, e.g., [Kig00, KZ92]), we will obtain a self-similar p-
energy form on (L,m) with weight σp := (σjsp )s∈S as a fixed point obtained by applying
Theorem 5.21. To this end, we need the converse inclusion of (8.30) and uniform estimates
on Sσp,n(E) for any/some E ∈ Up(Wp ∩C(K)); recall the definition of Sσp,n in Definition
5.20. These conditions are true ifK is p-conductively homogeneous and p > dimARC(K, d)
as described in the following proposition. (This result is essentially proved in [Kig23, Proof
of Theorem 4.6].)

Proposition 8.28. Let p ∈ (1,∞) and assume that K is p-conductively homogeneous
(with respect to {Kw}w∈T (r∗)). If p > dimARC(K, d), then

Wp = {u ∈ C(K) | u ◦ Fi ∈ Wp for any i ∈ S}, (8.31)

and there exists C ∈ [1,∞) such that for any E ∈ Up, any u ∈ Wp and any n ∈ N,

C−1Np(u)p ≤ Sσp,n(E)(u) ≤ CNp(u)p. (8.32)

Proof. The uniform estimate (8.32) follows from [Kig23, (4.6) and (4.8)]. (In the proof of
[Kig23], the assumption p > dimARC(K, d) is used to obtain [Kig23, (4.8)].) In the rest of
the proof, we prove

Wp ⊇ {u ∈ C(K) | u ◦ Fi ∈ Wp for any i ∈ S} =:Wp
S.

(The converse inclusion is proved in Lemma 8.27.) We note that the following estimate
in [Kig23, lines 8-9 in p. 61] is true for every u ∈ Wp

S: there exists a constant C ′ ∈ (0,∞)
such that

Ẽnp (u) ≤ C ′
∑
w∈Wn

σj(w)
p Np(u ◦ Fw)p = C ′Sσp,n(N p

p )(u) for any n ∈ N, u ∈ Wp
S. (8.33)

(We need p > dimARC(K, d) to obtain (8.33) by following the argument in [Kig23, p. 61].)
Taking the supremum over n ∈ N in the left-hand side of (8.33), we have Wp

S ⊆ Wp.

Now we can obtain the desired self-similar p-energy form. The following theorem is a
generalization of [Kig23, Theorem 4.6] taking into account the case p ≤ dimARC(K, d).

Theorem 8.29. Let p ∈ (1,∞). Assume that Assumption 8.25 holds, that K is p-
conductively homogeneous (with respect to {Kw}w∈T (r∗)) and that the following pre-self-
similarity conditions hold:

Wp ∩ C(K) = {u ∈ C(K) | u ◦ Fi ∈ Wp for any i ∈ S}. (8.34)
There exists C ∈ [1,∞) such that (8.32) holds for any u ∈ Wp ∩ C(K), n ∈ N. (8.35)

Let σp be the constant in (8.11), set σp := (σjsp )s∈S, let (Êp,Wp) be any p-energy form on

(K,m) given in Theorem 8.19 and set Fp :=Wp ∩ C(K)
Wp

. Then there exists {nk}k∈N ⊆
N with nk < nk+1 for any k ∈ N such that the following limit exists in [0,∞) for any
u ∈ Fp:

Ep(u) := lim
k→∞

1

nk

nk−1∑
j=0

Sσp,j(Êp)(u). (8.36)

Moreover, the following properties hold:
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(a) (Ep,Fp) is a self-similar p-energy form on (L,m) with weight σp, and there exist
α0, α1 ∈ (0,∞) such that α0Np(u)p ≤ Ep(u) ≤ α1Np(u)p for any u ∈ Fp.

(b) (Generalized p-contraction property) (Ep,Fp) satisfies (GC)p.
(c) (Strong locality) (Ep,Fp) satisfies the strongly local property (SL1).
(d) If in addition p > dimARC(K, d), then Fp =Wp and (Ep,Fp) is a regular self-similar

p-resistance form on L with weight σp and there exist α0, α1 ∈ (0,∞) such that

α0 d(x, y)τp ≤ REp(x, y) ≤ α1 d(x, y)τp for any x, y ∈ K. (8.37)

Remark 8.30. (1) In the case p > dimARC(K, d), the pre-self-similarity conditions,
(8.34) and (8.35), can be dropped by virtue of Proposition 8.28.

(2) In [CGQ22], self-similar p-energy forms on p.-c.f. self-similar structures are con-
structed, which are p-resistance forms under a certain condition as shown in Subsec-
tion 8.3. Note that any p ∈ (1,∞) is allowed in the framework of [CGQ22] unlike that
of [Kig23] (see (d) above). It is extremely hard to determine the value dimARC(K, d)
in general; however, dimARC(K, d) for a p.-c.f. self-similar set K is typically 1. (See
[CP14, Theorem 1.2] for a sufficient condition for dimARC(K, d) = 1.) In Appendix
B.2, by using some results in [CGQ22], we prove that the Ahlfors regular conformal
dimension of any affine nested fractal equipped with the p-resistance metric is 1.

Proof. The existence of the limit in (8.36) and its properties (a), (b) and (c) are immediate
from (8.34), (8.32), Lemma 5.15, Theorem 5.21, Propositions 5.22-(a) and 5.23. Let us
verify (d). Recall that Wp ⊆ C(K) by p > dimARC(K, d) (see Theorem 8.16), whence
Fp = Wp. A similar argument as in the proof of Theorem 8.19-(d) shows that (Ep,Wp)
is a regular p-resistance form on K satisfying (8.37). This completes the proof.

Similar to Theorem 7.9, we can obtain the monotonicity of σ1/(p−1)
p in p > dimARC(K, d).

Note that the following result is not restricted to p.-c.f. self-similar structures.

Theorem 8.31. Assume that Assumption 8.25 holds. Let p, q ∈ (dimARC(K, d),∞)
with p ≤ q. In addition, assume that K is s-conductively homogeneous (with respect
to {Kw}w∈T (r∗)) for each s ∈ {p, q}. Then

σ1/(p−1)
p ≤ σ1/(q−1)

q . (8.38)

Proof. The proof is very similar to that of Theorem 7.9. By Proposition 8.28, (8.34) and
(8.32) with s ∈ {p, q} in place of p hold. Let (Es,Ws) be a self-similar s-resistance form
on L given in Theorem 8.29 for each s ∈ {p, q}. Fix two distinct points x0, y0 ∈ K,
set B := {x0, y0} and define hp := h

Ep
B

[
1Bx0

]
∈ Wp. Then 0 ≤ hp ≤ 1 by the weak

comparison principle (Proposition 6.26) and we can find w ∈ W∗ satisfyingKw∩B = ∅ and
hp,w := hp ◦ Fw 6∈ R1K . Similar to (7.13), by using (6.31) and (7.1), for any {u, v} ∈ E∗n,
we can show that

|Pnhq,w(u)− Pnhq,w(v)|q−p ≤ Cr
n(dw,p−df)

q−p
p−1

∗ ,
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where C ∈ (0,∞) is independent of n. Hence we have

Enq (hp,w) =
∑

{u,v}∈E∗n

|Pnhq,w(u)− Pnhq,w(v)|q ≤ Cr
n(dw,p−df)

q−p
p−1

∗ Enp (hp,w),

which implies that(
σ−1
q σ(q−1)/(p−1)

p

)n
Ẽnq (hp,w) ≤ CẼnp (hp,w) ≤ CNp(hp,w)p. (8.39)

By (8.13), there exists Cq ∈ (0,∞) such that Nq(f)q ≤ Cq lim infn→∞ Ẽnq (f) for any
f ∈ Lq(K,m). This together with (8.39) implies that

Nq(hp,w)q lim sup
n→∞

(
σ−1
q σ(q−1)/(p−1)

p

)n
≤ C ′Np(hp,w)p <∞.

Since Nq(hp,w) > 0, we obtain σ−1
q σ

(q−1)/(p−1)
p ≤ 1, which yields (8.38).

We conclude this subsection by applying Theorem 6.37 (elliptic Harnack inequality)
in the case p > dimARC(K, d) of Theorem 8.29. We immediately obtain the following
corollary by combining Propositions 7.12, 8.21, 8.26 and (8.37).

Corollary 8.32 (Elliptic Harnack inequality for self-similar p-resistance form). Let p ∈
(1,∞). Assume that Assumption 8.25 holds, that K is p-conductively homogeneous (with
respect to {Kw}w∈T (r∗)) and that p > dimARC(K, d). Then (Ep,Wp) and {ΓEp〈u〉}u∈Wp

given in Theorem 8.29 and in (5.11) respectively satisfy the assumptions in Theorem 6.37
with m, df(p−1)

τp
, dw,p(p−1)

τp
in place of µ,Q, β.

8.3 Construction of self-similar p-resistance forms on post-critically
finite self-similar structures

In this subsection, under the condition (R) of [CGQ22, p. 18], we see that the construc-
tion of p-energy forms on p.-c.f. self-similar structures constructed due to [CGQ22] yields
p-resistance forms. The framework in [CGQ22] is focused only on p.-c.f. self-similar struc-
tures, but restrictions on weights of self-similar p-resistance forms are flexible so that
non-arithmetic weights are allowed unlike the framework in Subsection 8.2. See Section
B.1 for details.

In the following definitions, we recall some classes of p-energy forms on finite sets
considered in [CGQ22].

Definition 8.33 ([CGQ22, Definition 2.1]). Let A be a finite set with #A ≥ 2. Let
E : RA → [0,∞) and consider the following conditions.

(i) E(tf + (1− t)g) ≤ tE(f) + (1− t)E(g) for any f, g ∈ RA and any t ∈ [0, 1].
(ii) E(tf) = |t|pE(f) for any f ∈ RA and any t ∈ R.
(iii) E(f + t1A) = E(f) for any f ∈ RA and any t ∈ R.
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(iv) E(f+ ∧ 1) ≤ E(f) for any f ∈ RA.
(v) {f ∈ RA | E(f) = 0} = R1A.

We defineMp(A) and M̃p(A) by

Mp(A) := {E : RA → [0,∞) | E satisfies (i)-(v)}, (8.40)

M̃p(A) := {E : RA → [0,∞) | E satisfies (i)-(iv)}. (8.41)

Definition 8.34 ([CGQ22, Definition 2.8]). Let A be a finite set with #A ≥ 2. For
E1, E2 ∈ M̃p(A), define a metric dM̃p(A) on M̃p(A) by

dM̃p(A)(E1, E2) := sup
{
|E1(u)− E2(u)|

∣∣∣ u ∈ RA, osc
A

[u] = 1
}
. (8.42)

For simplicity, we set |E|M̃p(A)
:= dM̃p(A)(E, 0) for E ∈ M̃p(A).

(1) We define Sp(A) ⊆Mp(A) by

Sp(A) :=

{
E ∈Mp(A)

∣∣∣∣ there exists (cxy)x,y∈A ⊆ [0,∞) such that
E(f) =

∑
x,y∈A |f(x)− f(y)|p cxy for f ∈ RA

}
. (8.43)

Note that any functional in Sp(A) is a p-resistance form on A (see Example 6.3-(3)).
(2) We define Q′p(A) ⊆Mp(A) by

Q′p(A) :=

{
E ∈Mp(A)

∣∣∣∣ there exist B ⊇ A and Ẽ ∈ Sp(B) such that
Ẽ
∣∣
A

= E, where Ẽ
∣∣
A
is the trace of Ẽ on A

}
. (8.44)

Let Qp(A) be the closure of Q′p(A) in (Mp(A), dM̃p(A)), i.e.,

Qp(A) :=

{
E ∈Mp(A)

∣∣∣∣ there exists {En}n∈N ⊆ Q′p(A) such
that limn→∞ dM̃p(A)(E,En) = 0

}
. (8.45)

Then we can show that any functional in Qp(A) is a p-resistance form on A.

Proposition 8.35. Let A be a finite set with #A ≥ 2 and let E ∈ Qp(A). Then E is a
p-resistance form on A.

Proof. Thanks to Proposition 2.9-(a), it suffices to prove (RF5)p, i.e., (GC)p, for E ∈
Qp(A). Let {En}n∈N ⊆ Q′p(A) satisfy limn→∞ dM̃p(A)(E,En) = 0. Then it is easy to see
that limn→∞En(u) = E(u) for any u ∈ RA (see also [CGQ22, Lemma A.1]). Since En
satisfies (GC)p for any n ∈ N, we have (GC)p for E by Proposition 2.9-(b).

Next we introduce renormalization operators playing central roles in the construction
of p-energy forms on p.-c.f. self-similar structures. In the rest of this subsection, we always
suppose that K is connected and that L = (K,S, {Fi}i∈S) is a p.-c.f. self-similar structure
with #S ≥ 2.
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Definition 8.36 (Renormalization operator; [CGQ22, Definition 3.1]). Let ρp = (ρp,i)i∈S ∈
(0,∞)S and k ∈ N ∪ {0}. For a p-resistance form E on Vk, define p-resistance forms
Λρp(E) : RVk+1 → [0,∞) and Rρp(E) : RVk → [0,∞)9 by

Λρp(E)(u) :=
∑
i∈S

ρp,iE(u ◦ Fi), u ∈ RVk+1 , and Rρp(E) := Λρp(E)
∣∣
Vk
. (8.46)

(Recall Proposition 7.8 and Theorem 6.13.) Precisely, Λρp ,Rρp depend on k, but we omit
it for convenience. By [CGQ22, Lemma 3.2-(b)], we have Λn

ρp(E)
∣∣
Vk

= Rn
ρp(E) for any

n ∈ N ∪ {0}, i.e.,

Rn
ρp(E)(u) = inf

{∑
w∈Wn

ρp,wE(v ◦ Fw)

∣∣∣∣∣ v ∈ RVn+k , v|Vk = u

}
, u ∈ RVk .

The following theorem ensures the existence of an eigenform with respect to Rρp .
This theorem can be shown by combining [CGQ22, Lemma 4.4, proof of Theorem 4.2]
and Proposition 8.35, so we omit the proof.

Theorem 8.37 (Existence of an eigenform). Let ρp = (ρp,i)i∈S ∈ (0,∞)S. Assume that
there exist c ∈ (0,∞) and a p-resistance form E on V0 such that

min
x,y∈V0;x 6=y

RRnρp (E)(x, y) ≥ c max
x,y∈V0;x 6=y

RRnρp (E)(x, y) for any n ∈ N ∪ {0}. (A)

(a) There exists a unique number λ = λ(ρp) ∈ (0,∞) such that the following hold. For
any E ′ ∈Mp(V0), there exists C ∈ [1,∞) such that

C−1λnE ′(u) ≤ Rn
ρp(E

′)(u) ≤ CλnE ′(u) for any n ∈ N ∪ {0} and any u ∈ RV0.
(8.47)

(b) Let E0 ∈ Sp(V0). For n ∈ N, define En ∈ Q′p(V0) by

En(u) := inf

{
1

n+ 1

n∑
j=0

λ−jΛj
ρp(E0)(v|Vj)

∣∣∣∣ v ∈ RVn , v|V0 = u

}
, u ∈ RV0 , (8.48)

where λ is the number given in (a). Then there exists a subsequence {Enk}k∈N such
that it converges in the topology induced by dM̃p

. In particular, there exists E∗ ∈
Qp(V0) such that

E∗(u) = lim
k→∞

1

nk + 1

nk∑
j=0

λ−jΛj
ρp(E0)(u), u ∈ RV0 . (8.49)

(c) Let E0 ∈ Sp(V0), let E∗ ∈ Qp(V0) be given by (8.49) and let λ be the number given in
(a). Then {λ−lRl

ρp(E∗)(u)}l∈N∪{0} is non-decreasing for any u ∈ RV0 and Rρp(E
(0)
p ) =

λE (0)
p , where

E (0)
p (u) := lim

l→∞
λ−lRl

ρp(E∗)(u), u ∈ RV0 . (8.50)
9We use different symbols from [CGQ22].
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Remark 8.38. If ρp satisfies (A) for some p-resistance form E on V0, then for any p-
resistance form Ẽ on V0 there exists c̃ ∈ (0,∞) such that (A) with Ẽ, c̃ in place of E, c
holds by [CGQ22, Lemma 4.4-(a)]. Hence (A) is a condition relying only on ρp.

In the rest of this subsection, we fix ρp = (ρp,i)i∈S ∈ (0,∞)S. Let us introduce two
important conditions on ρp similarly to [CGQ22].

(A’) There exist a p-resistance form E (0)
p on V0 such that Rρp(E

(0)
p ) = E (0)

p .
(R) ((A’) holds and) mini∈S ρp,i > 1.

Note that, by Theorem 8.37, (A’) is equivalent to (A).
The following proposition is important to construct a self-similar p-resistance form as

an “inductive limit” of discrete p-resistance forms as presented in [CGQ22, Proposition
5.3], which is an adaptation of the relevant pieces of the theory of resistance forms due to
[Kig01, Sections 2.2, 2.3 and 3.3].

Proposition 8.39. Assume that (A’) holds. We define E (n)
p := Λn

ρp(E
(0)
p ), i.e.,

E (n)
p (u) :=

∑
w∈Wn

ρp,wE (0)
p (u ◦ Fw), u ∈ RVn . (8.51)

Then E (n)
p is a p-resistance form on Vn and E (n+m)

p

∣∣
Vn

= E (n)
p for any n,m ∈ N∪{0}, i.e.,{

(Vn, E (n)
p )
}
n≥0

is a compatible sequence of p-resistance forms.

Proof. We will show E (n+m)
p

∣∣
Vn

= E (n)
p . (See [Kig01, Proposition 3.1.3] for the case p = 2.)

It suffices to prove E (n+1)
p

∣∣
Vn

= E (n)
p for any n ∈ N ∪ {0} by virtue of Proposition 6.15.

Note that the case n = 0 is true by Rρp(E
(0)
p ) = E (0)

p , and that

E (n+1)
p (u) =

∑
i∈S

ρp,iE (n)
p (u ◦ Fi), for any n ∈ N ∪ {0} and u ∈ RVn+1 . (8.52)

Assume that E (m)
p

∣∣
Vm−1

= E (m−1)
p for some m ∈ N. Then for any u ∈ RVm ,

E (m)
p (u)

(8.52)
=
∑
i∈S

ρp,iE (m−1)
p (u ◦ Fi)

=
∑
i∈S

ρp,i min
{
E (m)
p (v ◦ Fi)

∣∣∣ v ∈ RKi∩Vm+1 , v|Ki∩Vm = u|Ki
}

(5.2)
= min

{∑
i∈S

ρp,iE (m)
p (v ◦ Fi)

∣∣∣∣∣ v ∈ RVm+1 , v|Vm = u

}
(8.52)
= min

{
E (m+1)
p (v)

∣∣∣ v ∈ RVm+1 , v|Vm = u
}

= E (m+1)
p

∣∣
Vm

(u),

which completes the proof.
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We can naturally construct a p-resistance form as an inductive limit on the countable
set V∗ as described in the following proposition.

Proposition 8.40. Assume that (A’) holds. We define a linear subspace Fp,∗ of RV∗ and
Ep,∗ : Fp,∗ → [0,∞) by

Fp,∗ :=
{
u ∈ RV∗

∣∣∣ lim
n→∞

E (n)
p (u|Vn) <∞

}
, and (8.53)

Ep,∗(u) := lim
n→∞

E (n)
p (u|Vn), u ∈ Fp,∗. (8.54)

Then (Ep,∗,Fp,∗) is a p-resistance form on V∗ satisfying Ep,∗|Vn = E (n)
p,∗ for any n ∈ N∪{0}.

Moreover, the following self-similar properties hold:

Fp,∗ =
{
u ∈ RV∗

∣∣ u ◦ Fi ∈ Fp,∗ for any i ∈ S
}
, (8.55)

Ep,∗(u) =
∑
i∈S

ρp,iEp,∗(u ◦ Fi) for any u ∈ Fp,∗. (8.56)

If in addition (R) holds, then for any u ∈ Fp,∗ there exists a unique û ∈ C(K) such that
û|V∗ = u, and {û | u ∈ Fp,∗} is dense in C(K).

Proof. It is immediate from Theorem 6.21 that (Ep,∗,Fp,∗) is a p-resistance form on V∗
with Ep,∗|Vn = E (n)

p,∗ . By the definition in (8.51), it is easy to see that for any n, k ∈ N∪{0}
and any u ∈ RV∗ ,

E (n+k)
p (u|Vn+k

) =
∑
w∈Wk

ρp,wE (n)
p (u ◦ Fw|Vn).

This immediately implies (8.55) and (8.56). The existence of unique continuous exten-
sions of functions in Fp,∗ under (R) is proved in [CGQ22, Theorem 5.1-(b)]. A standard
argument using the Stone–Weierstrass theorem shows that C := {û | u ∈ Fp,∗} is dense
in C(K). Indeed, C is an algebra since Fp,∗ is also an algebra by Proposition 2.2-(d).
For any x, y ∈ K with x 6= y, choose n ∈ N and v, w ∈ Wn so that x ∈ Kv, y ∈ Kw and
Kv∩Kw = ∅. (Such n, v, w exist by (5.3).) Then, by setting v := h

Ep,∗
Vn

[1Fv(V0)], we see that
ϕxy := v̂ ∈ C satisfies ϕxy(x) = 1 and ϕxy(y) = 0, so we can use the Stone–Weierstrass
theorem to conclude that C is dense in C(K).

To extend (Ep,∗,Fp,∗) to a p-energy form defined on K, we need to specify how to
regard functions in Fp,∗ as functions defined on K, which is indeed a delicate problem
and discussed in [CGQ22, Theorems 5.1 and 5.2]. In this paper, we are mainly interested
in the case Fp,∗ can be embedded into C(K). In other words, we always assume that (R)
holds. (See [CGQ22, Theorem 5.2] and [KS.b, Appendix] for details on a situation when
we can identify a function u ∈ RV∗ satisfying limn→∞ E (n)

p (u|Vn) < ∞ with a function on
K without (R).) To state a construction of self-similar p-resistance forms under (R), we
need the following lemma.

Lemma 8.41. Assume that (A’) and (R) hold. Let (Ep,∗,Fp,∗) is the p-resistance form
on V∗ given in Proposition 8.40. Then idV∗ : (V∗, R

1/p
Ep,∗) → K is uniquely extended to the

completion, which gives a homeomorphism.
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Proof. The proof is very similar to arguments in [Kig01, Proposition 3.3.2, Lemma 3.3.5
and Theorem 3.3.4]. Let (K̂, d̂ ) be the completion of (V∗, R

1/p
p,Ep,∗) and let (Êp,∗, F̂p,∗)

be the p-resistance form on K̂ defined by (6.26) and (6.27), where we choose S ={
(Vn, E (n)

p )
}
n∈N∪{0}. Also, we fix a metric d on K which gives the original topology of

K. Recall that R1/p

Êp,∗
= d̂ by Corollary 6.23. For n ∈ N, we define

δn := min
v,w∈Wn;Kv∩Kw=∅

(
inf

x∈Fv(V∗),y∈Fw(V∗)
REp,∗(x, y)

)
.

Then δn > 0 since REp,∗(x, y) ≥ Ep,∗
(
h
Ep,∗
Vn

[1Fw(V0)]
)−1 for any x ∈ Fv(V∗), y ∈ Fw(V∗). Let

{xn}n≥0 be a Cauchy sequence in (V∗, R
1/p
Ep,∗). For each n ∈ N, choose N(n) ∈ N so that

sup
k,l≥N(n)

REp,∗(xk, xl) < δn.

Then there exists w ∈ Wn such that {xk}k≥N(n) ⊆
⋃
v∈Wn;Kv∩Kw 6=∅ Fv(V∗) =: An,w.

Since limn→∞maxw∈Wn diam(An,w, d) = 0 by (5.3), we conclude that idV∗ : (V∗, R
1/p
Ep,∗) →

(V∗, d|V∗×V∗) is uniformly continuous. Now we define θ : (K̂, d̂)→ (K, d) as the unique con-
tinuous map satisfying θ|V∗ = idV∗ . Let us show that θ is injective. Assume that x, y ∈ K̂
satisfy θ(x) = θ(y). Let {xn}n≥0, {yn}n≥0 be Cauchy sequences in (V∗, R

1/p
Ep,∗) satisfying

limn→∞ d̂(x, xn) = limn→∞ d̂(y, yn) = 0. Then limn→∞ d(θ(x), xn) = limn→∞ d(θ(y), yn) =

0 since θ is continuous. For any u ∈ F̂p,∗, let ûn ∈ C(K) be the unique function satisfying
ûn|V∗ = h

Ep,∗
Vn

[u|Vn ], which exists by Proposition 8.40. Also, let vn ∈ C(K̂) be the unique
function satisfying vn|V∗ = h

Ep,∗
Vn

[u|Vn ]; recall the proof of Theorem 6.22. Then we see that

vn(x) = lim
k→∞

h
Ep,∗
Vn

[u](xk) = ûn(θ(x)) = ûn(θ(y)) = lim
k→∞

h
Ep,∗
Vn

[u](yk) = vn(y). (8.57)

Let us fix o ∈ V0 ⊆ Vn. By (6.3) for (Êp,∗, F̂p,∗),

|u(x)− vn(x)|p ≤ RÊp,∗(x, o)Êp,∗(u− ŭn) = RÊp,∗(x, o)Ep,∗
(
u|V∗ − h

Ep,∗
Vn

[u|Vn ]
)
,

which together with (6.17) and (8.57) implies that

u(x) = lim
n→∞

vn(x) = lim
n→∞

vn(y) = u(y).

Since u ∈ F̂p,∗ is arbitrary, we conclude that RÊp,∗(x, y) = 0 and hence x = y. This means
that θ is injective.

Next we see that {Fi}i∈S yields a family of contractions on the complete (non-empty)
metric space (K̂, d̂ ). By virtue of (8.56), similarly to the proof of (7.1), one can show
that for any w ∈ W∗ and any x, y ∈ V∗,

d̂(Fw(x), Fw(y))p = RÊp,∗(Fw(x), Fw(y)) ≤ ρ−1
p,wRÊp,∗(x, y) = ρ−1

p,wd̂(x, y)p.
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In particular, Fw|V∗ : (V∗, d̂ ) → (V∗, d̂ ) is uniformly continuous, and hence there exists a
unique continuous map F K̂

w : K̂ → K̂ such that F K̂
w

∣∣
V∗

= Fw|V∗ . Then it is clear that

d̂
(
F K̂
w (x), F K̂

w (y)
)
≤ ρ−1/p

p,w d̂(x, y) for any x, y ∈ K̂, (8.58)

and that θ◦F K̂
w = Fw ◦θ. Now, by (R) and (8.58),

{
F K̂
i

}
i∈S is a family of contractions on

(K̂, d̂ ). By [Kig01, Theorem 1.1.4], there exists a unique non-empty compact subset K̂0

of K̂ such that K̂0 =
⋃
i∈S F

K̂
i (K̂0). Let us fix o ∈ K̂0 and set A :=

⋃
w∈W∗ F

K̂
w (o) ⊆ K̂0.

Then θ(A) =
⋃
w∈W∗ Fw(θ(o)) is dense in (K, d) by (5.3). Since θ(A) ⊆ θ(K̂0) ⊆ K and

θ(K̂0) is compact by the continuity of θ, we have θ(K̂0) = K and thus θ(K̂) = K. Then
K̂ turns out to be compact since K̂ = K̂0 by the injectivity of θ. Now θ turns out to be a
homeomorphism between K̂ and K. From the uniqueness of θ, we conclude that K̂ = K
and θ = idK . We complete the proof.

The following theorem describes a construction of self-similar p-resistance form as the
inductive limit of {E (n)

p }n≥0 under the assumption that (R) holds.

Theorem 8.42. Assume that (A’) and (R) hold. We define

Fp :=
{
u ∈ C(K)

∣∣∣ lim
n→∞

E (n)
p (u|Vn) <∞

}
, and (8.59)

Ep(u) := lim
n→∞

E (n)
p (u), u ∈ Fp. (8.60)

Then (Ep,Fp) is a regular self-similar p-resistance form on L with weight ρp, Ep|Vn = E (n)
p

for any n ∈ N ∪ {0}, and REp is compatible with the original topology of K.

Remark 8.43. Similar to Proposition 5.22, by choosing a suitable E0 ∈ Sp(V0) in Theo-
rem 8.37, we can verify nice properties like the symmetry-invariance (see (9.7) for details)
of E∗ in (8.49), E (0)

p in (8.50) and Ep. See also Theorem 8.52.

Proof. By Lemma 8.41 and Corollary 6.23, (Ep,Fp) is a p-resistance form on K. The
self-similarity conditions, (5.5) and (5.6), for (Ep,Fp) are obvious from Proposition 8.39.
By Lemma 8.41 and Proposition 8.40, REp is compatible with the original topology of K
and (Ep,Fp) is regular (recall Definition 6.5).

Let us recall the following proposition, which is useful to verify (R) for concrete
examples.

Proposition 8.44 ([CGQ22, Lemma 5.4]). Assume that (A’) holds. If w ∈ W∗ satisfies
ẇ := www · · · ∈ PL, then ρp,w > 1.

Next we move to the elliptic Harnack inequality for (non-negative) p-harmonic func-
tions. In the same setting as Theorem 8.42, one can verify the assumptions in Theorem
6.37 (elliptic Harnack inequality). Indeed, (8.61) and (8.62) in the proposition below are
proved in [KS.a, Lemma 6.8, Propositions 6.9 and 6.14] (see also Lemma B.4-(b), (c) for
affine nested fractals) and (8.63) is implied by Proposition 7.12. We summarize the results
in the next proposition and corollary.
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Proposition 8.45. Assume that (A’) and (R) hold. Let df(ρp) ∈ (0,∞) be such that∑
i∈S ρ

−df(ρp)/(p−1)
p,i = 1, letm be the self-similar measure on L with weight

(
ρ
−df(ρp)/(p−1)
p,i )i∈S,

let (Ep,Fp) be the p-resistance form given in Theorem 8.42, and let {ΓEp〈u〉}u∈Fp be the
associated p-energy measures (recall (5.11)). Set R̂p := R̂p,Ep for simplicity. Then there
exist C,A ∈ (1,∞) such that for any (x, s) ∈ K × (0,∞) with BR̂p

(x, s) 6= K and any
u ∈ Fp,loc(BR̂p

(x,As)),

C−1sdf(ρp) ≤ m(BR̂p
(x, s)) ≤ Csdf(ρp), (8.61)

inf{Ep(u) | u ∈ Fp, u|B
R̂p

(x,s) = 1, suppK [u] ⊆ BR̂p
(x,As)} ≤ Cs−(p−1), (8.62)

ˆ
B
R̂p

(x,s)

∣∣∣∣∣u−
 
B
R̂p

(x,s)

u dm

∣∣∣∣∣
p

dm ≤ Csdf(ρp)+p−1

ˆ
B
R̂p

(x,As)

dΓEp〈u〉. (8.63)

Corollary 8.46 (Elliptic Harnack inequality on p.-c.f. self-similar structures). Assume
that (A’) and (R) hold. Let df(ρp) ∈ (0,∞), m, (Ep,Fp) and {ΓEp〈u〉}u∈Fp be the same as
in Proposition 8.45 Then the assumptions in Theorem 6.37 holds with m, df(ρp), df(ρp) +
p− 1 in place of µ,Q, β.

8.4 Verifying (A) for strongly symmetric p.-c.f. self-similar sets

Let us conclude this section by showing (A) for a special class of p.-c.f. self-similar sets
called affine nested fractals, which was introduced in [FHK94] as a generalization of the
class called nested fractals introduced by Liondstrøm [Lin90]. More precisely, we will
work in a wider class called strongly symmetric p.-c.f. self-similar sets. The proof of
(A) for affine nested fractals was given in [CGQ22, Theorem 6.3], but their description
on the group of symmetries in the paper [CGQ22] is not sophisticated10, so we provide
the details of the proof for (A) and improve the assumptions in [CGQ22, Theorem 6.3]
simultaneously in Theorem 8.51.

We start with recalling the definitions of a group of symmetries, affine nested fractals
and strongly symmetric p.-c.f. self-similar sets. See, e.g., [Kig01, Section 3.8] for details.

Framework 8.47. Let D ∈ N and let S be a non-empty finite set with #S ≥ 2. Let
{ci}i∈S ⊆ (0, 1), {ai}i∈S ⊆ RD and {Ui}i∈S ⊆ O(D), where O(D) is the collection of
orthogonal transformations of RD. Define fi : RD → RD by fi(x) := ciUix + ai for each
i ∈ S. Let K be the self-similar set associated with {fi}i∈S, set Fi := fi|K for each i ∈ S
and assume that L = (K,S, {Fi}i∈S) is a p.-c.f. self-similar structure. We also assume
that K is connected, M := #(V0) < ∞ and

∑M
i=1 qi = 0, where qi ∈ RD is defined so

that V0 = {qi}Mi=1. Let d : K × K → [0,∞) be the Euclidean metric on K given by
d(x, y) := |x− y|.

10For a group of symmetries, say G, one of the essential properties that is needed to prove the G-
invariance of the resulted self-similar p-energy form is Proposition 8.50-(2). We have to be careful whether
this property holds for G, but this point is not handled very well.
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Definition 8.48 ([Kig01, Definitions 3.8.3 and 3.8.4]). (1) We define

Gsym(L) := Gsym :=

{
g|K

∣∣∣∣∣ g ∈ O(D), for any n ∈ N ∪ {0} and any
w ∈ Wn there exists w′ ∈ Wn such that
g(Kw) = Kw′ and g(Fw(V0)) = Fw′(V0)

}
,

where O(D) denotes the orthogonal group in dimension D.
(2) For x, y ∈ RD with x 6= y, let gxy : RD → RD be the reflection in the hyperplane{

z ∈ RD
∣∣ |x− z| = |y − z|}.

(3) Let m∗ := #{|x− y| | x, y ∈ V0, x 6= y} and l0 := min{|x− y| | x, y ∈ V0, x 6= y}. We
define {li}m∗−1

i=0 inductively by li+1 := min{|x− y| | x, y ∈ V0, |x− y| > li}.
(4) Let m ∈ N ∪ {0} and (xi)

n
i=1 ∈ (Vm)n. Then (xi)

n
i=1 is called an m-walk (between x1

and xn) if and only if there exist w1, . . . , wn ∈ Wm such that {xi, xi+1} ⊆ Fwi(V0) for
all i ∈ {1, 2, . . . , n−1}. A 0-walk (xi)

n
i=1 is called a strict 0-walk (between x1 and xn)

if and only if |xi − xi+1| = l0 for any i ∈ {1, 2, . . . , n− 1}.
(5) L is called a strongly symmetric p.-c.f. self-similar set if and only if it satisfies the

following four conditions:
(SS1) For any x, y ∈ V0 with x 6= y, there exists a strict 0-walk between x and y.
(SS2) If x, y, z ∈ V0 and |x− y| = |x− z|, then there exists g ∈ Gsym such that

g(x) = x and g(y) = z.
(SS3) For any i ∈ {0, . . . ,m∗ − 2}, there exist x, y, z ∈ V0 such that |x− y| = li,

|x− z| = li+1 and gyz|K ∈ Gsym.
(SS4) V0 is Gsym-transitive, i.e., for any x, y ∈ V0 with x 6= y, there exists g ∈ Gsym

such that g(x) = y.
(6) L is called an affine nested fractal if gxy|K ∈ Gsym(L) for any x, y ∈ V0 with x 6= y.

Remark 8.49. In [Kig01, Definitions 3.8.3 and 3.8.4], the following group of symmetries
Gs is used instead of Gsym:

Gs :=

{
g|K

∣∣∣∣ g ∈ O(D), for any n ∈ N ∪ {0} and any w ∈ Wn

there exists w′ ∈ Wn such that g(Fw(V0)) = Fw′(V0)

}
;

note that Gsym ⊆ Gs. Under the assumption that

#(Fi(V0) ∩ Fj(V0)) ≤ 1 for any i, j ∈ S with i 6= j, (8.64)

we know that Gsym = Gs by [Kig01, Proposition 3.8.19]. The difference between Gsym and
Gs does not affect the arguments in the parts of [Kig01, CGQ22] (Proposition 8.50 and
Theorem 8.51 below) that we need.

Let us recall a few properties of Gsym and of affine nested fractals in the following
proposition, which can be shown in the same ways as in [Kig01, Section 3.8]. (Let us
emphasize that we do not assume (8.64) unlike [Kig01, Section 3.8].)

Proposition 8.50 ([Kig01, Propositions 3.8.7, 3.8.20 and Lemma 3.8.23]). (1) If L is an
affine nested fractal, then it is a strongly symmetric self-similar set.
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(2) Let w ∈ W∗, g ∈ Gsym and set

Ug,w := F−1
w′ ◦ g ◦ Fw,

where w′ ∈ W∗ is the unique word satisfying Fw′(V0) = g(Fw(V0)). Then Ug,w ∈ Gsym.
(3) Let a, b ∈ V0 and assume that gab|K ∈ Gsym. if x, y ∈ Fw(V0) for some w ∈ W∗,
|x− b| < |x− a| and |y − b| > |y − a|, then gab(Kw) = Kw.

Now we can present the following theorem proving the existence of an eigenform on
V0 for strongly symmetric self-similar sets and improving [CGQ22, Theorem 6.3]. Note
that the case p = 2 corresponds to the existence of a harmonic structure on L in [Kig01,
Theorem 3.8.10].

Theorem 8.51. Assume that L is strongly symmetric. If

ρp,i = ρp,g(1)(i) for any i ∈ S and g ∈ Gsym, (8.65)

then ρp satisfies (A). In particular, if there exists ρp ∈ (0,∞) such that ρp,i = ρp for
any i ∈ S, then (A’) and (R) with

(
λ(ρp)

−1ρp
)
i∈S in place of ρp hold, where λ(ρp) is the

number given in Theorem 8.37-(a).

Proof. The proof is essentially the same as [CGQ22, Proof of Theorem 6.3], but we give
the details of the argument since we weaken the assumption of [CGQ22, Theorem 6.3].
For n ∈ N ∪ {0}, define Ep,n ∈ Sp(Vn) by

Ep,n(y) :=
∑
w∈Wn

ρp,w
∑

x,y∈V0;|x−y|=l0

|u(Fw(x))− u(Fw(y))|p , u ∈ RVn .

Note that, by Proposition 8.50-(2) and (8.65), Ep,n is Gsym-invariant, i.e., Ep,n(u ◦ g|Vn) =
Ep,n(u) for any u ∈ RVn and g ∈ Gsym. We fix a1, a2 ∈ V0 that satisfy |a1 − a2| = l0 and
claim that for any n ∈ N and x, y ∈ V0 with x 6= y,

1

2
REp,n(a1, a2) ≤ REp,n(x, y) ≤ (#V0)pREp,n(a1, a2), (8.66)

which implies (A) for ρp with c = 2(#V0)−p.
We first show the upper estimate in (8.66). Let (xi)

k
i=0 ∈ (V0)k+1 be a strict 0-

walk between x and y. Then, by (SS2), (SS4) and the Gsym-invariance of Ep,n, we have
REp,n(xi, xi+1) = REp,n(a1, a2) for any i ∈ {0, . . . , k − 1}. Hence we see that

REp,n(x, y)1/p ≤
k−1∑
i=0

REp,n(xi, xi+1)1/p = kREp,n(a1, a2)1/p ≤ (#V0)REp,n(a1, a2)1/p,

which shows the desired estimate.
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Next we prove the lower estimate in (8.66). The case |x− y| = l0 is clear by (SS2),
(SS4) and the Gsym-invariance of Ep,n, so we assume that |x− y| > l0. By (SS1), there
exists z ∈ V0 such that |x− z| = l0. Define u ∈ RVn by

u(a) :=

{
h
Ep,n
{x,z}[1x](a) if a ∈ Vn satisfies |a− z| ≤ |a− y|,
h
Ep,n
{x,z}[1x](gyz(a)) if a ∈ Vn satisfies |a− z| ≥ |a− y|,

which is well-defined since Theorem 6.13 implies hEp,n{x,z}[1x](a) = 1/2 whenever |a− z| =

|a− y|. Since |x− z| = l0 < |x− y|, we have u(x) = h
Ep,n
{x,z}[1x](x) = 1. Also, u(y) =

h
Ep,n
{x,z}[1x](gyz(y)) = 0. Hence REp,n(x, y) ≥ Ep,n(u)−1. Now we define H1,n := {a ∈ Vn |
|a− z| ≤ |a− y|}, H2,n := {a ∈ Vn | |a− z| ≥ |a− y|} and we see that

Ep,n(u) =

 ∑
w∈Wn;

Fw(V0)⊆H1,n

+
∑
w∈Wn;

Fw(V0)⊆H2,n

+
∑
w∈Wn;

Fw(V0)6⊆Hi,n

 ρp,wEp,0(u ◦ Fw|V0)

= 2
∑
w∈Wn;

Fw(V0)⊆H1,n

ρp,wEp,0

(
h
Ep,n
{x,z}[1x] ◦ Fw|V0

)
+

∑
w∈Wn;

Fw(V0) 6⊆Hi,n

ρp,wEp,0(u ◦ Fw|V0).

To estimate the second term in the right-hand side in the above inequality, let a, b ∈ V0

satisfy |a− b| = l0, |Fw(a)− z| < |Fw(a)− y| and |Fw(b)− z| > |Fw(b)− y|. Then we
have gyz(Fw(V0)) = Fw(V0) by Proposition 8.50-(3). This along with the minimality of l0
implies that gyz(Fw(a)) = Fw(b), whence it follows that u(Fw(a)) = u(Fw(b)). Hence∑

w∈Wn;
Fw(V0)6⊆Hi,n

ρp,wEp,0(u ◦ Fw|V0) =
∑
w∈Wn;

Fw(V0)6⊆Hi,n

ρp,w
∑

a,b∈V0;|a−b|=l0,
{Fw(a),Fw(b)}⊆H1,n

or{Fw(a),Fw(b)}⊆H2,n

|u(Fw(a))− u(Fw(b))|p

≤ 2
∑
w∈Wn;

Fw(V0) 6⊆Hi,n

ρp,wEp,0

(
h
Ep,n
{x,z}[1x] ◦ Fw|V0

)
,

and we deduce that

REp,n(x, y) ≥ Ep,n(u)−1 ≥ 1

2
Ep,n

(
h
Ep,n
{x,z}[1x]

)−1

=
1

2
REp,n(a1, a2),

completing the proof.

The following theorem gives symmetry-invariance self-similar p-resistance forms on
strongly symmetric self-similar sets.

Theorem 8.52. Assume that L is a strongly symmetric p.-c.f. self-similar set and that
(A’), (R), (8.65) hold. Then there exists a self-similar p-resistance form (Ep,Fp) on L
with weight ρp such that u◦g ∈ Fp and Ep(u◦g) = Ep(u) for any u ∈ Fp and any g ∈ Gsym.
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Proof. Define E0 ∈ Sp(V0) by E0(u) :=
∑

x,y∈V0
|u(x)− u(y)|p for u ∈ RV0 . Then E0(u) =

E0(u ◦ g) for any u ∈ RV0 and g ∈ Gsym. By Theorem 8.51 and explicit expressions (8.48),
(8.49) and (8.50), there exists a p-resistance form E (0)

p on V0 such that Rρp(E
(0)
p ) = E (0)

p

and E (0)
p (u) = E (0)

p (u ◦ g) for any u ∈ RV0 and g ∈ Gsym. The desired symmetry-invariance
for (Ep,Fp) is immediate from (8.65), Proposition 8.50-(2) and the expressions (8.59),
(8.60).

9 p-Walk dimension of Sierpiński carpets/gaskets

In this section, we prove the strict inequality dw,p > p for generalized Sierpiński carpets
and D-dimensional level-l Sierpiński gasket as an application of the nonlinear potential
theory developed in Sections 6 and 7. In particular, we remove the planarity in the
hypothesis of the previous result [Shi24, Theorem 2.27].

9.1 Generalized Sierpiński carpets

By following [Kaj23, Section 2], we recall the definition of generalized Sierpiński carpets.

Framework 9.1. Let D, l ∈ N, D ≥ 2, l ≥ 3 and set Q0 := [0, 1]D. Let S ( {0, 1, . . . , l−
1}D be non-empty, define fi : RD → RD by fi(x) := l−1i + l−1x for each i ∈ S and set
Q1 :=

⋃
i∈S fi(Q0), so that Q1 ( Q0. Let K be the self-similar set associated with {fi}i∈S.

Note that K ( Q0. Set Fi := fi|K for each i ∈ S and GSC(D, l, S) := (K,S, {Fi}i∈S).
Let d : K × K → [0,∞) be the Euclidean metric on K given by d(x, y) := |x − y|, set
df := logl(#S), and letm be the self-similar measure on GSC(D, l, S) with uniform weight
(1/#S)i∈S.

Recall that df is the Hausdorff dimension of (K, d) and that m is a constant multiple
of the df-dimensional Hausdorff measure on (K, d); see, e.g., [Kig01, Proposition 1.5.8 and
Theorem 1.5.7]. Note that df < D by S ( {0, 1, . . . , l − 1}D.

The following definition is due to Barlow and Bass [BB99, Section 2], except that
the non-diagonality condition in [BB99, Hypotheses 2.1] has been strengthened later in
[BBKT] to fill a gap in [BB99, Proof of Theorem 3.19]; see [BBKT, Remark 2.10-1.] for
some more details of this correction.

Definition 9.2 (Generalized Sierpiński carpet). GSC(D, l, S) is called a generalized Sier-
piński carpet if and only if the following four conditions are satisfied:

(GSC1) (Symmetry) f(Q1) = Q1 for any isometry f of RD with f(Q0) = Q0.
(GSC2) (Connectedness) Q1 is connected.
(GSC3) (Non-diagonality) intRD

(
Q1 ∩

∏D
k=1[(ik − εk)l−1, (ik + 1)l−1]

)
is either empty or

connected for any (ik)
D
k=1 ∈ ZD and any (εk)

D
k=1 ∈ {0, 1}D.

(GSC4) (Borders included) [0, 1]× {0}D−1 ⊂ Q1.
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See [BB99, Remark 2.2] for a description of the meaning of each of the four conditions
(GSC1), (GSC2), (GSC3) and (GSC4) in Definition 9.2. To be precise, (GSC3) is slightly
different from the formulation of the non-diagonality condition in [BBKT, Subsection 2.2],
but they have been proved to be equivalent to each other in [Kaj10, Theorem 2.4]; see
[Kaj10, Section 2] for some other equivalent formulations of the non-diagonality condition.

In this subsection, we assume that GSC(D, l, S) = (K,S, {Fi}i∈S) as introduced in
Framework 9.1 is a generalized Sierpiński carpet as defined in Definition 9.2.

We next ensure the existence of a symmetry-invariant p-resistance form on GSC(D, l, S)
for p > dimARC(K, d) by applying Theorem 8.29.

Definition 9.3. We define

G0 := {f |K | f is an isometry of RD, f(Q0) = Q0}, (9.1)

which forms a finite subgroup of the group of homeomorphisms of K by virtue of (GSC1).

Corollary 9.4. Let p ∈ (dimARC(K, d),∞). Then Assumption 8.25 holds with r∗ = l−1,
K is p-conductively homogeneous, and there exists a regular self-similar p-resistance form
(Ep,Wp) on GSC(D, l, S) with weight (σp)i∈S such that it satisfies the conditions (a)-(d)
of Theorem 8.29. In particular, (Ep,Wp) has the following property:

If u ∈ Wp and g ∈ G0 then u ◦ g ∈ Wp and Ep(u ◦ g) = Ep(u). (9.2)

Proof. Assumption 8.25 and the p-conductive homogeneity for the generalized Sierpiński
carpets in the case p ∈ (dARC,∞) follow from [Kig23, Theorem 4.13] or [Shi24, Proposition
4.5 and Theorem 4.14]. Let (Ep,Wp) be a self-similar p-resistance form given in Theorem
8.29. Then the desired properties except for (9.2) are already proved. The symmetric-
invariance (9.2) follows Theorem 8.19-(c), (8.36) and the fact that F−1

i ◦ g ◦ Fi ∈ G0 for
any i ∈ S; see also Proposition 5.22-(b).

Recall that σp and dw,p are defined for any p ∈ (0,∞) (under Assumption 8.25). We
know the following monotonicity on dw,p/p in p ∈ (0,∞).

Proposition 9.5. dw,p/p ≥ dw,q/q for any p, q ∈ (0,∞) with p ≤ q.

Proof. This follows from [Kig20, Lemma 4.7.4] and the fact that df = logl(#S).

The following definition is exactly the same as a part of [Kaj23, Definition 3.6].

Definition 9.6. (1) We set V ε
0 := K ∩ ({ε} × RD−1) for each ε ∈ {0, 1} and U0 :=

K \ (V 0
0 ∪ V 1

0 ).
(2) We define gε ∈ G0 by gε := τε|K for each ε = (εk)

D
k=1 ∈ {0, 1}D, where τε : RD → RD

is given by τε((xk)Dk=1) := (εk + (1− 2εk)xk)
D
k=1, and define a subgroup G1 of G0 by

G1 := {gε | ε ∈ {0} × {0, 1}D−1}. (9.3)
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In the rest of this subsection, we fix p ∈ (dARC,∞) and a self-similar p-resistance
form (Ep,Wp) in Corollary 9.4. Recall Theorem 6.13 and let h0 := h

Ep
V 0

0 ∪V 1
0

[
1V 1

0

]
∈ Wp.

The strategy to prove dw,p > p is very similar to [Kaj23], that is, we will prove the non-
Ep-harmonicity on U0 of h2 :=

∑
w∈W2

(Fw)∗(l
−2h0 + qw1 1K) ∈ Wp, which also satisfies

h2|V i0 = i (i = 0, 1). (See [Kaj23, Figures 2 and 3] for an illustration of h0 and h2.) Then
the strict estimate dw,p > p will follow from Ep(h0) < Ep(h2) and the self-similarity for Ep.
Our arguments will be easier than that of [Kaj23] by virtue of Wp ⊆ C(K).

The next proposition is a key ingredient. Note that it requires our standing assumption
that S 6= {0, 1, . . . , l − 1}D, which excludes the case of K = [0, 1]D from the present
framework.

Proposition 9.7. Let h2 :=
∑

w∈W2
(Fw)∗(l

−2h0 + qw1 1K) ∈ Wp. Then h2 is not Ep-
harmonic on U0 and h2|V i0 = i for each i ∈ {0, 1}.

Proof. The proof is a straightforward modification of [Kaj23, Proposition 3.11] thanks to
Theorem 6.13. We present here a self-contained proof for the reader’s convenience.

We claim that, if h2 were Ep-harmonic on U0, then h0 ∈ Wp would turn out to be
Ep-harmonic on K \ V 0

0 , which would imply by combining with Proposition 6.11 that
Ep(h0) = Ep(h0;h0) = 0, which would be a contradiction by (RF1)p and Wp ⊆ C(K).

For each ε = (εk)
D
k=1 ∈ {1} × {0, 1}D−1, set U ε := K ∩

∏D
k=1(εk − 1, εk + 1) and

Kε := K ∩
∏D

k=1[εk − 1/2, εk + 1/2]. Fix ϕε ∈ Wp ∩ Cc(U ε) so that ϕε|Kε = 1Kε ,
which exists by (8.17), (RF1)p and (RF5)p. Let v ∈ Wp ∩ Cc(K \ V 0

0 ) and, taking an
enumeration {ε(k)}2D−1

k=1 of {1} × {0, 1}D−1 and recalling Proposition 2.2(c), define vε ∈
Wp ∩Cc(U ε) for ε ∈ {1}× {0, 1}D−1 by vε(1) := vϕε(1) and vε(k) := vϕε(k)

∏k−1
j=1(1K −ϕε(j))

for k ∈ {2, . . . , 2D−1}. Then v −
∑

ε∈{1}×{0,1}D−1 vε = v
∏

ε∈{1}×{0,1}D−1(1K − ϕε) ∈ Wp ∩
Cc(U0), hence Ep(h0; v) =

∑
ε∈{1}×{0,1}D−1 Ep(h0; vε) by Proposition 6.11 (with Y = K\U0).

Therefore the desired Ep-harmonicity of h0 on K \V 0
0 would be obtained by deducing that

E(h0; vε) = 0 for any ε ∈ {1} × {0, 1}D−1.
To this end, set ε(0) := (1{1}(k))Dk=1, take i = (ik)

D
k=1 ∈ S with i1 < l − 1 and

i+ ε(0) 6∈ S, which exists by ∅ 6= S ( {0, 1, . . . , l− 1}D and (GSC1), and let ε = (εk)
D
k=1 ∈

{1} × {0, 1}D−1. We will choose iε ∈ S with Fiiε(ε) ∈ Fi(K ∩ ({1} × (0, 1)D−1)) and
assemble vε◦gw◦F−1

w with a suitable gw ∈ G1 for w ∈ W2 with Fiiε(ε) ∈ Kw into a function
vε,2 ∈ Wp ∩ Cc(U0). Specifically, set iε,η :=

(
(l − 1)(1{1}(k) + 1 − εk) + (2εk − 1)ηk

)D
k=1

for each η = (ηk)
D
k=1 ∈ {0} × {0, 1}D−1 and Iε := {η ∈ {0} × {0, 1}d−1 | iε,η ∈ S}, so that

iε := iε,0D ∈ S by (GSC4) and (GSC1) and hence 0D ∈ Iε. Thanks to vε ∈ Wp ∩ Cc(U ε)
and i+ ε(0) 6∈ S we can define vε,2 ∈ C(K) by setting

vε,2|Kw :=

{
vε ◦ gη ◦ F−1

w if η ∈ Iε and w = iiε,η

0 if w 6∈ {iiε,η | η ∈ Iε}
for each w ∈ W2. (9.4)

Then suppK [vε,2] ⊂ Ki \ V 0
0 ⊂ U0 by (9.4) and i1 < l − 1. In addition, vε,2 ◦ Fw ∈ Wp

for any w ∈ W2 by (9.4), vε ∈ Wp and (9.2). Thus vε,2 ∈ Fp by (5.5) and therefore
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vε,2 ∈ Wp ∩ Cc(U0). Recall that h2 ◦ Fw = l−2h0 + qw1 1K for any w ∈ W2 and note that,
by the uniqueness in Theorem 6.13, h0 ◦ gη = h0 for any η ∈ Iε. Then we have

Ep(h2; vε,2) =
∑
η∈Iε

σ2
pl
−2(p−1)Ep(h0; vε ◦ gη)

=
∑
η∈Iε

σ2
pl
−2(p−1)Ep(h0 ◦ gη; vε) = (#Iε)σ2

pl
−2(p−1)Ep(h0; vε). (9.5)

Now, supposing that h2 were Ep-harmonic on U0, from (9.5), #Iε > 0, vε,2 ∈ Fp ∩ Cc(U0)
and Proposition 6.11, we would obtain Ep(h0; vε) = σ−2

p l2(p−1)(#Iε)−1Ep(h2; vε,2) = 0,
which would imply a contradiction as explained in the last two paragraphs.

Theorem 9.8. dw,p > p for any p ∈ (0,∞).

Proof. It suffices to prove the case p ∈ (dARC,∞) by Proposition 9.5. Let h0, h2 ∈ Wp be
as in Proposition 9.7. By Proposition 9.7, we have Ep(h0) < Ep(h2). This strict inequality
combined with (5.6) shows that

Ep(h0) < Ep(h2) =
(
σp(#S)l−p

)2Ep(h0),

whence lp < σp(#S). Since σp = ldw,p−df and df = log #S/ log l, we get dw,p =
log
(
σp(#S)

)
/ log l > p.

9.2 D-dimensional level-l Sierpiński gaskets

Following [Kaj13, Example 5.1], we introduce D-dimensional level-l Sierpiński gaskets.

Framework 9.9 (D-dimensional level-l Sierpiński gaskets). Let D, l ∈ N, D ≥ 2, l ≥ 2
and let {qk}Dk=0 ⊆ RD be the set of the vertices of a regular D-dimensional simplex so
that q0, . . . , qD−1 ∈ {(x1, . . . , xD) ∈ RD | x1 = 0} and qD ∈ {(x1, . . . , xD) ∈ RD | x1 ≥ 0}.
Further let S :=

{
(ik)

D
k=1

∣∣ ik ∈ N ∪ {0},
∑D

k=1 ik ≤ l − 1
}
, and for each i = (ik)

D
k=1 ∈ S

we set qi := q0 +
∑D

k=1 l
−1ik(qk − q0) and define fi : RD → RD by fi(x) := qi + l−1(x− q0).

Let K be the self-similar set associated with {fi}i∈S and set Fi := fi|K . Let SG(D, l, S) =
(K,S, {Fi}i∈S), which is a self-similar structure. Let d : K×K → [0,∞) be the Euclidean
metric on K, set df := logl #S, and let m be the self-similar measure on SG(D, l, S) with
uniform weight (1/#S)i∈S.

Each SG(D, l, S) is called the D-dimensional level-l Sierpiński gasket and belongs to
a class called the nested fractals (see [Kig01, Section 3.8] for details on nested fractals).
In the rest of this subsection, we fix such a Sierpiński gasket SG(D, l, S) and the self-
similar measure m as in Framework 9.9. We can easily verify [Kig23, Assumption 2.15]
for SG(D, l, S). In addition, it is well known that m is df-Ahlfors regular (see [Kig23,
Proposition E.7] for example). Similar to Corollary 9.4, we have a symmetry-invariant
p-resistance form on SG(D, l, S) for any p ∈ (1,∞). (The Ahlfors regular conformal
dimension of (K, d) is 1. See Theorem B.9.)
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Definition 9.10. We define

G0 := {f |K | f is an isometry of RD, f(V0) = V0}, (9.6)

which forms a finite subgroup of the group of homeomorphisms of K.

Corollary 9.11. Let p ∈ (1,∞). Then Assumption 8.25 holds with r∗ = l−1, K
is p-conductively homogeneous, and there exists a regular self-similar p-resistance form
(Ep,Wp) on SG(D, l, S) with weight (σp)i∈S such that it satisfies the conditions (a)-(d) in
Theorem 8.29. In particular, (Ep,Wp) has the following property:

If u ∈ Wp and g ∈ G0 then u ◦ g ∈ Wp and Ep(u ◦ g) = Ep(u). (9.7)

Similar to Proposition 9.5, we have the following monotonicity of dw,p/p in p.

Proposition 9.12. dw,p/p ≥ dw,q/q for any p, q ∈ (0,∞) with p ≤ q.

We can prove the following main result by using compatible sequences.

Theorem 9.13. dw,p > p for any p ∈ (0,∞).

Proof. Let p ∈ (1,∞) and let (Ep,Wp) be a self-similar p-resistance form as given in
Corollary 9.11. Define u ∈ C(K) by u(x1, . . . , xD) := x1 for any (x1, . . . , xD) ∈ K ⊆ RD.
Then u|Vn ∈ Wp|Vn for any n ∈ N ∪ {0} by Proposition 6.8. We claim that if u|V1 were
Ep|V1-harmonic on V1 \ V0, then Ep|V0(u|V0) = 0, which would contradict (RF1)p.

Suppose that Ep|V1(u|V1 ;ϕ) = 0 for every ϕ ∈ RV1 with ϕ|V0 = 0. Noting that (u|V1 ◦
Fi)|V0 = l−1u|V0 + ci1V0 for some constant ci ∈ R and using (7.5), we have

Ep|V1(u|V1 ;ϕ) = σp
∑
i∈S

Ep|V0(u|V1 ◦ Fi;ϕ ◦ Fi) = l−(p−1)σp
∑
i∈S

Ep|V0(u|V0 ;ϕ ◦ Fi). (9.8)

It is easy to see that (V1 \ V0) ∩ {(x1, . . . , xD) ∈ RD | x1 = 0} 6= ∅. Let z ∈ V1 \ V0

with z ∈ {x1 = 0} and let ϕ := 1V1

{z} ∈ RV1 . Since u ◦ g = u for any g ∈ G0 with
g({x1 = 0} ∩ K) = {x1 = 0} ∩ K, the G0-invariance (9.7) implies Ep|V0

(
u|V0 ;1V0

{qi}
)

=

Ep|V0

(
u|V0 ;1V0

{qj}
)
for any i, j ∈ {0, . . . , D − 1}. Since ϕ ◦ Fj = 0 ∈ RV0 for any j ∈ S with

z 6∈ Kj, we have from (9.8) that

0 = Ep|V1(u|V1 ;ϕ) = l−(p−1)σp
∑

i∈S;z∈Ki

Ep|V0(u|V0 ;ϕ ◦ Fi)

= l−(p−1)σp ·
(
#{i ∈ S | z ∈ Ki}

)
Ep|V0

(
u|V0 ;1V0

{q0}
)
.

Hence we get Ep|V0

(
u|V0 ;1V0

{qj}
)

= 0 for every j ∈ {0, . . . , D − 1}. Therefore,

Ep|V0

(
u|V0 ;1V0

{qD}
)

= Ep|V0

(
u|V0 ;1V0

)
=

D−1∑
j=0

Ep|V0

(
u|V0 ;1V0

{qj}
)

= 0,
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which yields Ep|V0(u|V0 ; v) = 0 for every v ∈ RV0 . In particular, Ep|V0(u|V0) = 0, which is a
contradiction and hence we conclude that u|V1 is not Ep|V1-harmonic on V1\V0. Combining
with Proposition 6.15, we see that

Ep|V0(u|V0) = Ep|V1|V0(u|V0) = Ep|V1

(
h
Ep|V1
V0

[u|V 0]
)
< Ep|V1(u|V1). (9.9)

Similar to (9.8), we have Ep|V1(u|V1) = l−pσp(#S)Ep|V0(u|V0). Hence the strict inequality
(9.9) yields 1 < l−pldw,p−df (#S) = ldw,p−p, which proves dw,p > p for any p ∈ (1,∞). By
Proposition 9.12, we complete the proof.
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A Symmetric Dirichlet forms and the generalized con-
traction properties

In this section, we verify generalized contraction properties for some energy forms related
with symmetric Dirichlet forms.

Throughout this section, we fix a measure space (X,B,m).

A.1 Symmetric Dirichlet forms satisfy the generalized 2-contraction
property

In this subsection, we verify that any symmetric Dirichlet form satisfies (GC)2.
Let us recall the definition of symmetric Dirichlet form. See, e.g., [CF, FOT, MR] for

details on the theory of (symmetric) Dirichlet forms.

Definition A.1 (Symmetric Dirichlet form). Let F be a dense linear subspace of
L2(X,m) and let E : F × F → R be a non-negative definite symmetric bilinear form
on F . The pair (E ,F) is said to be a symmetric Dirichlet form on L2(X,m) if and only
if F equipped with the inner product E + 〈 · , · 〉L2(X,m) is a Hilbert space and u+ ∧ 1 ∈ F ,
E(u+ ∧ 1, , u+ ∧ 1) ≤ E(u, u) for any u ∈ F .
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We can show that a symmetric Dirichlet form (E ,F) satisfies (GC)2 by modifying the
proof of [MR, Theorem I.4.12].

Proposition A.2. Let (E ,F) be a symmetric Dirichlet form on L2(X,m). Then (E ,F)
is a 2-energy form on L2(X,m) satisfying (GC)2.

Proof. The triangle inequality for E1/2 is clear, so we shall prove (GC)2 for (E ,F). Let
us fix n1, n2 ∈ N, q1 ∈ (0, 2], q2 ∈ [2,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfying
(2.1) with 2 in place of p. We consider the case q2 <∞ (the case q2 =∞ is similar). Let
{Gα}α>0 be the strongly continuous resolvent on L2(X,m) associated with (E ,F); see,
e.g., [MR, Theorem I.2.8]. By [MR, Theorem I.2.13-(ii)], it suffices to prove that for any
u = (u1, . . . , un1) ∈ L2(X,m)n1 and any α ∈ (0,∞),(

n2∑
l=1

〈(1− αGα)Tl(u), Tl(u)〉q2/2L2(X,m)

)1/q2

≤

(
n1∑
k=1

〈(1− αGα)uk, uk〉q1/2L2(X,m)

)1/q1

. (A.1)

By the linearity of Gα and (2.1), it is enough to prove (A.1) in the case where uk is a
simple function for each k ∈ {1, . . . , n1}, so we assume that

uk =
N∑
i=1

αki1Ai , k ∈ {1, . . . , n1}, (A.2)

where N ∈ N, (αki)
N
i=1 ⊆ R, {Ai}Ni=1 ⊆ B(X) with m(Ai) <∞ and Ai ∩Aj = ∅ for i 6= j.

Fix α ∈ (0,∞) and, for i, j ∈ {1, . . . , N}, we define

bi,j := 〈(1− αGα)1Ai ,1Aj〉L2(X,m), λi := m(Ai) and aij := 〈αGα1Ai ,1Aj〉L2(X,m).

Then bij = λiδij − aij by a simple calculation, and aij = aji since Gα is a symmetric
operator on L2(X,m) (see, e.g., [MR, Theorem I.2.8]). Hence for any (z1, . . . , zN) ∈ RN ,

N∑
i,j=1

zizjbij =
∑
i<j

aij(zi − zj)2 +
N∑
j=1

mjz
2
j , (A.3)

where mj := λj −
∑N

i=1 aij. Note that aij ≥ 0 for any i, j ∈ {1, . . . , N} since αGα1Ai ≥ 0

by [MR, Theorem I.4.4]. We set A :=
⋃N
i=1 Ai, and then we have αGα(1A) ≤ 1 by [MR,

Theorem I.4.4] and

N∑
u=1

aij = α

ˆ
X

1AGα(1Aj) dm = α

ˆ
X

Gα(1A)1Aj dm ≤
ˆ
X

1Aj dm = λj,

whence mj ≥ 0. With these preparations, we show (A.1) for u defined in (A.2). Set
Tl,i := Tl(α1i, . . . , αu1i) for each l ∈ {1, . . . , n2}.

n2∑
l=1

〈(1− αGα)Tl(u), Tl(u)〉q2/2L2(X,m) =

n2∑
l=1

(
N∑

i,j=1

Tl,iTl,jbij

)q2/2
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(A.3)
=

n2∑
l=1

(∑
i<j

aij(Tl,i − Tl,j)q2·
2
q2 +

N∑
j=1

mjT
q2· 2

q2
l,j

)q2/2

(2.19)
≤

∑
i<j

(
a
q2/2
ij

n2∑
l=1

(Tl,i − Tl,j)q2
)2/q2

+
N∑
j=1

(
m
q2/2
j

n2∑
l=1

T q2l,j

)2/q2
q2/2

(2.1)
≤

∑
i<j

aq2/2ij

(
n1∑
k=1

(αki − αkj)q1
)q2/q1

2/q2

+
N∑
j=1

mq2/2
j

(
n1∑
k=1

αq1kj

)q2/q1
2/q2


q2/2

=

∑
i<j

(
n1∑
k=1

(
aij(αki − αkj)2

)q1/2)2/q1

+
N∑
j=1

(
n1∑
k=1

(
mjα

2
kj

)q1/2)2/q1


q1
2
· q2
q1

(∗)
≤


 n1∑

k=1

(∑
i<j

aij(αki − αkj)2 +
N∑
j=1

mjα
2
kj

)q1/2
2/q1


q1
2
· q2
q1

=

 n1∑
k=1

(∑
i<j

aij(αki − αkj)2 +
N∑
j=1

mjα
2
kj

)q1/2
q2/q1

(A.3)
=

 n1∑
k=1

(
N∑
i,=1

αkiαkjbij

)q1/2
q2/q1

=

(
n1∑
k=1

〈(1− αGα)uk, uk〉q1/2L2(X,m)

) 2
q1
· q2

2

,

where we used the triangle inequality for `2/q1-norm in (∗). The proof is completed.

Next we will extend (GC)2 to (E ,Fe), where Fe is the extended Dirichlet space; see
Definition A.4 below. (See, e.g., [FOT, Section 1.5] or [CF, Section 1.1] for details on the
extended Dirichlet space.) We need to recall the following result.

Proposition A.3 ([Sch99b, Proposition 1] and [Sch99a, Lemma 1]11). Assume that m
is σ-finite. Let (E ,F) be a symmetric Dirichlet form on L2(X,m). If {un}n∈N ⊆ F
converges m-a.e. to 0 and limk∧l→∞ E(uk − ul, uk − ul) = 0, then limn→∞ E(un, un) = 0.

Now we define the extended form (E ,Fe).
Definition A.4 (Extended form). Let (E ,F) be a symmetric Dirichlet form on L2(X,m).
We define the extended form (E ,Fe) by

Fe :=

{
f ∈ L0(X,m)

∣∣∣∣ limn→∞ fn = f m-a.e. for some {fn}n∈N ⊆ F
with limk∧l→∞ E(fk − fl, fk − fl) = 0

}
, (A.4)

11More precisely, this is a special case of [Sch99a, Lemma 1]. In [Sch99a, Lemma 1], (E ,F) is assumed
to be a positive semi-definite bilinear form satisfying the strong sector condition (see [Sch99a, Definition
1]) and the Fatou property (see [Sch99a, Definition 2]), both of which are satisfies if (E ,F) is a symmetric
Dirichlet form. Indeed, the strong sector condition is immediate from the Cauchy–Schwarz inequality for
E and the Fatou property for (E ,F) follows from [Sch99b, Proposition 1].



Contraction properties and differentiability of p-energy forms 125

E(f, f) := lim
n→∞

E(fn, fn), (A.5)

where {fn}n∈N is a sequence as in (A.4). Such {fn}n∈N as in (A.4) is called an approxi-
mating sequence for f . (By virtue of Proposition A.3, limn→∞ E(fn, fn) does not depend
on a particular choice of {fn}n∈N. See also [FOT, Theorem 1.5.2-(i)].)

We also need the following proposition, which is proved by utilizing a version [CF,
Theorem A.4.1-(ii)] of the Banach–Saks theorem .

Proposition A.5 ([Sch99a, Lemma 2]12). Assume that m is σ-finite. Let (E ,F) be a
symmetric Dirichlet form on L2(X,m). Let {un}n∈N ⊆ F . If lim infn→∞ E(un, un) < ∞
and {un}n∈N converges m-a.e. to u ∈ L0(X,m) as n → ∞, then u ∈ Fe and E(u, u) ≤
lim infn→∞ E(un, un).

Now we can show that the extended form (E ,Fe) satisfies (GC)2 under the extra
assumption that m is σ-finite.

Proposition A.6. Assume that m is σ-finite. Let (E ,F) be a symmetric Dirichlet form
on L2(X,m). Then (E ,Fe) is a 2-energy form on (X,m) satisfying (GC)2.

Proof. Set E(u) := E(u, u) for u ∈ Fe. Then E : Fe → [0,∞) is clearly 2-homogeneous.
Let us show (GC)2 for (E ,Fe). As in the proof of Proposition A.2, let us fix n1, n2 ∈ N,
q1 ∈ (0, 2], q2 ∈ [2,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfying (2.1) with 2 in place
of p. Let u = (u1, . . . , un1) ∈ Fn1

e . For each k ∈ {1, . . . , n1}, let {uk,n}n∈N ⊆ F be an
approximating sequence for uk. Set un := (u1,n, . . . , un1,n). Since Tl ∈ C(Rn1) and (E ,F)
satisfies (GC)2, limn→∞ Tl(un) = Tl(u) m-a.e. and {E(Tl(un))}n∈N is bounded. Then we
have Tl(u) ∈ Fe and E(Tl(u)) ≤ lim infn→∞ E(Tl(un)) by Proposition A.5. In addition,
by (GC)2 for (E ,F),∥∥(E(Tl(u))1/2

)n2

l=1

∥∥
`q2
≤
∥∥∥(lim inf

n→∞
E(Tl(un))1/2

)n2

l=1

∥∥∥
`q2

≤ lim inf
n→∞

∥∥(E(Tl(un))1/2
)n2

l=1

∥∥
`q2

≤ lim inf
n→∞

∥∥(E(uk,n)1/2
)n1

k=1

∥∥
`q1

=
∥∥(E(uk)

1/2
)n1

k=1

∥∥
`q1
,

which means that (E ,Fe) satisfies (GC)2.

A.2 The generalized contraction properties for energy measures

In this subsection, under additional topological assumptions on (X,m), we verify (GC)2

for the (2-)energy measures associated with a regular symmetric Dirichlet form.
In the rest of this section, we assume that (X,m) satisfies (3.27), (3.28) and that X is

separable, and let B = B(X). (These are the same topological assumptions as in [FOT,
(1.1.7)].)

12Similar to Proposition A.3, this proposition is true for any positive semi-definite bilinear form (E ,F)
satisfying the strong sector condition and the Fatou property.
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Recall that (E ,F) is said to be regular if and only if (E ,F) possess a core in the sense
of Definition 3.24. A regular symmetric Dirichlet form is known to satisfy the following
representation.

Theorem A.7 (Beurling–Deny expression of a regular symmetric Dirichlet form; see,
e.g. [FOT, Theorem 3.2.1]). Assume that (E ,F) is a regular symmetric Dirichlet form
on L2(X,m). Then there exist a symmetric bilinear form E (c) on F ∩ Cc(X) satisfying
E (c)(u, v) = 0 for any u, v ∈ F ∩ Cc(X) with v constant on a neighborhood of suppX [u],
symmetric positive Radon measure J on X × X with J({(x, x) | x ∈ X}) = 0 and a
positive Radon measure k on X such that

E(u, v) = E (c)(u, v) + E (j)(u, v) + E (k)(u, v) for any u, v ∈ F ∩ Cc(X), (A.6)

where

E (j)(u, v) :=

ˆ
X×X

(u(x)− u(y))(v(x)− v(y)) J(dx, dy), E (k)(u, v) :=

ˆ
X

u(x)v(x) k(dx).

In addition, such E (c), J and k are uniquely determined by E. We call E (c) the local part
of E, J the jumping measure associated with E and k the killing measure associated with
E.

In the next propositions, we extend each part in the decomposition (A.6) to Fe and
associate energy measures to them. See [FOT, Chapters 2 and 3] for their proofs.

Proposition A.8. Assume that (E ,F) is a regular symmetric Dirichlet form on L2(X,m).
Let u ∈ Fe and {un}n∈N ⊆ F be an approximating sequence for u. Then, for any
E# ∈ {E (c), E (j), E (k)}, {E#(un, un)}n∈N is a Cauchy sequence in [0,∞) and the limit
limn→∞ E#(un, un) does not depend on a particular choice of an approximating sequence
{un}n for u.

Proposition A.9. Assume that (E ,F) is a regular symmetric Dirichlet form on L2(X,m)
and let E# ∈ {E , E (c), E (j), E (k)}. For any u ∈ F ∩ Cc(X), there exists a unique positive
Radon measure µ#

〈u〉 on X such that
ˆ
X

ϕdµ#
〈u〉 = E#(u, uϕ)− 1

2
E#(u2, ϕ) for any ϕ ∈ F ∩ Cc(X). (A.7)

Moreover, for any Borel measurable function ϕ : X → [0,∞) with ‖ϕ‖sup < ∞, any
u ∈ Fe and any approximating sequence {un}n∈N ⊆ F ∩Cc(X) for u,

{´
X
ϕdµ#

〈un〉
}
n∈N is

a Cauchy sequence in [0,∞), limn→∞
´
X
ϕdµ#

〈un〉 does not depend on the choice of {un}n,
and

´
X
ϕdµ#

〈u〉 = limn→∞
´
X
ϕdµ#

〈un〉, where µ#
〈un〉 is the positive Radon measure on X

defined by µ#
〈u〉(A) := limn→∞ µ

#
〈un〉(A) for A ∈ B(X).

Definition A.10 (Energy measures). Let u ∈ Fe. Let µ〈u〉 denote the measure in the
above proposition in the case E# = E . We call µ〈u〉 the energy measure of u. For each w ∈
{c, j, k}, let µw〈u〉 denote the measure in the above proposition in the case E# = E (w). For
u, v ∈ Fe, we also define µ#

〈u,v〉 := 1
4

(
µ#
〈u+v〉 − µ

#
〈u−v〉

)
, where µ#

〈 · 〉 ∈
{
µ〈 · 〉, µ

c
〈 · 〉, µ

j
〈 · 〉, µ

k
〈 · 〉
}
.
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The following lemma is a Fatou-type property for energy measures.

Lemma A.11. Let ϕ : X → [0,∞) be Borel measurable with ‖ϕ‖sup < ∞ and let µ#
〈 · 〉 ∈{

µ〈 · 〉, µ
c
〈 · 〉, µ

j
〈 · 〉, µ

k
〈 · 〉
}
. If {un}n∈N ⊆ F and u ∈ Fe satisfy limn→∞ un = u m-a.e. and

supn∈N E(un, un) <∞, then
ˆ
X

ϕdµ#
〈u〉 ≤ lim inf

n→∞

ˆ
X

ϕdµ#
〈un〉. (A.8)

Proof. By extracting a subsequence of {un}n if necessary, we can assume that the limit
limn→∞

´
X
ϕdµ#

〈un〉 exists. By using a version [CF, Theorem A.4.1-(ii)] of the Banach–
Saks theorem, we can find a subsequence {unk}k∈N such that {vl}l∈N ⊆ F defined by vl :=

l−1
∑l

k=1 unk satisfies limk∧l→∞ E(vk−vl, vk−vl) = 0. Noting that liml→∞ vl = u m-a.e. and
using Proposition A.3, we have liml→∞ E(u− vl, u− vl) = 0. Hence liml→∞

´
X
ϕdµ#

〈vl〉 =
´
X
ϕdµ#

〈u〉 by Proposition A.9. By the triangle inequality for
(´

X
ϕdµ#

〈 · 〉

)1/2

,

(ˆ
X

ϕdµ#
〈vl〉

)1/2

≤ 1

l

l∑
k=1

(ˆ
X

ϕdµ#
〈unk 〉

)1/2

,

which implies (A.8) by letting l→∞.

Now we can show that the integrals with respect to energy measures give 2-energy
forms satisfying (GC)2.

Proposition A.12. Let ϕ : X → [0,∞) be Borel measurable with ‖ϕ‖sup < ∞ and let
µ#
〈 · 〉 ∈

{
µ〈 · 〉, µ

c
〈 · 〉, µ

j
〈 · 〉, µ

k
〈 · 〉
}
. Then (

´
X
ϕdµ#

〈 · 〉,Fe) is a 2-energy form on (X,m) satisfy-
ing (GC)2.

Proof. Let us fix n1, n2 ∈ N, q1 ∈ (0, 2], q2 ∈ [2,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2

satisfying (2.1) with 2 in place of p. It suffices to prove that for any u = (u1, . . . , un1) ∈
(F ∩ Cc(X))n1 and any ϕ ∈ F ∩ Cc(X),∥∥∥∥∥

((ˆ
X

ϕdµ#
〈Tl(u)〉

)1/2
)n2

l=1

∥∥∥∥∥
`q2

≤

∥∥∥∥∥
((ˆ

X

ϕdµ#
〈uk〉

)1/2
)n1

k=1

∥∥∥∥∥
`q1

. (A.9)

Indeed, we can extend (A.9) to any u ∈ Fn1
e and any Borel measurable function ϕ : X →

[0,∞] as follows. Let us start with the case ϕ = 1A, where A ∈ B(X). By [Rud, Theorem
2.18], there exist sequences {Kn}n∈N and {Un}n∈N such thatKn ⊆ A ⊆ Un, Kn is compact,
Un is open and limn→∞maxv∈{Tl(u)}l∪{uk}k µ

#
〈v〉(Un\Kn) = 0. By Urysohn’s lemma, we can

pick ϕn ∈ Cc(X) so that 0 ≤ ϕn ≤ 1, ϕn|Kn = 1 and suppX [ϕn] ⊆ Un. Applying (A.9) for
ϕn, we obtain

∥∥∥(µ#
〈Tl(u)〉(Kn)1/2

)n2

l=1

∥∥∥
`q2
≤
∥∥∥(µ#

〈uk〉(Un)1/2
)n1

k=1

∥∥∥
`q1

. By letting n→∞, we
get (A.9) with ϕ = 1A, i.e.,∥∥∥(µ#

〈Tl(u)〉(A)1/2
)n2

l=1

∥∥∥
`q2
≤
∥∥∥(µ#

〈uk〉(A)1/2
)n1

k=1

∥∥∥
`q1
. (A.10)
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By the reverse Minkowski inequality on `q1/2 and the Minkowski inequality on `q2/2

(see also (2.20)), we can extend (A.10) to (A.9) for any non-negative Borel measur-
able simple function ϕ on X, By the monotone convergence theorem, (A.9) holds
for any Borel measurable function ϕ : X → [0,∞]. Next we will extend (A.9) to
u = (u1, . . . , un1) ∈ Fn1

e . Since F ∩ Cc(X) is dense in (F , ‖ · ‖E,1), there exists an
approximating sequence {uk,n}n∈N ⊆ F ∩ Cc(X) for uk for each k ∈ {1, . . . , n1}. Set
un := (u1,n, . . . , un1,n). Then, for each l ∈ {1, . . . , n2}, limn→∞ Tl(un) = Tl(u) m-a.e.,
Tl(un) ∈ F and supn∈N E(Tl(un), Tl(un)) <∞ by Proposition A.2. Hence Tl(u) ∈ Fe by
Proposition A.5, and∥∥∥∥∥

((ˆ
X

ϕdµ#
〈Tl(u)〉

)1/2
)n2

l=1

∥∥∥∥∥
`q2

≤

∥∥∥∥∥
((

lim inf
n→∞

ˆ
X

ϕdµ#
〈Tl(un)〉

)1/2
)n2

l=1

∥∥∥∥∥
`q2

≤ lim inf
n→∞

∥∥∥∥∥
((ˆ

X

ϕdµ#
〈Tl(un)〉

)1/2
)n2

l=1

∥∥∥∥∥
`q2

(A.9)
≤ lim inf

n→∞

∥∥∥∥∥
((ˆ

X

ϕdµ#
〈uk,n〉

)1/2
)n1

k=1

∥∥∥∥∥
`q1

=

∥∥∥∥∥
((ˆ

X

ϕdµ#
〈uk〉

)1/2
)n1

k=1

∥∥∥∥∥
`q1

,

where we used Lemma A.11 in the first inequality and Proposition A.9 in the last equality.
This implies that (

´
X
ϕdµ#

〈 · 〉,Fe) is a 2-energy form on (X,m) satisfying (GC)2.
Let us go back to the proof of (A.9) in the case u = (u1, . . . , un1) ∈ (F ∩Cc(X))n1 and

ϕ ∈ F ∩ Cc(X). Fix a metric d on X which is compatible with the given topology of X,
an increasing sequence of relatively open sets {Gl}l∈N with

⋃
l∈NGl = X and a sequence

of positive numbers {δl}l∈N with δl ↓ 0 as l→∞. Then there exist a sequence of positive
numbers {βn}n∈N with βn ↑ ∞ as n → ∞, a family of positive Radon measures {σβ}β>0

on X × X and a family of positive Radon measures {mβ}β>0 on X with mβ � m such
that for any v ∈ F ∩ Cc(X),
ˆ
X

ϕdµ〈v〉 = lim
β→∞

(
β

2

ˆ
X×X

|v(x)− v(y)|2 ϕ(x)σβ(dx, dy) +
β

2

ˆ
X

|v(x)|2 ϕ(x)mβ(dx)

)
,

(A.11)
andˆ

X

ϕdµc〈v〉 = lim
l→∞

lim
n→∞

βn
2

ˆ
{(x,y)∈Gl×Gl|d(x,y)<δl}

|v(x)− v(y)|2 ϕ(x)σβn(dx, dy). (A.12)

See [FOT, the equations just before (3.2.13) and (3.2.19)] for details. Note that Tl(u) ∈
F ∩Cc(X) for each l ∈ {1, . . . , n2} by Proposition A.2 and Tl(0) = 0. If q2 <∞, then we
have from (A.11) that
n2∑
l=1

(ˆ
X

ϕdµ〈Tl(u)〉

)q2/2
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(2.19)
≤ lim

β→∞

(
β

2

ˆ
X×X

‖T (u(x))− T (u(y))‖2
`q2 ϕ(x)σβ(dx, dy)

+
β

2

ˆ
X

‖T (u(x))‖2
`q2 ϕ(x)mβ(dx)

)q2/2
(2.1)
≤ lim

β→∞

(
β

2

ˆ
X×X

‖u(x)− u(y)‖2
`q1 ϕ(x)σβ(dx, dy) +

β

2

ˆ
X

‖u(x)‖2
`q1 ϕ(x)mβ(dx)

)q2/2
(∗)
≤ lim

β→∞

(
n1∑
k=1

[
β

2

ˆ
X×X

|uk(x)− uk(y)|2 ϕ(x)σβ(dx, dy)

+
β

2

ˆ
X

|uk(x)|2 ϕ(x)mβ(dx)

]q1/2) 2
q1
· q2

2

=

(
n1∑
k=1

(ˆ
X

ϕdµ〈uk〉

)q1/2)q2/q1

,

where we used the triangle inequality for a suitable L2/q1-norm on (X ×X) tX. Here t
denotes the disjoint union. The case q2 =∞ is similar, so we obtain the desired estimate
(A.9) for µ#

〈 · 〉 = µ〈 · 〉. The other case µ#
〈 · 〉 ∈ {µc〈 · 〉, µ

j
〈 · 〉, µ

k
〈 · 〉} can be shown in a similar

way by virtue of the expression in [FOT, (3.2.23)].

Next we see that “|∇u|” also satisfies similar contraction properties. To present the
precise definition of the density, we recall the notion of minimal energy dominant measure.

Definition A.13 (Minimal energy dominant measure; [Hin10, Definition 2.1]). A σ-finite
Borel measure µ on X is called a minimal energy-dominant measure of (E ,F) if and only
if the following two conditions hold.

(i) For any f ∈ F , we have µ〈f〉 � µ.
(ii) If another σ-finite Borel measure µ′ on X satisfies (i) with µ in place of µ′, then

µ� µ′.

The existence of minimal energy-dominant measure is proved in [Nak85, Lemma 2.2]
(see also [Hin10, Lemma 2.3]). For any minimal energy-dominant measure µ of (E ,F),
the same argument as in [Hin10, Proof of Lemma 2.2] implies that µ〈f〉 � µ for any
f ∈ Fe. In addition, for µ#

〈 · 〉 ∈ {µ〈 · 〉, µc〈 · 〉, µ
j
〈 · 〉, µ

k
〈 · 〉}, we easily see that µ#

〈f,g〉 � µ for any

f, g ∈ Fe. We define Γ#
µ (u, v) :=

dµ#
〈u,v〉
dµ

and Γ#
µ (u) := Γ#

µ (u, u) for u, v ∈ Fe.

Proposition A.14. Let µ be a minimal energy-dominant measure of (E ,F) and for each
f ∈ Fe, let Γµ(f) := dµ〈f〉/dµ and Γwµ (f) := dµw〈f〉/dµ for each w ∈ {c, j, k}. Let Γ#

µ ( · ) ∈
{Γµ( · ),Γcµ( · ),Γjµ( · ),Γkµ( · )}. Then for any n1, n2 ∈ N, q1 ∈ (0, 2], q2 ∈ [2,∞] and T =
(T1, . . . , Tn2) : Rn1 → Rn2 satisfying (2.1) with 2 in place of p and any u = (u1, . . . , un1) ∈
Fn1
e , ∥∥(Γ#

µ (Tl(u))(x)1/2
)n2

l=1

∥∥
`q2
≤
∥∥(Γ#

µ (uk)(x)1/2
)n1

k=1

∥∥
`q1

for µ-a.e. x ∈ X. (A.13)
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Moreover, for any p ∈ [q1, q2] ∩ (0,∞),∥∥∥∥∥
((ˆ

X

Γ#
µ (Tl(u))

p
2 dµ

)1/p
)n2

l=1

∥∥∥∥∥
`q2

≤

∥∥∥∥∥
((ˆ

X

Γ#
µ (uk)

p
2 dµ

)1/p
)n1

k=1

∥∥∥∥∥
`q1

. (A.14)

Proof. We first establish a good µ-version of Γ#
µ (v) for each v ∈ Fe. Fix {Xn}n∈N ⊆ B(X)

such that Xn ⊆ Xn+1, X =
⋃
n∈NXn and µ(Xn) ∈ (0,∞) for each n ∈ N. Let {Ak}k∈N

be a countable open base for the topology of X. Set A0
k := X \Ak and A1

k := Ak for each
k ∈ N, and define

Ak :=

{⋃
α∈I

Aαk

∣∣∣∣∣ I ⊆ {0, 1}k
}
, k ∈ N,

where Aαk :=
⋂k
i=1A

αi
k for α = (αi)

k
i=1 ∈ {0, 1}k. Note that

⋃
α∈I A

α
k = ∅ if I = ∅. Then

{Ak}k∈N is a non-decreasing sequence of σ-algebras on X with
⋃
k∈NAk generating B(X).

Note that
⋃
α∈{0,1}k A

α
k = X and that Aαk ∩ A

β
k = ∅ for α, β ∈ {0, 1}k with α 6= β. For

v ∈ Fe, n, k ∈ N, α ∈ {0, 1}k, define Γ#
µ (v)n,k : X → [0,∞) by, for x ∈ Aαk ,

Γ#
µ (v)n,k(x) :=

{
µ(Aαk ∩Xn)−1µ#

〈v〉(A
α
k ∩Xn) if µ(Aαk ∩Xn) > 0,

0 if µ(Aαk ∩Xn) = 0.
(A.15)

We also set µn := µ(Xn)−1µ((·) ∩ Xn) and v#
n :=

dµ#
〈v〉((·)∩Xn)

µ((·)∩Xn)
. Then we easily see that

Eµn [v#
n | Ak] = Γ#

µ (v)n,k µ-a.e. on Xn and hence limk→∞ Γ#
µ (v)n,k = v#

n µ-a.e. on Xn by
the martingale convergence theorem (see, e.g., [Dud, Theorem 10.5.1]) and the fact that⋃
k∈NAk generates B(X). Now we define Γ̃#

µ (v) : X → [0,∞) by Γ̃#
µ (v)(x) := v#

n (x) for
n ∈ N and x ∈ Xn \Xn−1, where X0 := ∅. Then Γ̃#

µ (v) = Γ#
µ (v) µ-a.e. on X.

Next we show (A.13). Let n1, n2 ∈ N, q1 ∈ (0, 2], q2 ∈ [2,∞], u = (u1, . . . , un1) ∈ Fn1
e

and let T = (T1, . . . , Tn2) : Rn1 → Rn2 satisfy (2.1) with 2 in place of p. By Proposition
A.12 and (A.15), for any n,m ∈ N and any x ∈ X,∥∥(Γ#

µ (Tl(u))n,m(x)1/2
)n2

l=1

∥∥
`q2
≤
∥∥(Γ#

µ (uk)n,m(x)1/2
)n1

k=1

∥∥
`q1
.

By letting m→∞, we obtain∥∥∥(Γ̃#
µ (Tl(u))(x)1/2

)n2

l=1

∥∥∥
`q2
≤
∥∥∥(Γ̃#

µ (uk)(x)1/2
)n1

k=1

∥∥∥
`q1

for µ-a.e. x ∈ X,

whence (A.13) holds. If p ∈ [q1, q2] ∩ (0,∞) and q2 <∞, then we see that

n2∑
l=1

(ˆ
X

Γ#
µ (Tl(u))

p
2 dµ

)q2/p (2.19)
≤
(ˆ

X

∥∥(Γ#
µ (Tl(u))(x)1/2

)n2

l=1

∥∥p
`q2

µ(dx)

)q2/p
(A.13)
≤

(ˆ
X

∥∥(Γ#
µ (uk)(x)1/2

)n1

k=1

∥∥p
`q1

µ(dx)

)q2/p
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(∗)
≤

(
n1∑
k=1

(ˆ
X

Γ#
µ (uk)

p
2 dµ

)q1/p)q2/q1

, (A.16)

where we used the triangle inequality for the norm of `p/q1n1 . The case q2 = ∞ is similar,
so we obtain (A.14).

If (E ,F) is strongly local, then we can show (GC)p for (Γµ( · )p/2,Fe). To prove it, we
need some preparations. The following proposition is the standard Minkowski integral
inequality (see, e.g., [DF, Appendix B5]).

Proposition A.15. Let (Xi,Bi,mi) be a σ-finite measure space for each i ∈ {1, 2}. Let
q ∈ (1,∞) and f : X1 ×X2 → R be measurable. Then(ˆ

X1

(ˆ
X2

f(x1, x2)m2(dx2)

)q
m1(dx1)

) 1
q

≤
ˆ
X2

(ˆ
X1

|f(x1, x2)|q m1(dx1)

) 1
q

m2(dx2).

(A.17)

Next we show a tensor-type inequality for a bilinear form.

Proposition A.16. Let V be a finite-dimensional vector space over R, E : V × V → R
a non-negative definite symmetric bilinear form, n1, n2 ∈ N and A = (Alk)1≤l≤n2,1≤k≤n1

a real matrix. Then for any (u1, . . . , un1) ∈ V n1 and any q1 ∈ (0,∞), q2 ∈ (0,∞] with
q1 ≤ q2, ∥∥∥∥∥∥

E( n1∑
k=1

Alkuk

)1/2
n2

l=1

∥∥∥∥∥∥
`q2

≤ ‖A‖`q1n1
→`q2n2

∥∥(E(uk)
1/2
)n1

k=1

∥∥
`q1
, (A.18)

where we set E(u) := E(u, u) for u ∈ V .

Proof. The desired inequality follows from a Beckner-like result in [DF, 7.9.] (see also
[Bec75, Lemma 2]). We present a complete proof for convenience. Let γn be the Gaussian
measure on Rn, i.e., γn(dx) := (2π)−n/2 exp

(
−‖x‖2 /2

)
dx, for each n ∈ N and set n :=

dim(V/E−1(0)) ∈ N ∪ {0}. If n = 0, i.e., E(u) = 0 for any u ∈ V , then (A.18) is clear.
Hence we assume that n ≥ 1 in the rest of the proof. Let πj : Rn → R be the projection
map to the j-th coordinate for each j ∈ {1, . . . , n}. Then we have from [DF, Proposition
in 8.7.] that for any (αj)

n
j=1 ∈ Rn,

‖π1‖−1
Lq1 (R,γ1)

(ˆ
Rn

∣∣∣∣∣
n∑
j=1

αjπj(x)

∣∣∣∣∣
q1

dγn(dx)

)1/q1

=
∥∥(αj)

n
j=1

∥∥
`2
. (A.19)

Indeed, (A.19) is obviously true in the case (αj)j = (δ1j)j and this together with the
invariance of γn under `2

n-isometries implies the desired equality (A.19).
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Let us fix a basis {ej}nj=1 ⊆ V of V satisfying E(ej, ej′) = δjj′ for each j, j′ ∈ {1, . . . , n},
which exists by the Gram–Schmidt orthonormalization. Now we define ι : V → Lq1(Rn, γn)
by

ι(u) := ‖π1‖−1
Lq1 (R,γ1)

n∑
j=1

E(u, ej)
1/2πj, u ∈ V. (A.20)

Then ‖ι(u)‖Lq1 (Rn,γn) =
(∑n

j=1 E(u, ej)
)1/2

= E(u, u)1/2 by (A.19). If q2 < ∞, then we
see that∥∥∥∥∥∥

E( n1∑
k=1

Alkuk

)1/2
n2

l=1

∥∥∥∥∥∥
`q2

=

 n2∑
l=1

(ˆ
Rn

∣∣∣∣∣
n1∑
k=1

Alkι(uk)

∣∣∣∣∣
q1

dγn

)q2/q1


q1
q2
· 1
q1

(∗)
≤

ˆ
Rn

(
n2∑
l=1

∣∣∣∣∣
n1∑
k=1

Alkι(uk)

∣∣∣∣∣
q2)q1/q2

dγn

1/q1

≤ ‖A‖`q1n1
→`q2n2

(ˆ
Rn

n1∑
k=1

|ι(uk)|q1 dγn

)1/q1

= ‖A‖`q1n1
→`q2n2

(
n1∑
k=1

E(uk)
q1/2

)1/q1

,

where we used (A.17) with q = q1/q2 in (∗). Since the case q2 =∞ is similar, so we obtain
(A.18).

Let us recall the definition of p-energy forms introduced by Kuwae in [Kuw24]

Definition A.17 ([Kuw24, Definition 1.4]). Let µ be a minimal energy-dominant measure
of (E ,F), p ∈ (1,∞) and D ⊆ {u ∈ Lp(X,m)∩F | Γµ(u)

1
2 ∈ Lp(X,µ)} a linear subspace.

Assume that (E ,F) is strongly local and that

limn→∞
´
X

Γµ(un)
p
2 dµ = 0 for any {un}n∈N ⊆ D with

limn∧m→∞
´
X

Γµ(un−um)
p
2 dµ = 0 and limn→∞ ‖un‖Lp(X,m) = 0. (A.21)

We define the norm ‖ · ‖H1,p on D by ‖u‖H1,p :=
(
‖u‖pLp(X,m) +

´
X

Γµ(u)
p
2 dµ

)1/p for u ∈ D

and H1,p(X) := D
‖ · ‖H1,p . Then, for u ∈ H1,p(X), we can uniquely extend Γµ to u

with Γµ(u)
1
2 ∈ Lp(X,µ) as the Lp(X,µ)-limit of Γµ(un)

1
2 , where {un}n∈N ⊆ D satisfies

limn∧m→∞
´
X

Γµ(un − um)
p
2 dµ = 0 and limn→∞ ‖u− un‖Lp(X,m) = 0.

Remark A.18. The condition (A.21) is verified in the case p ≥ 2 in [Kuw24, Proposition
1.1].

Now we can show the main result in this subsection.
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Theorem A.19. Let µ be a minimal energy-dominant measure of (E ,F), p ∈ (1,∞) and
D ⊆ {u ∈ Lp(X,m) ∩ F | Γµ(u)

1
2 ∈ Lp(X,µ)} a linear subspace. Assume that (E ,F) is

strongly local and that (A.21) holds. In addition, we assume that

T̂ (u) ∈ D for any u ∈ Dn and any T̂ ∈ C∞(Rn) satisfying

supx,y∈Rn;x 6=y
|T̂ (x)−T̂ (y)|
‖x−y‖ <∞ and T̂ (0) = 0.

(A.22)

Then for any n1, n2 ∈ N, q1 ∈ (0, p], q2 ∈ [p,∞] and T = (T1, . . . , Tn2) : Rn1 → Rn2

satisfying (2.1) and any u = (u1, . . . , un1) ∈ H1,p(X)n1, we have T (u) ∈ H1,p(X)n2 and∥∥(Γµ(Tl(u))(x)1/2
)n2

l=1

∥∥
`q2
≤
∥∥(Γµ(uk)(x)1/2

)n1

k=1

∥∥
`q1

for µ-a.e. x ∈ X. (A.23)

In particular, (
´
X

Γµ( · ) p2 dµ,H1,p(X)) satisfies (GC)p.

Proof. Let us consider the same mollifiers as in [Kuw24, The last paragraph in p. 10], i.e.,
define j : Rn1 → R by j(x) := exp

(
− 1

1−‖x‖2
)
for ‖x‖ ≤ 1 and j(x) := 0 for ‖x‖ > 1, set

jm(x) := mn1j(mx) for each m ∈ N. We define Tl,n(x) :=
´
Rn1

(jn(x−y)−jn(y))Tl(y) dy =´
Rn1

jn(y)(Tl,n(x−y)−Tl,n(y)) dy so that Tl,n ∈ C∞(Rn1), Tl,n(0) = 0 and limn→∞ Tl,n(x) =

Tl(x) for any x ∈ Rn1 . Then (2.1) with T (n) := (T1,n, . . . , Tn2,n) in place of T holds; indeed,
for any x, y ∈ Rn1 ,

∥∥T (n)(x)− T (n)(y)
∥∥
`q2

=

∥∥∥∥(ˆ
Rn1

jn(z)(Tl(x− z)− Tl(y − z)) dz

)n2

l=1

∥∥∥∥
`q2

(∗)
≤

ˆ
Rn1

jn(z) ‖T (x− z)− T (y − z)‖`q2 dz

(2.1)
≤ ‖x− y‖`q1

ˆ
Rn1

jn(z) dz = ‖x− y‖`q1 , (A.24)

where we used (A.17) with q = q2 in (∗). Moreover,∥∥∥∥∥
(

n1∑
k=1

∂kTl,n(x)yk

)n2

l=1

∥∥∥∥∥
`q2

= lim
ε↓0

ε−1
∥∥T (n)(x)− T (n)(x+ εy)

∥∥
`q2

(A.24)
≤ ‖y‖`q1 , (A.25)

whence ‖(∂kTl,n(x))‖`q1n1
→`q2n2

≤ 1 for any x ∈ Rn1 .

We first prove (A.23) with T (n) in place of T under the assumption that u =
(u1, . . . , un1) ∈ Dn1 . Set ũ = (ũ1, . . . , ũn1) where ũk is a E-quasicontinuous m-version
of uk (see [FOT, p. 69 and Theorem 2.1.3]). We have Tl,n(u) ∈ D by (A.22) and

Γµ(Tl,n(u))(x) =

n1∑
i,j=1

∂iTl,n(ũ(x))∂jTl,n(ũ(x))Γµ(ui, uj)(x) for µ-a.e. x ∈ X (A.26)

by the chain rule in [Kuw24, (7) in p. 2]. Let {fλ}λ∈Λ ⊆ F be an algebraic basis of F over
R. Then there exist n ∈ N, {αk,j}nj=1 ⊆ R, k ∈ {1, . . . , n1}, and {gj}nj=1 ⊆ {fλ}λ∈Λ such
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that uk =
∑n

j=1 αk,jgj for each k ∈ {1, . . . , n1}. Let R be the finitely generated algebra
over Q generated by {αk,j}1≤j≤n,1≤k≤n1 ∪ {1} so that Q ⊆ R and R is countable. We set

U :=

{
n∑
j=1

ajgj

∣∣∣∣∣ aj ∈ R for each j ∈ {1, . . . , n}

}

so that {uk}n1
k=1 ⊆ U and U is countable. Since R is dense in R, for any x ∈ X, N ∈ N, k ∈

{1, . . . , n1} and l ∈ {1, . . . , n2}, there exists Ax,Nlk,n ∈ R such that
∣∣∣∂kTl,n(ũ(x))− Ax,Nlk,n

∣∣∣ ≤
N−1. Note that Γµ( · , · )(x) : U × U → R is a non-negative definite symmetric bilinear
form for µ-a.e. x ∈ X since U is countable. By Proposition A.16, for µ-a.e. x ∈ X,∥∥∥∥∥∥

( n1∑
i,j=1

Ax,Nli,nA
x,N
lj,nΓµ(ui, uj)(x)

)1/2
n2

l=1

∥∥∥∥∥∥
`q2

=

∥∥∥∥∥
(

Γµ

(
n1∑
k=1

Ax,Nlk,nuk

)
(x)1/2

)n2

l=1

∥∥∥∥∥
`q2

≤
(

1 +
∥∥∥(∂kTl,n(ũ(x)))l,k − (Ax,Nlk,n)l,k

∥∥∥
`
q1
n1
→`q2n2

)∥∥(Γµ(uk)(x)1/2
)n1

k=1

∥∥
`q1
.

Letting N →∞ in the estimate above and recalling (A.26), we obtain∥∥(Γµ(Tl,n(u))(x)1/2
)n2

l=1

∥∥
`q2
≤
∥∥(Γµ(uk)(x)1/2

)n1

k=1

∥∥
`q1

for µ-a.e. x ∈ X, (A.27)

under the assumption that u ∈ Dn1 .
Next let u = (u1, . . . , un1) ∈ H1,p(X)n1 and fix {u(n) = (u1,n, . . . , un1,n)}n∈N ⊆ Dn1 so

that limn→∞maxk∈{1,...,n1} ‖uk − uk,n‖H1,p = 0. Then (A.27) together with the same same
argument as in (A.16) implies that∥∥∥∥∥

((ˆ
X

Γµ(Tl,n(u(n)))
p
2 dµ

)1/p
)n2

l=1

∥∥∥∥∥
`q2

≤

∥∥∥∥∥
((ˆ

X

Γµ(uk,n)
p
2 dµ

)1/p
)n1

k=1

∥∥∥∥∥
`q1

.

In particular, {Tl,n(u(n))}n∈N is bounded in H1,p(X). Noting that H1,p(X) is reflexive (see
[Kuw24, Theorem 1.7]) and that limn→∞

´
X

Γµ(uk − uk,n)
p
2 dµ = 0, we find {nj}j∈N ⊆ N

with infj∈N(nj+1−nj) ≥ 1 such that T (nj)(u(nj)) converges weakly inH1,p(X)⊕n213 to some
v = (v1, . . . , vn2) ∈ H1,p(X)⊕n2 and maxk∈{1,...,n1} Γµ(uk − uk,nj)(x) → 0 for µ-a.e. x ∈ X
as j → ∞. Since limn→∞

∥∥Tl,n(u(n))− Tl(u)
∥∥
Lp(X,m)

= 0 by (A.24) and the dominated
convergence theorem, we have vl = Tl(u). By Mazur’s lemma (Lemma 3.13), there exist
{N(i)}i∈N ⊆ N and {αj} ⊆ [0, 1] with infi∈N(N(i) − i) ≥ 1 and

∑N(i)
j=i αi,j = 1 such that

v̂l,i :=
∑N(i)

j=i αi,jTl,nj(u
(nj)) converges strongly in H1,p(X) to Tl(u) for any l ∈ {1, . . . , n2}

13The direct sum H1,p(X)⊕n2 is equipped with the norm ‖f‖H1,p(X)⊕n2
:=
∑n2

l=1 ‖fj‖H1,p(X) for any
f = (f1, . . . , fn2

) ∈ H1,p(X)⊕n2 .
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as i→∞. Then we easily see that for µ-a.e. x ∈ X and any i ∈ N,

∥∥(Γµ(v̂l,i)(x)1/2
)n2

l=1

∥∥
`q2
≤

∥∥∥∥∥∥
N(i)∑

j=i

αi,jΓµ(Tl,nj(u
(nj)))(x)1/2

n2

l=1

∥∥∥∥∥∥
`q2

≤
N(i)∑
j=i

αi,j
∥∥(Γµ(Tl,nj(u

(nj)))(x)1/2
)n2

l=1

∥∥
`q2

(A.27)
≤

N(i)∑
j=i

αi,j
∥∥(Γµ(uk,nj)(x)1/2

)n1

k=1

∥∥
`q1
, (A.28)

where we used the triangle inequality for the norm of `q2 in the second inequality. Note
that for µ-a.e. x ∈ X,

lim
i→∞

N(i)∑
j=i

αi,j
∥∥(Γµ(uk,nj)(x)1/2

)n1

k=1

∥∥
`q1

=
∥∥(Γµ(uk)(x)1/2

)n1

k=1

∥∥
`q1
.

Since limi→∞
´
X

Γµ(v̂l,i − Tl(u))
p
2 dµ = 0, there exists {mi}i∈N ⊆ N with infi∈N(mi+1 −

mi) ≥ 1 such that limi→∞ Γµ(v̂l,mi−Tl(u))(x) = 0 for µ-a.e. x ∈ X and any l ∈ {1, . . . , n2}.
In view of the triangle inequality for Γµ( · ) 1

2 (see [Kuw24, (3) in p. 2]), we have
limi→∞maxl∈{1,...,n2} |Γµ(v̂l,mi)(x)− Γµ(Tl(u))(x)| = 0 for µ-a.e. x ∈ X. Hence we ob-
tain (A.23) by (A.28). Once we get (A.23), we easily see that (

´
X

Γµ( · ) p2 dµ,H1,p(X))
satisfies (GC)p by the same argument as in (A.16).

B Some results for p-resistance forms on p.-c.f. self-
similar structures

B.1 Existence of p-resistance forms with non-arithmetic weights

In this subsection, we discuss a gap between the frameworks in Subsection 8.2 and in
Subsection 8.3 for p.-c.f. self-similar structures. As in Subsection 8.3, we fix p ∈ (1,∞)
and a p.-c.f. self-similar structure L = (K,S, {Fi}i∈S) with #S ≥ 2 and K connected.

The following proposition about the “eigenvalue” λ(ρp) in Theorem 8.37 is a key result.

Proposition B.1. Let ρp = (ρp,i)i∈S ∈ (0,∞)S. Assume that ρp satisfies (A) (recall
Remark 8.38).

(a) For any a ∈ (0,∞), aρp := (aρp,i)i∈S satisfies (A) and λ(aρp) = aλ(ρp).
(b) Let ρ̃p = (ρ̃p,i)i∈S ∈ (0,∞)S. If ρ̃p satisfies (A) and ρp,i ≤ ρ̃p,i for any i ∈ S, then

λ(ρp) ≤ λ(ρ̃p).

Proof. Throughout this proof, we fix a p-resistance form E0 on V0.
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(a): Since Rn
aρp(E0) = aRn

ρp(E0) for any n ∈ N ∪ {0}, we easily see that aρp satisfies
(A). Recall from Theorem 8.37-(a) that λ(aρp) ∈ (0,∞) is the unique number satisfying
the following: there exists C ∈ [1,∞) such that

C−1λ(aρp)
nE0(u) ≤ Rn

aρp(E0)(u) ≤ Cλ(aρp)
nE0(u) for any n ∈ N ∪ {0}, u ∈ RV0 .

(B.1)
Therefore, λ(aρp) = aλ(ρp).

(b): SinceRn
ρp(E0)(u) ≤ Rn

ρ̃p
(E0)(u) for any u ∈ RV0 , by (B.1), there exists C ∈ [1,∞)

such that for any n ∈ N ∪ {0} and any u ∈ RV0 ,

C−1λ(ρp)
nE0(u) ≤ Rn

ρp(E0)(u) ≤ Rn
ρ̃p(E0)(u) ≤ Cλ(ρ̃p)

nE0(u).

Since n ∈ N ∪ {0} is arbitrary and E0(u) > 0 for u ∈ RV0 \ R1V0 , we conclude that
λ(ρp) ≤ λ(ρ̃p).

Now we can show the existence of p-resistance forms with non-arithmetic weights on
some affine nested fractals as follows.

Proposition B.2. Let L be an affine nested fractal. Assume that there exists i ∈ S such
that ⋃

g∈G

g(1)(i) 6= S. (B.2)

Then there exists ρp = (ρp,i)i∈S ∈ (0,∞)S such that λ(ρp) = 1, ρp,i > 1 for any i ∈ S, ρp
satisfies (8.65) and

log ρp,i
log ρp,j

6∈ Q for some i, j ∈ S. (B.3)

In particular, there exists a self-similar p-resistance form (Ep,Fp) on L with weight ρp.

Remark B.3. (1) Any weight ρp = (ρp,i)i∈S of a p-energy form constructed in Theorem
8.29 must satisfy ρp,i = σnip for some ni ∈ N, where σp ∈ (0,∞) is the p-scaling factor.
Hence constructions of self-similar p-energy forms with weight ρp which satisfies (B.3)
are not covered by Theorem 8.29 (and by [Kig23, Theorem 4.6]).

(2) The condition (B.2) is not so restrictive. See Figure B.2 for self-similar sets satisfying
this condition. In Figure B.1, we present examples of self-similar sets that do not
satisfy (B.2).

Proof. Fix i ∈ S and set S1 :=
⋃
g∈G g

(1)(i) and S2 := S \S1, which is non-empty by (B.2).
For t ∈ R, we define ρp(t) := (ρp,s(t))s∈S by

ρp,s(t) := 1 + t1S2(s) for s ∈ S.

It is easy to see that ρp(t) satisfies (8.65). Set λp(t) := λ(ρp(t)) for simplicity. By
Proposition B.1, for any t ∈ R, any δ ∈ (0,∞) and any s ∈ S,

(1− t− δ)λp(0) ≤ λp(t− δ) ≤ λp(t) ≤ λp(t+ δ) ≤ (1 + t+ δ)λp(0),
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Figure B.1: Examples of affine nested fractals that do NOT satisfy (B.2). From the left,
D-dimensional level-2 Sierpiński gasket (D = 2, 3), pentakun and hexagasket.

Figure B.2: Examples of affine nested fractals that satisfy (B.2). From the left, 2-
dimensional level-l Sierpiński gasket (l = 3, 4), snowflake and a Sierpiński gasket-type
fractal.

whence λp(t) is continuous in t.
Fix j ∈ S2 and define

ri,j(t) :=
log (ρp,i(t)/λp(t))

log (ρp,j(t)/λp(t))
=

− log (λp(t))

log (1 + t)− log (λp(t))
, t ∈ R.

Since ri,j(0) = 1 and ri,j(t) is continuous in t, there exists t∗ ∈ R\{0} such that ri,j(t∗) 6∈ Q.
The existence of a self-similar p-resistance form on L with weight ρp follows from Theorems
8.51 and 8.52, so we complete the proof.

B.2 Ahlfors regular conformal dimension of affine nested fractals

In this subsection, we prove that the Ahlfors regular conformal dimension of any affine
nested fractal equipped with the p-resistance metric for any p ∈ (1,∞) is 1. We also show
that the Ahlfors regular conformal dimension with respect to the Euclidean metric is also
1 under some geometric condition,

Throughout this section, we assume that L = (K,S, {Fi}i∈S) is an affine nested fractal
(see Framework 8.47 and Definition 8.48). Let ci ∈ (0, 1) be the contraction ratio of Fi
for each i ∈ S. Note that (ci)i∈S ∈ (0, 1)S must satisfy

ci = cg(1)(i) for any i ∈ S and any g ∈ G, (B.4)



138 N. Kajino and R. Shimizu

because of the symmetry of L. For each p ∈ (1,∞), we also fix a self-similar p-resistance
form (E#

p ,F#
p ) on L with equal weight (ρ#,p)i∈S ∈ (1,∞)S for some ρ#,p ∈ (1,∞), i.e.,

F#
p ⊆ C(K) and

F#
p = {u ∈ C(K) | u ◦ Fi ∈ F#

p for any i ∈ S},

E#
p (u) = ρ#,p

∑
i∈S

E#
p (u ◦ Fi) for any u ∈ F#

p .

By Theorem 8.51, such a self-similar p-resistance form on L exists and the number ρ#,p

is uniquely determined. Let R̂#
p denote the p-resistance metric associated with (E#

p ,F#
p ).

The following lemma describes good geometric properties of metric balls with respect
to the p-resistance metrics. (The lemma below is true for p.-c.f. self-similar structures as

well. See [KS.a, Section 6] for details.) Recall the definition of U
R̂p,Ep
M (x, s) in Definition

7.10.

Lemma B.4. Let p ∈ (1,∞) and let (Ep,Fp) be a self-similar p-resistance form on L
with weight ρp = (ρp,i)i∈S ∈ (1,∞)S.

(a) There exist α1, α2 ∈ (0,∞) such that for any (s, x) ∈ (0, 1]×K,

BR̂p,Ep
(x, α1s) ⊆ U

R̂p,Ep
1 (x, s) ⊆ BR̂p,Ep

(x, α2s). (B.5)

(Equivalently, R̂p,Ep is 1-adapted to the weight function g(w) := ρ
−1/(p−1)
p,w ; see [Kig20,

Definition 2.4.1].)
(b) Let df(ρp) ∈ (0,∞) be such that

∑
i∈S ρ

−df(ρp)/(p−1)
p,i = 1, and let m be the self-similar

measure on L with weight
(
ρ
−df(ρp)/(p−1)
p,i )i∈S. Then there exist c1, c2 ∈ (0,∞) such

that for any (x, s) ∈ K × (0, diam(K, R̂p,Ep)],

c1s
df(ρp) ≤ m(BR̂p,Ep

(x, s)) ≤ c2s
df(ρp). (B.6)

In particular, R̂p,Ep is metric doubling.
(c) There exists C ∈ (0,∞) such that for any (x, s) ∈ K × (0, diam(K, R̂p,Ep)],

inf
{
Ep(u)

∣∣ u ∈ Fp, u|B
R̂p,Ep

(x,α1s) = 1, supp[u] ⊆ BR̂p,Ep
(x, 2α2s)

}
≤ Cs−(p−1),

(B.7)
where α1, α2 are the constants in (B.5).

Proof. In this proof, we set R̂p := R̂p,Ep and Λs := Λ
R̂p
s for simplicity.

(a): By (7.1), we have diam(Kw, R̂p) ≤ ρ
−1/(p−1)
p,w diam(K, R̂p) for any w ∈ W∗, which

implies the latter inclusion in (B.5) with α2 ∈ (2 diam(K, R̂p),∞) arbitrary. (In particular,
diam(Kw, R̂p) < α2s for any w ∈ Λs.) We will show the former inclusion in (B.5). It
suffices to prove that there exists α1 ∈ (0,∞) such that R̂p(x, y) ≥ α1s for any s ∈ (0, 1],
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any w, v ∈ Λs with Kw ∩Kv = ∅ and any (x, y) ∈ Kw ×Kv. Let ψq := h
Ep
V0

[
1V0
q

]
for any

q ∈ V0. Fix w ∈ Λs and let uw ∈ C(K) be such that, for τ ∈ Λs,

uw ◦ Fτ =


1 if τ = w,∑

q∈V0;Fτ (q)∈Fw(V0) ψq if τ 6= w and Kτ ∩Kw 6= ∅,
0 if Kτ ∩Kw = ∅.

(B.8)

By the self-similarity for (Ep,Fp), we have uw ∈ Fp and

Ep(uw) =
∑
τ∈Λs

ρp,τEp(uw ◦ Fτ ) =
∑

τ∈Λs\{w};Kτ∩Kw 6=∅

ρp,τEp

 ∑
q∈V0;Fτ (q)∈Fw(V0)

ψq

 . (B.9)

(Note that Λs is a partition of Σ.) Set ρp := maxi∈S ρp,i ∈ (1,∞) and c1 := maxq∈V0 Ep(ψq) ∈
(0,∞). Then ρ−1

p,τ ≥ (ρp)
−1sp−1 for any τ ∈ Λs. Since #{τ ∈ Λs | Kτ ∩ Kw 6= ∅} ≤

(#CL)(#V0) by [Kig01, Lemma 4.2.3], (B.9) together with Hölder’s inequality implies
that

Ep(uw) ≤ (#CL)(#V0)ρps
−p+1(#V0)p−1c1 =: (α1s)

−(p−1). (B.10)

For any v ∈ Λs with Kw ∩Kv = ∅ and any (x, y) ∈ Kw ×Kv, we clearly have uw(x) = 1
and uw(y) = 0. Hence

R̂p(x, y) ≥ Ep(u)−1/(p−1) ≥ α1s,

which proves the desired result.
(b): This is immediate from (B.5), #{τ ∈ Λs | Kτ ∩ Kw 6= ∅} ≤ (#CL)(#V0) (see

[Kig01, Lemma 4.2.3]) and m(Kw) = ρ
−1/(p−1)
p,w (see [Kig01, Corollary 1.4.8]).

(c): Let uw ∈ Fp be the same function as in the proof of (a) for each w ∈ Λs. Then
ϕ := maxw∈Λs,1(x) uw satisfies ϕ|U1(x,s) = 1. Since diam(Kw, R̂p) < α2s, we see from (B.5)
that supp[ϕ] ⊆ BR̂p

(x, 2α2s). By (2.5) for (Ep,Fp), (B.10) and [Kig01, Lemma 4.2.3], we
have ϕ ∈ Fp and

Ep(ϕ) ≤
∑

w∈Λs,1(x)

Ep(uw) ≤ (α1s)
−(p−1)(#CL)(#V0) =: Cs−(p−1).

The next proposition ensures that R̂#
p is quasisymmetric to the q-resistance metric

with respect to any self-similar q-resistance form arising from Theorem 8.51. (Recall
Definition 8.5-(3).)

Proposition B.5. Let p, q ∈ (1,∞) and assume that ρq = (ρq,i)i∈S ∈ (0,∞)S satisfies
(8.65), ρq,i > 1 for any i ∈ S and λ(ρq) = 1, where λ(ρq) ∈ (0,∞) is the unique number
given in Theorem 8.51. Let (Eq,Fq) be a self-similar q-resistance form on L with weight
ρq, which exists by Theorems 8.51, and let R̂q be the q-resistance metric associated with
(Eq,Fq). Then R̂q,Eq is quasisymmetric to R̂#

p .
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Proof. We will use [Kig20, Corollary 3.6.7] to show the desired statement. We first show
that there exist α1, α2 ∈ (0,∞) such that

α1ρ
−1/(p−1)
q,w ≤ diam(Kw, R̂q) ≤ α2ρ

−1/(p−1)
q,w for any w ∈ W∗. (B.11)

The upper estimate in (B.11) is immediate from (7.1). To prove the lower estimate in
(B.11), note that we can easily find m0 ∈ N such that for any w ∈ W∗ there exist
v1, v2 ∈ W|w|+m0 with vi ≤ w, i = 1, 2, and Kv1 ∩ Kv2 = ∅. (It is enough to choose
m0 satisfying 2(maxi∈S ci)

m0 < 1.) Then, by combining the proof of Lemma B.4-(a) and
ρp,vi ≤ ρq,w(maxi∈S ρq,i)

m0 , there exists α1 ∈ (0,∞) that is independent of w ∈ W∗ such
that

inf
(x,y)∈Kv1×Kv2

R̂q(x, y) ≥ α1ρ
−1/(p−1)
q,w ,

which implies the desired lower estimate in (B.11).
Next we note that L is a rationally ramified self-similar structure by [Kig09, Propo-

sition 1.6.12]; moreover, by combining [Kig09, Proposition 1.6.12], Kv ∩Kw = Fv(V0) ∩
Fw(V0) for any v, w ∈ W∗ with Σv ∩ Σw = ∅ (see [Kig01, Proposition 1.3.5-(2)]) and the
fact that each element of V0 is a fixed point of Fi for some i ∈ Sfix := {i ∈ S | Ki∩V0 6= ∅},
L is rationally ramified with a relation set

R =
{
{({w(j)}, {v(j)}, ϕj, x(j), y(j)) | w(j), v(j), x(j), y(j) ∈ W∗ \ {∅}}

}k
j=1

(B.12)

satisfying w(j), v(j) ∈ Sfix. (See [Kig09, Sections 1.5 and 1.6 and Chapter 8] for details
about rationally ramified self-similar structures.)

With these preparations, we will apply [Kig20, Corollary 3.6.7] for R̂q,Eq and R̂#
p . By

Lemma B.4-(a) and (B.11), R̂q,Eq is 1-adapted and exponential (see [Kig20, Definition
2.4.7 and 3.1.15-(2)] for these definitions; see also Remark in [Kig20, p. 108]). Similarly,
R̂#
p is also 1-adapted and exponential. Hence, by [Kig20, Corollary 3.6.7], R̂q,Eq is qua-

sisymmetric to R̂#
p if and only if R̂q,Eq is gentle with respect to R̂#

p (see [Kig20, Definition
3.3.1] for the definition of the gentleness). Define gq(w) := ρ

−1/(q−1)
q,w and g#,p(w) := ρ

−|w|
#,p

for w ∈ W∗. Since gq and g#,p satisfy the condition (R1) in [Kig09, Theorem 1.6.6] by
(8.65) and (B.12), we obtain the desired gentleness by [Kig09, Theorem 1.6.6] and (B.11).
This completes the proof.

Now we can determine the Ahlfors regular conformal dimension of (K, R̂#
p ).

Theorem B.6. dimARC(K, R̂#
p ) = 1.

Proof. We will use the characterization of the Ahlfors regular conformal dimension in
[Kig20, Theorem 4.6.9]. Note that (K, R̂#

p ) satisfies (BF1) and (BF2) in [Kig20, Section
4.3] by Lemma B.4-(a), (B.11), [Kig09, Proposition 1.6.12, Lemmas 1.3.6 and 1.3.12]. We
define a graph Gn = (Vn, En) and q-energy EGnp , q ∈ (1,∞), on Gn by

En := {(x, y) | x, y ∈ Fw(V0) for some w ∈ Wn},
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and
EGnq (f) :=

1

2

∑
(x,y)∈En

|f(x)− f(y)|q , f ∈ RVn .

Note that {Gn}n≥0 is a proper system of horizontal networks with indices (1, 2(#V0 −
1)#V0, 1, 1) (see [Kig20, Definition 4.6.5]). Hence, by [Kig20, Theorem 4.6.9], dimARC(K, R̂#

p ) =
1 if and only if the following holds: for any q ∈ (1,∞),

lim inf
k→∞

sup
w∈W∗

inf
{
EG|w|+kq (f)

∣∣∣ f ∈ RV|w|+k , f |Fw(Vk) = 1, f |Zw,k = 0
}

= 0, (B.13)

where Zw,k := {x ∈ V|w|+n | x ∈ Fv(Vk) for some v ∈ W|w| with Kv ∩Kw = ∅}. Since both
E#
q

∣∣
V0

( · )1/q and EG0
q ( · )1/q are norms on the finite-dimensional vector space RV0/R1V0 ,

there exists C ≥ 1 such that C−1E#
q

∣∣
V0

(u) ≤ EG0
q (u) ≤ CE#

q

∣∣
V0

(u) for any u ∈ RV0 . Hence,
by Propositions 7.2-(3) and 7.4, we obtain C−1E#

q

∣∣
Vn

(u) ≤ ρn#,qEGnq (u) ≤ CE#
q

∣∣
Vn

(u) for
any n ∈ N ∪ {0} and any u ∈ RVn . Recall that Γ1(w) = {v ∈ W|w| | Kv ∩ Kw 6= ∅} for
w ∈ W∗ (see Definition 8.3). Let hq,w ∈ F#

q be the unique function satisfying hq,w|Kw = 1,
hq,w|Kv = 0 for any v ∈ W|w| \ Γ1(w) and

E#
q (hq,w) = inf

{
E#
q (u)

∣∣∣ u|Kw = 1, u|Kv = 0 for any v ∈ W|w| \ Γ1(w)
}
.

Then we see from (B.7), (B.5) and (B.11) that

sup
w∈W∗

inf
{
EG|w|+kq (f)

∣∣∣ f ∈ RV|w|+k , f |Fw(Vk) = 1, f |Zw,k = 0
}

≤ Cρ
−(|w|+k)
#,q sup

w∈W∗
E#
q

∣∣
V|w|+k

(hq,w|V|w|+k) ≤ Cρ
−(|w|+k)
#,q sup

w∈W∗
E#
q (hq,w) . ρ−k#,q.

Since ρ#,q ∈ (1,∞) for any q ∈ (0, 1), we obtain (B.13). The proof is completed.

To discuss the Ahlfors regular conformal dimension of K with respect to the Euclidean
metric, we need the following assumption.

Assumption B.7. We define Λd
1 := {∅},

Λd
s := {w | w = w1 . . . wn ∈ W∗ \ {∅}, diam(Kw1...wn−1 , d) > s ≥ diam(Kw, d)}

for each s ∈ (0, 1). For s ∈ (0, 1], M ∈ N ∪ {0} and x ∈ K, define

Λd
s,M(x) :=

{
v

∣∣∣∣∣ v ∈ Λd
s, there exists w ∈ Λd

s with x ∈ Kw and
{z(j)}kj=1 ⊆ Λd

s with k ≤ M + 1, z(1) = w, z(k) = v
such that Kz(j) ∩Kz(j+1) 6= ∅ for any j ∈ {1, . . . , k− 1}

}
,

and Ud
M(x, s) :=

⋃
w∈Λds,M (x) Kw. Then there exist M∗ ∈ N, α0, α1 ∈ (0,∞) such that

Ud
M∗(x, α0s) ⊆ Bd(x, s) ⊆ Ud

M∗(x, α1s) for any (x, s) ∈ K × (0, 1].

(Equivalently, d is M∗-adapted; see [Kig20, Definition 2.4.1].)
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Remark B.8. We do not know whether Assumption B.7 is true for any affine nested
fractal. Even for a nested fractal, being 1-adapted with respect to the Euclidean metric
is assumed in [Kig23, Assumption 4.41].

Now we can show the main result in this section under Assumption B.7.

Theorem B.9. Assume that Assumption B.7 holds. Then dimARC(K, d) = 1.

Proof. Thanks to Theorem B.6, it suffices to prove that R̂#
p is quasisymmetric to d. Obvi-

ously, d is exponential since diam(Kw, d) = cw diam(K, d). By (B.4), a similar argument
as in the proof of Proposition B.5 implies that R̂#

p is gentle with respect to d. Hence
[Kig20, Corollary 3.6.7] together with Assumption B.7 implies that R̂#

p is quasisymmetric
to d.

B.3 An estimate on self-similar regular p-resistance forms on p.-
c.f. self-similar structures

This subsection aims to prove the following result, which is a generalization of [Kig03,
Theorem A.1].

Theorem B.10. Let p ∈ (1,∞) and let L = (K,S, {Fi}i∈S) be a p.-c.f. self-similar
structure with #S ≥ 2. Assume that there exists a self-similar p-resistance form (E ,F)
on L with weight ρ = (ρi)i∈S and that mini∈S ρi > 1. Then there exists c ∈ (0, 1) such
that for any x, y ∈ K and any w ∈ W∗,

cρ−1
w RE(x, y) ≤ RE(Fw(x), Fw(y)) ≤ ρ−1

w RE(x, y). (B.14)

Since the upper estimate in (B.14) is obtained in (7.1), what matters is the lower
estimate in (B.14). To prove it, we need the following lemma.

Lemma B.11. Assume the same conditions as in Theorem B.10. Let x, y ∈ K and
w ∈ W∗. Set Λ := {τ = τ1 . . . τn ∈ W∗ | (ρτ1···τn−1)−1 > ρw ≥ ρ−1

τ }, U := V0 ∪ {x, y},
VΛ :=

⋃
w∈Λ Fw(V0) and V := VΛ ∪ {Fw(x), Fw(y)}. Then Λ is a partition of Σ and

E|V (u) = ρwE|U(u ◦ Fw) +
∑

τ∈Λ\{w}

ρτE|V0(u ◦ Fτ ) for any u ∈ F|V . (B.15)

Proof. The proof is very similar to Proposition 7.4. It is clear that Λ is a partition of Σ.
Note that C(K) = C(K,R

1/p
E ) and (K,R

1/p
E ) is bounded by Proposition 7.2-(3). For any

u ∈ F|V ,

E|V (u)

= min
{
E(v)

∣∣ v ∈ F , v|V = u
}

(5.7)
= min

{
ρwE(v ◦ Fw) +

∑
τ∈Λ\{w}

ρτE(v ◦ Fτ )

∣∣∣∣∣ v ∈ F , v|V = u

}
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≥ min

{
ρwE(v ◦ Fw)

∣∣∣∣∣ v ∈ F , v|V = u

}
+ min

{ ∑
τ∈Λ\{w}

ρτE(v ◦ Fτ )

∣∣∣∣∣ v ∈ F , v|V = u

}
≥ ρw min{E(v) | v ∈ F , v|U = u ◦ Fw}+

∑
τ∈Λ\{w}

ρτ min{E(v) | v ∈ F , v|V0 = u ◦ Fτ}

= ρwE|U(u ◦ Fw) +
∑

τ∈Λ\{w}

ρτE|V0(u ◦ Fτ ).

To prove the converse, let v ∈ C(K) satisfy v ◦ Fw = hEU [u ◦ Fw] and, for τ ∈ Λ \ {w},
v ◦ Fτ = hEV0

[u ◦ Fτ ]. Such v is well-defined since Kw ∩Kτ = Fw(V0) ∩ Fτ (V0). Also, we
have v|V = u and v ∈ F by (5.5). Moreover,

E|V (u) ≤ E(v)
(5.7)
=
∑
τ∈Λ

ρτE(v ◦ Fτ ) = ρwE|U(u ◦ Fw) +
∑

τ∈Λ\{w}

ρτE|V0(u ◦ Fτ ).

This completes the proof.

Proof of Theorem B.10. Let Λ, U, VΛ, V be the same as in Lemma B.11. Set Γ1(w; Λ) :=
{τ ∈ Λ | w 6= τ,Kw ∩Kτ 6= ∅} for simplicity. Then #Γ1(w; Λ) ≤ #(CL)#(V0) by [Kig01,
Lemma 4.2.3]. Let ψxy ∈ F satisfy ψxy(x) = 1, ψxy(y) = 0 and E(ψxy) = RE(x, y)−1. Let
u∗ ∈ F satisfy u∗(x) = 1, u∗(y) = 0, u|V \Fw(U) ∈ R1V \Fw(U) and

E(u∗) = inf{E(v) | v ∈ F , (v ◦ Fw)|U = ψxy, v|V \Fw(U) ∈ R1V \Fw(U)}.
Such u∗ is uniquely exists by a standard argument in the variational analysis. Also, by
Proposition 2.2-(b), we easily see that 0 ≤ u∗ ≤ 1. Since RV0/R1V0 is a finite dimensional
vector space, there exists a constant C ∈ (0,∞) such that

E|V0(u)1/p ≤ C max
z,z′∈V0

|u(z)− u(z′)| for any u ∈ RV0 . (B.16)

Then, by using Lemma B.11, we see that

RE(Fw(x), Fw(y))−1 ≤ E(u∗) = E|V (u∗)

= ρwE|U(u∗ ◦ Fw) +
∑

τ∈Λ\{w}

ρτE|V0(u∗ ◦ Fτ )

= ρwE|U(u∗ ◦ Fw) +
∑

τ∈Γ1(w;Λ)

ρτE|V0(u∗ ◦ Fτ )

(B.16)
≤ ρw

RE(x, y)
+ Cp

∑
τ∈Γ1(w;Λ)

ρτ

≤ ρw

(
1

RE(x, y)
+ Cp

(
max
i∈S

ρi

)
(#Γ1(w; Λ))

)
= ρw

(
1

RE(x, y)
+ C ′

RE(x, y)

RE(x, y)

)
≤ ρw

(
1 + C ′ sup

z,z′∈K
RE(z, z

′)

)
RE(x, y)−1,

which shows the desired lower estimate in (B.14).
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