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Abstract

We introduce new contraction properties called the generalized p-contraction
property for p-energy forms as generalizations of many well-known inequalities, such
as Clarkson’s inequalities, the strong subadditivity and the “Markov property” in
the theory of nonlinear Dirichlet forms, and show that any p-energy form satisfy-
ing Clarkson’s inequalities is Fréchet differentiable. We also verify the generalized
p-contraction property for p-energy forms constructed by Kigami [Mem. Eur. Math.
Soc. 5 (2023)] and by Cao-Gu—Qiu [Adv. Math. 405 (2022), no. 108517]. As a
general framework of p-energy forms taking into consideration the generalized p-
contraction property, we introduce the notion of p-resistance form and investigate
fundamental properties for p-harmonic functions with respect to p-resistance forms.
In particular, some new estimates on scaling factors of p-energy forms are obtained
by establishing Holder regularity estimates for harmonic functions, and the p-walk
dimensions of the generalized Sierpiriski carpets and D-dimensional level-I Sierpiriski
gasket are shown to be strictly greater than p.
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1 Introduction

In the field of ‘analysis on fractals’, on a large class of self-similar sets including the Sier-
pinski gasket and the Sierpinski carpet (see Figure 1.1), it is an established result that
there exists a nice Dirichlet form (&;, F3), which is an analogue of the pair of the Dirichlet
2-energy [ |Vu|® dr and the associated (1,2)-Sobolev space W2 on a differentiable space
(see, e.g., [Kig01l, BB99]). Once we obtain a nice Dirichlet form, the theory of symmet-
ric Dirichlet forms provides us the associated energy measure I'5(u) playing the role of
|Vu|? dz whose existence is highly non-trivial because the density “|Vu|” usually does not
make sense on fractals (see [Hin05, KM20]). The main purpose of this article is to develop
a general theory for LP-analogues of (&, F2,'2()), where p € (1,00), on the basis of the
new contraction property called the generalized p-contraction property. To state results
precisely, throughout this introduction, we fix a self-similar set K and a natural Hausdorff
measure m on K. For a large class of the pair (K, p), a natural LP-analogue of (&, F2)
on K, namely a p-energy form (€,, F,) playing the role of [ |Vu|” dz and the associated
(1, p)-Sobolev space WP, where F, is a linear subspace of L?(K,m) and &,: F, — [0, 00)
is p-homogeneous in the sense that &,(au) = |al’ &,(u) for any a € R and any u € F,,
have been constructed in several works [HPS04, Kig23, Shi24, CGQ22, MS23+, KO-+,
most of which are very recent. Furthermore, the associated p-energy measure I',(u),
which is a finite Borel measure on K and an analogue of |Vu|” dz, has been introduced
in [Shi24, MS23+] with the help of the self-similarity of (&,, F,). See Section 5 for de-
tails on the self-similarity of a p-energy form, and Example 4.2 for examples of p-energy
measures without relying on the self-similarity. Compared with the case p = 2, where the
theory of symmetric Dirichlet forms is applicable, very little has been established to deal
with (&,, F,,I'p(-)) in a general framework. In particular, there are two missing pieces
in known results of (&,, F,, I',(-)): first, useful contraction properties of it, and secondly,
the (Fréchet) differentiabilities of £, and of I',. In the first half of this paper (Sections
2-5), we aim to establish general results filling these missing pieces. We shall explain in
more detail below.

The first missing piece is contraction properties for (&,, F,,I',(-)). Every p-energy
form (&,,F,) constructed in the previous studies is known to satisfy the following unit
contractivity:

ut A1 € F,and E(ut A1) < E,(u) for any u € F,,. (1.1)

In the case p = 2, by using some helpful expressions of &, e.g. [FOT, Lemma 1.3.4 and
(3.2.12)], (1.1) can be improved to the following normal contractivity (see [MR, Chapter
I, Theorem 4.1.2] for example): if n € N, T: R" — R satisfy |T'(z)] < >} _, x| and
T(x) —T(y)| <> iy lok — ygl for any @ = (z1,...,2,),y = (y1,-..,yn) € R™, then for

!The differences among these works are the class of (K, p) on which (&,,F,) is constructed. Let us
clarify only some important differences (see [KS23-+, Introduction] for details). In [HPS04, CGQ22|, K
is assumed to be a post-critically finite self-similar set (see Definition 5.3) so that the Sierpiriski gasket
is included while the Sierpinski carpet is excluded. The case K is the Sierpinski carpet is allowed in
[Kig23, Shi24, MS23-+, KO-+, but we need to assume that p is strictly greater than the Ahlfors regular
conformal dimension of K (see Definition 8.5-(4)) in [Kig23, Shi24, KO-].



Contraction properties and differentiability of p-energy forms D

Figure 1.1: The Sierpiniski gasket (left) and the Sierpinski carpet (right)

any u = (u1,...,u,) € Fy we have

T(u) € Fy and &(T(w))? < n Exluy)?.

k=1

N

(1.2)

It is natural to expect that (€,,F,) also has a similar property to (1.2) since &,(u) is an
analogue of [ |Vul” dz; nevertheless, it is not clear whether (1.1) can be improved in such
a way without going back to the constructions of (£,,F,) in the previous studies. Not
only (1.2) but also part of useful inequalities like the following strong subadditivity and
p-Clarkson’s inequalities, was not mentioned in [HPS04, Kig23, Shi24, CGQ22, MS23+|:

(Strong subadditivity) For any u,v € F,, we have u Av,uV v € F, and
E(uNv)+E(uVv) < E(u) + E(v). (1.3)

(p-Clarkson’s inequality) For any u,v € F,
{5 (u—i-?])l’ 1—|—5(u—1}) 2(5( )+8( ))pil ipr(l,Q], (14)
5p(u+v)—|—€p(u—v)§2( L(W)PT 4+ E(v)7 1) if p € (2,00).

These inequalities play significant roles in the nonlinear potential theory with respect to
(&p, Fp). For example, (1.3) will be important to consider the p-capacity associated with
(&py Fp); see [BVO5, (H3)]. Also, we frequently use (1.4) in this paper; see Theorem 1.3
below for one of the most important consequence of (1.4). Since we do not know whether
the property (1.1) is enough for desirable inequalities unlike the case p = 2, one needs to go
back the constructions of (€,, F,) in the preceding works if one wishes to show them. The
situation is similar for p-energy measures. It is natural to expect that p-energy measures
inherit contraction properties from (&,, F,), however, in order to show such a property
for p-energy measures, we need to recall how p-energy measures are constructed partially
because no canonical way to define p-energy measures is known (see [MS23-+, Problem
12.5)).

To overcome this situation, in this paper, we will introduce the following notion of gen-
eralized p-contraction property as a candidate of the strongest possible form of contraction
properties of p-energy forms.
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Definition 1.1 (Generalized p-contraction property; see also Definition 2.1). Let ny,ny €
N, ¢1 € (0,p] and ¢2 € [p, 00]. We say that (&,, F,) satisfies the generalized p-contraction
property if T = (Ty,...,T,,): R™ — R"™ satisfies T(0) = 0 and ||T(z) = T'(y) ;e <
|2 — yll 4, for any 2,y € R™, then for any w = (uy, ..., u,,) € F)* we have

T(u) € F* and H(ep(mu))i)”f

< || )y,

(1.5)

@

Note that the case (p,n1,m2,¢1,92) = (2,m,1,1,p) is the same as (1.2) for symmetric
Dirichlet forms. As recorded in the following proposition, (1.5) is actually a generalization
of many useful inequalities like (1.2), (1.3) and (1.4).

Proposition 1.2 (Proposition 2.2). Let ¢ € C(R) satisfy ¢(0) = 0 and |p(t) — p(s)| <
|t — s| for any s,t € R. Assume that (€,,F,) satisfies the generalized p-contraction prop-
erty. Then the following hold.

(a) (Triangle inequality and strict convexity) 5;/ P is a seminorm on F,, and for any
A€ (0,1) and any f,g € F, with E,(f) NE(g) NE(f —g) >0,

EsAf+(1—=XN)g) <A&(f)+ (1 —=X)E(g).

(b) (Lipschitz contractivity) ¢(u) € F, and E,(p(u)) < E,(u) for any u € F,.
(c¢) (Strong subadditivity) Assume that ¢ is non-decreasing. Then for any f,g € Fp,

E(f —of = 9) +&E(g+o(f —9)) &) +E(9)-
In particular, (1.3) holds.
(d) (Leibniz rule) For any f,g € F, N L®(K, m), we have
frgeFy and E(f-9)» <9l Lo em) Ep()7 + 11| oo re.m) En(9) 7

(e) (p-Clarkson’s inequality) Let f,g € F,. If p € (1,2], then

2(E,(N)7T +E(9)7 1) < E(F+9) + E(f — 9) < 2E(F) + Elg))-
If p € 2,00), then

2(E,(f) +E,(9) < Ef +9) + E(f — g) <2(&,())7T +E(g)71)"

In particular, (1.4) holds.

Since the generalized p-contraction property is introduced as arguably the strongest
possible formulation of the contraction property of (£,, F,), it is highly non-trivial whether
p-energy forms constructed in the previous studies satisfy it. In Section 8, we will see that
we can still verify the existing constructions of p-energy forms in the previous studies so as
to get ones satisfying (1.5). (See also [IKS.a| for an approach, which is based on Korevaar—
Schoen p-energy forms, to obtain p-energy forms satisfying (1.5).)
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The other missing piece is the differentiability of p-energy forms, which should be
useful to study p-harmonic functions with respect to &,. (See [KM23, Problem 7.7
and [MS523-+, Conjecture 10.9] for some motivations to investigate p-harmonic functions
on fractals.) In [HPS04, Shi24, CGQ)22], p-harmonic functions are defined as functions
minimizing &, under some fixed boundary conditions. However, it is still unclear how
to give an equivalent definition of p-harmonic function in a weak sense due to the lack
of ‘two-variable version’ &,(u; ) [Kig23, Problem 2 in Section 6.3]. We shall recall the
Euclidean case to explain the importance of this object. Let D € N and U C R” a
domain. A function u € WP(RP) is said to be p-harmonic on U in the weak sense if

/]RD IVu(z) [P~ (Vu(z), Vo(x))go de = 0 for every ¢ € C=(U), (1.6)

where (-, - )gp is the inner product of R”. Tt is well known that (1.6) is equivalent to

/RD Vu(2)|? de = inf{/RD Vo(z) P dz

An issue to consider an analogue of (1.6) in terms of &, is that we do not have a satisfac-
tory counterpart, &,(u; ), of [ [Vul"” *(Vu, V) dz assomated with £,. As mentioned in
[SW04, (2.1)], the ideal definition of &,(u; ¢)? is

vEWl’p(RD),u—UGWg’p(U)}. (1.7)

d
—&y(u+ty)

Eplus ) = P , (1.8)

t=0

but the existence of this derivative is unclear® because the constructions of &, in the previ-
ous studies include many steps such as the operation of taking a subsequential scaling limit
of discrete p-energies. Similarly, in respect of p-energy measures, no suitable way is known
to define a ‘two-variable version’ T',(u; ), which plays the role of |Vul"~* (Vu, Vi) dx.
The ideal definition of I')(u; ¢) is similar to (1.8), i.e., for any Borel set A of K,

d
o it 1) (4) i (1.9)

Lp{u; 0)(A) =
Such a signed measure is discussed in [BV05, Section 5|, but the existence of the deriva-
tive in (1.9) is assumed in [BVO05] (in some uniform manner); see [BV05, (H4) and the
beginning of Section 5| for details. In [Cap07|, the (scale-invariant) elliptic Harnack in-
equality for p-harmonic functions on metric fractals (see [Cap07, Definition 2.3]) is proved
under some assumptions including the existence of I',(u; ), which is called the measure-
valued p-Lagrangian and denoted by £®)(u, ¢) in [Cap07], as in [BV05]. However, in the
case that there is no explicit expression of the p-energy measure I',(u) unlike the case

2Strichartz and Wong [SW04] have proposed an approach based on subderivative instead of (1.8), i.e
Ep(u; ) is defined as the interval [5‘( u; ), EF (us ¢)| where d—té’ (u—i—tgo)’ o 5i(u ®).

3The case p = 2 is spec1a1 because of the parallelogram law. Indeed, & is known to be a quadratic
form and hence £y (u,v) = 471 (Ea(u + v) — E2(u — v)) is a symmetric form satisfying (1.8).



8 N. Kajino and R. Shimizu

of Euclidean spaces, there is no proof of the existence of the derivatives in (1.9) in the
literature. (The p-energy form on the Sierpiriski gasket constructed in [HPS04]| is dis-
cussed in [Cap07, Section 5| as a concrete examples and it is stated that “we can define
the corresponding Lagrangian £ (u,v)” in p. 1315 of that paper, nevertheless, we have
been unable to find in the literature a rigorous proof of the existence of the derivatives in
[Cap07, p. 1315] defining &,(u,v) and in [Cap07, p. 1303, (L5)] defining £®(u,v) for the
p-energy form on the Sierpinski gasket obtained in [HPS04].)

As another main contributions of this paper, we make a key observation that p-
Clarkson’s inequality (1.4) implies the desired differentiability of &£,. In addition to this
result, we record basic properties of &,(u; ) given by (1.8) in the following theorem.

Theorem 1.3 (Proposition 3.5 and Theorem 3.6). Assume that (E,,F,) satisfies (1.4).
Then R >t — E(f + tg) € [0,00) is differentiable for any f,g € F,, and for any s € R,

= 0.
610 9EFpiEn(9)< dt

t=s

We deﬁne & ( ) ‘Fp X‘Fp - R by gp<f7g) = %%gp(f+tg)‘t:0 Leta € R; f7 f17f27g S
Fp and h € £;1(0). Then the following hold.

(2) &(f; ) = &) and E(af;g) = sgn(a) |a|"" &, (f3 9).

(b) The map E,(f; -): Fp, = R is linear.

(©) &(fih) =0 and E(f + hig) = E(f3 9)-

(d) R>t= E(f +tg;g) € R is strictly increasing if and only if g & £,(0)

(

(

) &) < ENT Erlg)r. N
) 1&(f1i9) = E(fa9)l = C ( p(f1) V E (f2>) v E(f1 — fg)%pgp(g)%, where o, =

% A 7%1 and some constant C, € (0,00) determined solely and explicitly by p.

We also establish a similar result for p-energy measures as follows, which is the first
rigorous result on the existence of the derivative in (1.9) for p-energy measures on fractals.

Theorem 1.4 (Propositions 4.3, 4.8 and Theorem 4.5). Assume that {I'p,(u) }uer, satisfies
{w +9) ()T T+ T(f = g) ()77 < 2T, (H(A) + T lg)(A) 7 ifp e (1,2),
Dp(f + 9)(A4) + Tplf = 9)(A) < 2T N)(A)7T + Tp{g)(A)77)" if p € (2,00),

for any Borel set A of K. Then R >t — I')(f +1tg)(A) € [0,00) is differentiable for any
f.g9 € F, and any Borel set A of K, and for any s € R,

Lp{f + (s +0)g)(A) —Tp(f +s9)(A)  d,
) dt

lim  sup
010 9€Fpi€p(g)<1

I {f +tg)(A)

t=s

We define T),(f; g)(A) = 14D (f + tg)(A)|t20 Then T'y(f:g) is a signed Borel measure

pdt
on K. Moreover, for any Borel set A of K, I';(-;-)(A): F, x F, — R satisfies the

following properties: Let a € R, f, fi, fo,9,h € F, wzth Ly(h)(A) =0. Then
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Lo(f5 F)(A) = Tp(f) and Tp(af; g)(A) = sgn(a) lal~ T, (f; 9)(A).

The map T'p(f; -)(A): F, — R is linear.

Lp(f; R)(A) = 0 and T'py(f + h; g)(A) = T,(f; 9)(A).

R>t—T,(f+tg; 9)(A) € R is strictly increasing if and only if I',(g)(A) >0
For any Borel measurable functions ¢,1: K — [0, 00],

[evamisols ([ o drp<f>)(p_”/” (/ wpdrp<g>>””_

(f) Leta, = i/\p%l. There exists a constant C, € (0, 00) determined solely and explicitly
by p such that

|Fp<f1§ 9)(A) — Fp<f2§ 9)(A)]

< Cp(Tp(f)(A) V() (A) 7 Ty(fs — f2)(A) 7 Tyg)(A)7.

In the second part of this paper (Sections 6 and 7), we aim to develop a general theory
for (&,, F,) on the basis of the generalized p-contraction property and Theorem 1.3. As
a satisfactory theory of p-energy forms taking into the generalized p-contraction property
and focusing on a “low-dimensional” setting, we will introduce the notion of p-resistance
form, which can be regarded as a natural LP-analogue of the theory of resistance forms
developed by Kigami mainly in [Kig01, Kigl2].

TN TN N N N
o0 o ©
~—_ — " —

@
~

3=

Definition 1.5 (p-Resistance form; see Definition 6.1). (&,, F,) is said to be a p-resistance
form on K if and only if it satisfies the following conditions:

(RF1), F, is a linear subspace of RX containing Rl and &,(-)'/? is a seminorm on F,
satisfying {u € F, | E,(u) = 0} = Rlg.

(RF2), The quotient normed space (F,/Rlg,&,(-)YP) is a Banach space.

(RF3), If z # y € K, then there exists u € F,, such that u(x) # u(y).

(RF4), For any z,y € K,

UEFP\R]IK} < 00.

(RF5), (&,, F,) satisfies the generalized p-contraction property.

We will verify that p-energy forms constructed by Kigami in [Kig23, Theorem 3.21|
under the assumptions that the underlying compact metric space is p-conductively ho-
mogeneous (Definition 8.11) and p is strictly greater than the Ahlfors regular conformal
dimension of the underlying space, are p-resistance forms. In addition, we prove that
p-energy forms on post-critically finite self-similar sets constructed by Cao-Gu-Qiu in
[CGQ22, Proposition 5.3] turn out to be p-resistance forms for any p € (1, 00) under the
condition (R) in [CGQ22, p. 18]. (See Section 8 for details.) Similar to the case p = 2,
developing a general theory for p-resistance forms allows us to to investigate p-energy
forms provided by these broad frameworks in a synthetic manner.
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It is immediate that if (€,, F,) is a p-resistance form on K, then Rg, (-, -)"/? is a
metric on K and any function in F, is a continuous function on K with respect to the
topology induced by this metric. In the theory of resistance forms (p = 2), it is well
known that Rg,(-, -) is a metric, which is called the resistance metric associated with
the resistance form (&, F2). See [Kig0O1, Theorem 2.3.4] for a proof. In view of this fact in
the case p = 2, it is natural to seek the optimal exponent ¢ where Rg (-, -)? is a metric.
The following theorem gives the answer.

1

Theorem 1.6 (Corollary 6.32). If (£,, F,) is a p-resistance form on K, then Re (-, - )1
18 a metric on K.

The power 1/(p — 1) in the theorem above is sharp; see Example 6.34. Let us call

Re, (-, )ﬁ the p-resistance metric associated with (&,, F,). The proof of the triangle
inequality for the p-resistance metric is done independently by [Her10, ACEP19] for finite
weighted graphs (see also [Shi21] for infinite graphs). Our result (Theorem 1.6) is the first
result including continuous settings.

We also investigate p-harmonic functions with respect to p-resistance forms, which
should correspond to a part of nonlinear potential theory where each point has a positive
p-capacity. Let us explain some basic results in this introduction. The following definition
is a natural analogue of (1.6) (or of (1.7)).

Definition 1.7 (£,-Harmonic function; see Definition 6.12). Let (&,, F,) be a p-resistance
form on K and let B be a non-empty subset of K. A function h € F, is said to be &,-
harmonic on K \ B if and only if

Ey(h;p) =0 for any ¢ € F, with ¢|p =0,

or equivalently
Ep(h) = inf{&,(u) | u € Fp,ulp = h|p}.

(See Proposition 6.11 for this equivalence.)

A standard argument in variational analysis ensures the existence and the uniqueness
of £,-harmonic function satisfying a given boundary condition.

Proposition 1.8 (see Theorem 6.13). Let (&,,F,) be a p-resistance form on K and
let B be a non-empty subset of K. We define Fo|lp = {ulp | v € F,}. Then for
any u € Fplp, there exists a unique function h‘;p [u] in F, satisfying hif’[uHB = u and
Ey(h [u]) = inf{&,(v) | v € Fp,v|p = u}.

Using the (nonlinear) operator h%?[-]: F,|p — F, given in the proposition above,
we can introduce a new p-resistance form on the boundary set, which is called the trace
of the p-resistance form to the boundary set. This notion is at the core of our theory
of p-resistance forms, and turns out to be a powerful tool especially when we work on
post-critically finite self-similar sets; see Subsection 8.3 for example. Here we just record
fundamental results on traces in the following theorem.
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Theorem 1.9 (Trace of p-resistance form; see Theorem 6.13). Let (&,,F,) be a p-
resistance form on K and let B be a non-empty subset of K. We define &,|p: Fplp —
0,00) by &|p(u) = 5p(h% [u]) foruw e Fylg. Then (&,|p, Fplp) is a p-resistance form on
B. Furthermore, Re,, = Re,|pxp and

Elpluyv) = Sp(thp[u]; hgv])  for any u,v € Flp.

Now let us state results on behaviors of £,-harmonic functions. We start with a com-
parison principle for £,-harmonic functions. Because of the nonlinearity of the operator
h‘;” in Proposition 1.8, a maximum principle does not imply a comparison principle unlike
the case p = 2. Fortunately, by virtue of Proposition 1.8 and the strong subadditivity in
Proposition 1.2, we can establish a weak comparison principle for £,-harmonic functions
in the following formulation (see Proposition 6.26).

If ) # BC K and u,v € F,|p satisfy u < v on B, then herfu) < hr ). (1.10)

We also show a a stronger formulation of the weak comparison principle above under
suitable assumptions; see Proposition 6.30. Next we discuss a (scale-invariant) elliptic
Harnack inequality for non-negative &£,-harmonic functions. In the case p = 2, one can
show a Harnack-type estimate for £&;-harmonic functions by using the maximum principle
(see [KigO1, Proposition 3.2.7]). We can not follow this approach to get a Harnack-type
inequality for &£,-harmonic functions because of an issue due to the nonlinearity. However,
by employing a similar approach as in [Cap07], we can show the following elliptic Harnack
inequality under some extra assumptions including the existence of nice p-energy measures
(see Theorem 6.37 for the precise statement); there exists a constant C' € (0, co) such that
for any (z,s) € K x(0,00) and any h € F,, which is £,-harmonic on B (z,2s) and u > 0,

where fip = Réﬁ =1 it holds that
sup h<C inf h, (1.11)

Bﬁp(:p,s) Bﬁp (z,5)

which implies a local Hoélder continuity of h. Regarding continuity estimates for &,-
harmonic functions, we also obtain the following sharp Holder regularity estimate, which
is a key ingredient of the proof of Theorem 1.6.

Theorem 1.10 (Theorem 6.31). Let (£,,F,) be a p-resistance form on K and let B be a
non-empty subset of K. We define B7» = ﬂuefp;uhgzo u~Y(0) and, for x € K \ B’»,

b~ (ol

Assume that h € F,, is E,-harmonic on K\ B and supg |h| < co. Then for any x € K\ B>
and any y € K,

u € Fpulp =0,u(x) # 0}) o

Al

h(z) = hy)| < 28D G 1h@) = my).

x?
p\T, B) z'y'eEB

URaSE
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Next let us move to applications of such a general theory of p-resistance forms. In
forthcoming papers [KS.b, KS.c|, the authors will heavily use this theory to make some
essential progress in the setting of post-critically finite self-similar structures. See [KS23+|
for a survey of these results in the case of the Sierpinski gasket. Here we shall explain
another application for strict estimates on p-walk dimensions of some special classes of
fractals, namely generalized Sierpiriski carpets and D-dimensional level-/ Sierpinski gasket
(see Figure 1.2). For such a nice self-similar set K, as shown in the previous studies, we
can construct &, so as to satisfy the following self-similarity: there exists o, € (0, 00)
(which we call the weight of (£,, F,)) such that

u) :Jngp(uoﬂ), u e Fp, (1.12)

1€S

where S is a finite set and {F}};cs is a family of similitudes associated with K such that
K = ;e Fi(K) and |Fy(x) — Fi(y)| = r. |z — y| for some 7, € (0,1). Then the p-walk
dimension d,,, of K is defined by

~ log ((#9)a,)

w,p T —
log 7!

which coincides with the walk-dimension if p = 2. As shown in [MS23+, Theorem 7.1,
the value d,, , plays a role of the space-scaling exponent in the following sense:

p
Ep(u) < lim sup/ ][ d Ju(z) = uly)| m(dy)m(dx), ue€ Fp,
7,0 lz—y|<r rep

where m is the log(#5)/ log r; *-dimensional Hausdorff measure on (K, d) with m(K) = 1.
In the case p = 2, the strict inequality dy, 2 > 2 has been verified for many self-similar sets,
which implies a number of anomalous features of the diffusion associated with (&, Fa).
See [Kaj23] and the references therein for further details. Compared with the case p = 2,
a class of self-similar sets where d,, > p is shown is limited to the planar generalized
Sierpinski carpets due to the lack of counterparts of many useful tools in the case p = 2
(see [Shi24, Theorem 2.27]). As an application of the differentiability in (1.8), in Section 9,
we will extend this result to any generalized Sierpinski carpet by following the argument
in [Kaj23]. We also prove dy, > p for any D-dimensional level-/ Sierpinski gasket, where
the argument in [Kaj23] does not work.

We would also like to mention a geometric role of o, appearing in (1.12). As done
in [Kig20, Kig23|, the constant o, is determined by seeking the behavior of conductance
constants (see [Kig23, Definition 2.17|) on approximating graphs of K. (See Theorem
8.12 for details.) A remarkable fact is that the behavior of ¢, as a function in p is deeply
related to the notion of Ahlfors regular conformal dimension; indeed, o, > 1 if and only if
p > dimagc(K) (see, e.g., [Kig20, Theorem 4.7.6]), where dimagrc(K) denotes the Ahlfors
regular conformal dimension of K (see Definition 8.5-(4) for the definition of dimagrc(K)).
Therefore, knowing properties of the function p — o), is very important to understand the
Ahlfors regular conformal dimension and related geometric information. Nevertheless, we
do not know anything other than the following:
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Figure 1.2: From the left, a non-planar generalized Sierpinski carpet (Menger Sponge)
and 2-dimensional level-I Sierpinski gaskets (I = 2,3,4)

(Continuity; [Kig20, Proposition 4.7.5]) o, is continuous in p.

(Simple monotonicity; [Kig20, Proposition 4.7.5]) o, is non-decreasing in p.
(Holder-type monotonicity; [Kig20, Lemma 4.7.4]) dy ,/p is non-increasing in p.
(Relation with dimagc; [Kig20, Theorem 4.7.6]) o, > 1 if and only if p > dimagrc(K).
As another application of our theory of p-resistance forms, we present the following new
monotonicity behavior on o, (in a suitable general setting including all of the self-similar
sets in Figure 1.2):

(dimagrc(K),00) 2 p — a;/(pfl) € (0,00) is non-decreasing in p, (1.13)
are also important to deepen our

which is good evidence that properties of p —» J;/ (=1
understanding of (€, F,) and, possibly, of dimarc(K).

Let us conclude the introduction by clarifying a difference between our theory and
some related literatures [BBR24, Kuw24|, where p-energy forms based on a (strongly local
regular) symmetric Dirichlet form are considered. In the settings of [BBR24, Kuw?24],
the associated p-energy measure I',(u) can be explicitly defined by using the “density”
corresponding to |Vu| without depending on p (see Example 4.2-(3)) whereas it is almost
impossible to find a priori such a density on fractals. (We can naturally define p-energy
measures by using (1.12). See Section 5 for details. See also [I{S.a| for p-energy measure
associated with Korevaar—Schoen p-energy forms.) In [KS.c|, the authors will show that
I',(u,) and I'y(u,) are mutually singular with respect to each other for any p,q € (1, c0)
with p # ¢ and any (u,,u,) € F, x F, for some post-critically finite self-similar sets by
establishing the strict version of (1.13). This phenomenon on the singularity of energy
measures never happens in the settings of [BBR24, Kuw?24|. This point also motivates us
to develop a general theory of p-energy forms in an abstract setting in order to deal with
fractals.

This paper is organized as follows. In Section 2, we collect basic results on the gen-
eralized p-contraction property. In Section 3, we prove the differentiability (in Theorem
1.3) for p-energy forms satisfying p-Clarkson’s inequality. Moreover, we will see that the
(Fréchet) derivative in (1.8) gives a homeomorphism between F,/E,*(0) and its dual. We
also discuss regular and local properties of p-energy forms there. In Section 4, under the
existence of p-energy measures, we discuss fundamental properties of them (Theorem 1.4
for example). We also formulate a chain rule for p-energy measures and observe some con-
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sequence of it. In Section 5, we give standard notations on self-similar structures, discuss
the self-similarity of p-energy forms and see that we can associate self-similar p-energy
measures to a given self-similar p-energy form. Section 6 is devoted to the study of fun-
damental nonlinear potential theory for p-resistance forms, most of which are mentioned
in the introduction (see Theorems 1.6, 1.9, 1.10, Proposition 1.8, (1.10) and (1.11)). We
further investigate the theory of p-resistance forms in the self-similar case in Section 7.
In particular, we establish a Poincaré-type inequality in terms of self-similar p-energy
measures under some geometric assumptions on the p-resistance metric. In Section 8, the
generalized p-contraction property is verified for p-energy/p-resistance forms constructed
in [Kig23, CGQ22]. More precisely, in Subsections 8.1 and 8.2, we recall the notion of
p-conductively homogeneous compact metric space and the construction of (£,, F,) due
to [Kig23]. In Subsection 8.3, we focus our attempt on post-critically finite self-similar
structures and show that eigenforms constructed in [CG(Q)22| turn out to be p-resistance
forms. In Subsection 8.4, we review a sufficient condition for the existence of eigenforms
on affine nested fractals. In Section 9, we prove dy , > p for generalized Sierpiriski carpets
and D-dimensional level-l Sierpinski gasket by using properties of p-harmonic functions
developed in Section 6.

Notation. Throughout this paper, we use the following notation and conventions.

(1) For [0, co]-valued quantities A and B, we write A < B to mean that there exists an
implicit constant C' € (0, 00) depending on some unimportant parameters such that
A< CB. We write A< Bif A< Band B < A.

(2) For a set A, we let #4 € NU {0, 00} denote the cardinality of A.

(3) We set sup @) := 0 and inf () := co. We write a Vb := max{a,b}, a Ab:= min{a, b} and
at :=aVO0for a,b € [—00, 0], and we use the same notation also for [—oo, oo]-valued
functions and equivalence classes of them. All numerical functions in this paper are
assumed to be [—00, oo]-valued.

(4) Let n € N. For # = (z)j_; € R", we set [|zflp = ||zl = (Xp_;|zel?)"/? for
p € (0,00), [zl = [zl = maxicpen 2| and [lz]| == [[z[|,.. For &: R" — R
which is differentiable on R™ and for k € {1,...,n}, its first-order partial derivative in

the k-th coordinate is denoted by 0, ® and its gradient is denoted by V& = (0, P)7_,.
(5) Let X be a non-empty set. We define idy: X — X by idx(z) ==z, 14, = 15 € R¥

1 iteeA
X () — ; — —
for A C X by 1a(x) = 15(z) = 0 g A and set [lully,, = [lulypx =
sup,ex [u(r)| for u: X — [—00,00]. Also, set oscx[u] = sup, ,cx |u(z) — u(y)| for

u: X — R with |ully,, < oo.

(6) Let X be a topological space. The Borel o-algebra of X is denoted by B(X), the
closure of A C X in X by ZX, and we say that A C X is relatively compact in
X if and only if A% s compact. We set C(X) = {u € RX | u is continuous},
suppy|u] = X\u—l(O)X for u € C(X), Cp(X) = {u € C(X) | ||ull,,, < oo}, and
Ce(X) ={u € C(X) | suppx[u] is compact}.

(7) Let X be a topological space having a countable open base. For a Borel measure m

sup
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on X and a Borel measurable function f: X — [—00, 00] or an m-equivalence class f
of such functions, we let supp,,[f] denote the support of the measure |f| dm, that is,
the smallest closed subset F' of X such that [ x\p || dm=0.

(8) Let (X,d) be a metric space. We set By(z,r) = {y € X | d(z,y) < r} for (z,7) €
X x (0,00) and distq(A, B) == inf{d(z,y) | * € A,y € B} for subsets A, B of X.

(9) Let (X,B,m) be a measure space. We set f, fdm = ﬁ J4 fdm for f e L'Y(X,m)
and A € B with m(A4) € (0,00), and set m|4 = m|g, for A € B, where B|, =
{BNA|Be B}

2 The generalized p-contraction property

In this section, we will introduce the generalized p-contraction property and establish
basic results on these properties. Throughout this section, we fix p € (1,00), a measure
space (X, B, m), a linear subspace F of LY(X,m) = L°(X, B, m), where

L°(X, B, m) := {the m-equivalence class of f | f: X — R, f is B-measurable},

and a p-homogeneous map &: F — [0,00), i.e., E(au) = |al’ E(u) for any (a,u) € R x F.
(The pair (B, m) is arbitrary. In the case where B = 2% and m is the counting measure
on X, we have L°(X, B,m) = RX.)

Definition 2.1 (Generalized p-contraction property). The pair (€, F) is said to satisfy
the generalized p-contraction property, (GC), for short, if and only if the following hold:
if ny,ne €N, ¢4 € (0,p], @2 € [p,o0] and T' = (T, ..., T,,): R™ — R™ satisfy

T(0)=0 and [[T(x) = TWlw <z =yl forany z,y e R™,  (2.1)
then for any u = (uy, ..., uy,, ) € F™ we have
Tlw € P and [|E@@NE | < 1E) - (©O),

The next proposition is a collection of useful inequalities included in (GC),.

Proposition 2.2. Let ¢ € C(R) satisfy ©(0) = 0 and |p(t) — o(s)] < |t — s| for any
s,t € R. Suppose that (€, F) satisfies (GC),,.

(a) T(z,y) =x+vy, v,y € R, satisfies (2.1) with (q1,q2,n1,n2) = (1,p,2,1). In partic-
ular, £V is a seminorm on F, and & is strictly convex on F/E71(0), i.e., for any
A€ (0,1), any f,g € F with E(f) NE(g) >0 and f — g & E71(0),

EAf+(1=XNg) <XE(f)+ (1 —=NE(g). (2.2)
(b) T := ¢ satisfies (2.1) with (q1,q2,n1,n2) = (1,p,1,1). In particular,

o(u) € F and E(p(u)) < E(u) for any u € F. (2.3)
4Note that p o f € LP(X,m) for any f € LP(X,m) by this condition.
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(c) Assume that ¢ is non-decreasing. Define T = (Ty,Ty): R? — R? by
Ti(zy,19) = 11 — (21 — 32)  and Ty(xy,29) = 20 + ©(z1 — 22), (71, 22) € R
Then T satisfies (2.1) with (g1, q2,n1,n2) = (p,p,2,2). In particular,

E(f—o(f—9)+E(g+o(f—9) <Ef)+E(g) forany f,ge F.  (24)

Moreover, by considering the case p(x) = x V0, we have the following strong subad-
ditivity: f Vg, fANge F and

E(fVg)+E(fNg) <Ef)+E(9) (2.5)
(d) For any ay,as > 0, define T2 : R? — R by
T (z1,29) = ([(—a1) Va3 '] Aar) - ([(—a2) Vay'es] Aas), (z1,22) € R%

Then T2 satisfies (2.1) with (q1,q2,n1,m2) = (1,p,2,1). In particular, for any
f,g€ FNL>®(X,m) we have

frg€F and E(f-9)'"" < gl i EDVP A 1l i @)V (26)
(e) Assume that p € (1,2]. Define T = (Ty,Ty): R* — R? by
Tl(l’l, 1'2) = 27(p71)/p<w1 +3§'2) and TQ(]?l,fEQ) = 2*(p*1)/p(x1—x2), (33'1, xg) € Rz.

Then T satisfies (2.1) with (q1,q2,n1,n2) = (p/(p —1),p,2,2). In particular, (€, F)
satisfies the following p-Clarkson’s inequalities:

E(f+9)+E(f —g) = 2(E(f)VPV + g(g)/ D),
E(f+9)+E(f—g) <2(E(f) +£(9)).

(f)  Assume that p € [2,00). Define T = (Ty,Ty): R* — R? by

> 2
<2

Ti(x1,29) = 2_1/p(x1 + 1) and Ty(xy,x9) = 2_1/p(:v1 —3), (x1,29) € R2.

Then T satisfies (2.1) with (q1,q2,n1,n2) = (p,p/(p — 1),2,2). In particular, (€, F)
satisfies the following p-Clarkson’s inequalities:

E(f+9)+E(f —g) S2(EF)VP Y+ g(g) D), (2.9)
E(f+9)+E(f—g) =2(E(f) +E(9)). (2.10)

Remark 2.3. (1) The property (2.4) is inspired by the nonlinear Dirichlet form theory
due to Cipriani and Grillo [CGO03]. See [Cla23, Theorem 4.7] and the reference therein
for further background.

(2) By using an elementary inequality 2¢71(a? + 09) < (a + b)? for ¢ € (0,1] and a,b €
[0,00), we easily see that the inequality (2.7) for (£, F) in the case p € (1, 2] implies
(2.8). Similarly, by Holder’s inequality, the inequality (2.9) for (£, F) in the case
p € [2,00) implies (2.10).

<2
> 2
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Proof. (a): It is obvious that T'(z, y) := x+y satisfies (2.1) with (q1, g2, n1,n2) = (1,p,2,1)
and hence the triangle inequality for £/7 holds. Since (0,00) 3 2 + 2? is strictly convex,

for any A € (0,1) and any f,g € F with E(f) AE(G) NE(f —g) > 0,
EA+(1=N)g) < ANV + (1= NEQ)P)" < AE(f) + (1 = NE(g),

where we used the triangle inequality for £/7 in the first inequality.

(b): This is obvious.

(c): Let x = (z1,72),y = (y1,%2) € R% For simplicity, set z; == z; — y; and A =
o1 = 22) — $(y1 — ). Then | T(z) = T(y)l < 1 — yll» ie cquivalent to

|21 = AP + |22 + A" < 2] + |2, (2.11)

so we will show (2.11). Note that |A| < |z; — 2| since ¢ is 1-Lipschitz. The desired
estimate (2.11) is evident when z; = 25, so we consider the case z; # zo. Suppose that
21 > z3 because the remaining case z; < 2 is similar. Then (21 —22) — (11 —y2) = 21— 22 >
0 and thus 0 < A < 21 — 2. Set ¢, (t) = [t|” (t € R) for brevity. If 0 < A < %722 then
29 < zg+ A<z — A <z and we see that

21

zg—i—A
M—AV+M+AP—MP—%P=/ wwd— [ wwd

29 z1—A

< AP (22 + A) — (21 — A)) 0.
If A> 252 then 2 <21 — A < 2+ A < 2 and thus

21

z1—A
21— AP + |2 + AP — |2 — |2 :/ witydi— | () de

z2 zo+A
which proves (2.11). The case p(z) = 21 immediately implies (2.5).
(d): For any ay,as > 0 and (21, z2), (y1, y2) € R?, we see that
’Tal’aQ (.’L’l, l’g) — T*,92 (.1'1, 1'2)'
< |(—a1) Vaytr A al‘ ‘( —ag) V al_lxg A az) — ((—(12) Vaitys A a2)|
+ ’ —ag) V a; yg/\a2| | —a1) Vay' 'z Aay) — ((—a1) Vay'y /\al)’

§a1‘a1 Ty —ay y2]+a2‘a2 Ty — ay yl‘ = |21 = yi| + |z2 — 1|,

whence T2 satisfies (2.1). We get (2.6) by applying (GC), with ur = ||gl joc(xm) [

Uz = Hf”Loo(X,m)ga ar = “fHLOO(X,m)? az = HgHLOO(X,m)'
(e),(f): These statements follow from p-Clarkson’s inequalities for the ¢P-norm (see,
e.g., [Cla36, Theorem 2|). O

The following corollary is easily implied by Proposition 2.2-(b),(d).
Corollary 2.4. Assume that (€, F) satisfies (GC),.
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(a) Letu e FNL>®(X,m) and let ® € C'(R) satisfy ®(0) = 0. Then
d(u) € F and E(P(u)) <sup{|P'()[" |t R, t] < ||u||LOO(X7m)}5(u). (2.12)

(b) Letd, M € (0,00) and let f,g € F satisfy f >0, g >0, f <M and (f+9)|{s20y > 0.
Then there ezists C' € (0,00) depending only on p,d, M such that

LE]—“ and g(ffg

f+g )SC(f(f)Jré’(g)). (2.13)
(c) Letn e N,veF andu = (uy,...,u,) € L°(X,m)". If there exist q € [1,p| a
m-versions of v,u such that |v(z)| < ||u(z)]|, and |v( ) —o(y)| < |lulz) — uly )”eq

for any z,y € X, then w € F" and E(v) < H( )k 1ng

Proof. The statement (a) is immediate from Proposition 2.2-(b).

(b): We follow [MS23 1, Proposition 6.25 (ii)]. Let ¢ € C(R) be a Lipschitz map such
that p(z) = 27! for z > § and sup:E#yeR le@ =Wl < ¢ for some constant ¢’ depending

lz—y
only on . Since f-o(f +g) = f+g’ we get (2.13) by using (2.3) and (2.6).

(c): The proof below is similar to [MR, Corollary 1.4.13]. Fix m-versions of v, u
satisfying |v(z)| < ||lu(z)]|,, and |v(z) —v(y)| < |Ju(z) — u(y)||, for any =,y € X. Set
u(X) = u1(X) x -+ x up(X) € R*. We define Ty: u(X) — R by setting 75(0) == 0
and Ty(z) = v(z) for each z € u(X), where z € X satisfies z = wu(z). This map
To is well-defined since v(z) = 0 for any x € X with w(xz) = 0 and |v(z) —v(y)| <
|w(z) —u(y)||,, = 0 for any z,y € X with u(z) = u(y) € uw(X). In addition, we easily
see that |Tp(z1) — To(22)| < [|21 — 22|, for any 21,20 € u(X) U {0}, ie., Tp: (w(X)U
{0},1/-1l,e) = R is 1-Lipschitz. Noting that (R",||-||,,) is a metric space since ¢ > 1,
we can get a 1-Lipschitz map T: (R™,||-||,,) — R satisfying 7'(z) = To(2) for any z €
u(X)U{0} by applying the McShane-Whitney extension lemma (see, e.g., [HKST, p. 99]).
Since T satisfies (2.1) with (q1, g2, 71, n2) = (¢, p,n, 1) and E(T(u)) = E(v), we obtain the
desired statement by (GC),. O

We also notice that (GC), includes a new variant of p-Clarkson’s inequality in the case
p € [2,00), which we call improved p-Clarkson’s inequality. This result is not used in the
paper, but we record it for potential future applications.

Proposition 2.5 (Improved p-Clarkson’s inequality). Define ¢,: (0,00) — (0,00) and
Ts = (T%,T5): R 5 R? s € (0,00), by

Po(s) = (14 s)P L +sgn(l —s)[1—s"", s>0. (2.14)
(a) Assume that p € (1,2]. For s € (0,00), define T = (T}, Ts): R* = R? by
TE(y, m9) =27 Mhy ()P (wy + 20),  Ti(wy, 20) =272, (s )P (2 — ).

Then T* satisfies (2.1) with (q1,q2,n1,12) = (p,p,2,2) for any s € (0,00). If (€, F)
satisfies (GC),, then

ililg{¢p(8)g(f) T (s NEWQ )} <Ef+9)+E(f—g) forany f,ge F. (2.15)
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(b) Ifpe (1,2] and & satisfies (2.15), then p-Clarkson’s inequality, (2.7), for € holds.
(c) Assume that p € [2,00). For s € (0,00), define T® = (T, T5): R* — R? by
TP (21, 22) 1= p(s) ™ Partap(s7h) ™ Pan, T3 (@, @) = Wy(s) a1 =y (s™) 7P,

Then T* satisfies (2.1) with (q1,q2,n1,m2) = (p,p,2,2) for any s € (0,00). If p €
2,00) and (€, F) satisfies (GC),, then

E(f+9) +E(f —g) <f{G()E(f) +p(s7)E(9)}  for any f,g € F. (2.16)
(d) If & satisfies (2.16), then p-Clarkson’s inequality, (2.9), for € holds.

Proof. We first recall a key result from [BCLI4, Lemma 4]: for any z,y € R,

p -1 p if 2
|x+y|p+ |x_y|p: {Sup8>0{¢)p |x| +1/}P< )|y| } 1 pe[ 7OO>7 (217>

infoso{wy(s) [2|” +p(s™) [y['} i p € [2,00).
(a): By considering z+y, x—y in (2.17) instead of x, y, we have that for any s € (0, 00),
277¢y(s) v+ yl’ + 277y (s71) o — yl” < J2l” + [yl”,

which means that 7 satisfies (2.1) with (¢, g2, n1,12) = (p, p,2,2). Since s € (0, 00) is
arbitrary, we obtain (2.15).

(b): Let f,g € F with E(f)AE(g) > 0, set a = E(f)YPV and b := (g )1/7’ . Then,

sup{d(s)€(f) + ¥u(s™)E(9)} = Wp(b/a)a”™" + vp(a/b)VP ™" = 2(a +b)""
>0
which together with (2.15) yields (2.7).

(c): For any s € (0,00), we immediately see from (2.17) that 7" satisfies (2.1). Since
s € (0,00) is arbitrary, we obtain (2.16).

(d): Let f,g € F with E(f)AE(g) > 0, set a = E(f)Y/®V and b := £(g)"/P~Y. Then,

inf{op()E(F) + vn(s)E(9)} < ¥p(b/a)a”" + y(a/bVP™" = 2(a+ )",
which together with (2.16) yields (2.9). O

The property (GC), is stable under taking “limits” and some algebraic operations like
summations. To state precise results, we recall the following definition on convergences
of functionals.

Definition 2.6 (|Dal, Definition 4.1 and Proposition 8.1]). Let X’ be a topological space,
let F: X - RU{+o0} and let {F,,: X - RU {£00}}nen.

(1) The sequence {F}, }nen is said to converge pointwise to F'if and only if lim,, . Fy,(z) =
F(z) for any z € X.
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(2) Suppose that X is a first-countable topological space. The sequence {F},},en is said
to I-converge to F' (with respect to the topology of X') if and only if the following
conditions hold for any x € X

(i) Ifz, — zin X, then F(x) <liminf, ,. F,(x,).
(i) There exists a sequence {x, }nen in X such that

T, > xin X and limsup F,(z,) < F(z). (2.18)

n—o0

A sequence {z, }nen satisfying (2.18) is called a recovery sequence of {F,}nen at .

We also need the following reverse Minkowski inequality (see, e.g., |[AF, Theorem
2.12)).

Proposition 2.7 (Reverse Minkowski inequality). Let (Y, A, 1) be a measure space® and
let r € (0,1]. Then for any A-measurable functions f,g: Y — [0, o],

(/Y I du) " + (/Y g9 du) " < (/Y(fﬂLg)rdu) W. (2.19)

In the following definition, we introduce the set of p-homogeneous functional on F
which satisfies (GC),.

Definition 2.8. Recall that F is a linear subspace of L°(X,m). Define
US(F) =USC = {&': F —[0,00) | £ is p-homogeneous, (£', F) satisfies (GC),}.

Now we can state the desired stability of (GC),,.

Proposition 2.9. (a) a;EW + a,€®? ¢ USC for any EW @) ¢ USC and any ay,ay €
[0, 00).

(b) Let {&M € L{fc}neN and let £): F — [0,00). If {E™},en converges pointwise to
E®) then £ ¢ Z/lpGC.

(c¢) Suppose that F C LP(X,m) and let us regard F as a topological space equipped
with the topology of LP(X,m). Let {E™ € USC}nEN and let £°): F — [0,00). If
{E€M}nen T-converges to £, then £ € USC.

Proof. The statement (b) is trivial, so we will show (a) and (c¢). Throughout this proof,
we fix ny,ny € N, ¢ € (0,p], g2 € [p,oo] and T = (T1,...,Ty,): R™ — R"™ satisfying
(2.1).

(a): Let £W €@ ¢ USC. Then afW ¢ USC is evident for any a € [0,00). Set
E(f) = ED(f) +ED(f), f € F, and let w = (uy,...,u,,) € F™. It suffices to prove

°In the book [AF], the reverse Minkowski inequality is stated and proved only for the L"-space over
non-empty open subsets of the Euclidean space equipped with the Lebesgue measure, but the same proof
works for any measure space.
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| (E(T; 1/P " Hm < |[(E(ux) 1/p) ||£q1 For simplicity, we consider the case go < 0.
(The case q2 oo is similar.) Then we have

Z E(Tl(u»%/p

n2

92/p
=3 [e0 (Ti(w) + €2 (Ti(w)) |
I=1
o /a2 q2/p
< Z [Z g (Tl(u))qZ/p] (by the triangle ineq. for ||| e/»)
ie{1,2} Li=
(GO, Pl T m plar) /7
< Zg (ur) ql/p 25(2)(uk)q1/p
k=1
2.5 2/q1
(2.19) ™ a/p\ P ny q
< (Z [5<l><uk) + 5(2)(uk)] ) = (Z E(uk)‘“/p> , (2.20)
k=1 k=1
which implies E € Z/{,pGC.
(c): Letw = (uq, ..., uy, ) € F™ and choose a recovery sequence {u,, = (U, ..., Un, n) €
F"}nen of {EM}en at u. We first show tnat ||Tj(u) — Ti(wn) |l po(x my — 0 s n — oo,
Indeed, for any v = (v1,...,v,,) and any z = (21, ..., 2z,,) € LP(X,m)™, we see that

s [5(0) = T < [ o) = 2@l mido

/(Zm - ale >/ m(da)

< i/ Z 1ok = 261170 (x m) - (2.21)
k=1

where we used Holder’s inequality in the last line. Since maxy [[ux — trnl| o,y — 0 a8
n — 00, (2.21) implies the desired convergence [|Ti(w) — Ti(wn)|| 1o (x m) = O-

Now we prove (GC), for the D-limit £ of {£(M},,cy (with respect to the LP(X,m)-
topology). It is easy to see that £(°) is p-homogeneous (see, e.g., [Dal, Proposition 11.6]).
We suppose that ¢, < oo since the case go = oo is similar. Then,

ZE(OO)( qz/p < th inf £ (Ty(w ))qQ/p < lim mfzg(" n))qz/p
=1

n—0o0 n—oo

P, ‘ZQ p 92

< hgr_l)gf (Zg (us, )‘h/P) (Zg o q1/p> :

k=1

which proves £() L{EC. n
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3 Differentiability of p-energy forms and related results

In this section, we show the existence of the derivative (1.8) for any p-energy form satisfy-
ing p-Clarkson’s inequality, (2.7) or (2.9). As an application of our differentiability result,
we will introduce a ‘two-variable’” version of a p-energy form and observe its fundamental
properties.

Throughout this section, we fix p € (1,00), a measure space (X, B, m), and a p-energy
form (€, F) on (X, m) in the following sense:

Definition 3.1 (p-Energy form). Let F be a linear subspace of L°(X,m) and let £: F —
[0,00). The pair (£, F) is said to be a p-energy form on (X, m) if £Y/? is a seminorm on

F.

Note that the same argument as in the proof of Proposition 2.2-(a) implies that £ is
strictly convex on F/E71(0) (see (2.2)).

3.1 p-Clarkson’s inequality and differentiability

In this section, we mainly deal with p-energy forms satisfying p-Clarkson’s inequality in
the following sense.

Definition 3.2 (p-Clarkson’s inequality). The pair (€, F) is said to satisfy p-Clarkson’s
inequality, (Cla), for short, if and only if for any f,g € F,

{eu +9) /0 E(f = g0 < 2(8(f) +E0) T ifpe (12

E(f+9)+E(f —g) S2(EF)VPD 4 E(g)V-0) if p € 2, 00).

To state a consequence of (Cla), on the convexity of £Y/P, let us recall the notion
of uniform convexity. See, e.g., [Cla36, Definition 1]. (The notion of uniform convexity
is usually defined for a Banach space in the literature. We present the definition for
seminormed space because we are mainly interested in (F,£Y/P).)

Definition 3.3 (Uniformly convex seminormed spaces). Let (X, |-|) be a seminormed
space. We say that (X, |-]) is uniformly conver if and only if for any € > 0 there exists
d > 0 with the property that |f + g| < 2(1 — §) whenever f,g € X satisfy |f| = |g| = 1
and |f —g| > e.

It is well known that (Cla), implies the uniform convexity as follows.

Proposition 3.4. Assume that (€, F) satisfies (Cla),. Then (F,EYP) is uniformly con-
vex.

Proof. The same argument as in [Cla36, Proof of Corollary of Theorem 2| works. O

Moreover, (Cla), provides us the following quantitative estimate for the central differ-
ence, which plays a central role in this section.
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Proposition 3.5. Assume that (€, F) satisfies (Cla),. Then, for any f,g € F,

) el ) -2 < 2 el
’ ’ S 2e- D[ ] e ifpe (2.00)
(3.1)
In particular, R > t — E(f + tg) € [0,00) is differentiable and for any s € R,
. E(f+(s+0)g) —E(f+sg) d B
lggl geJ-'S;g(I;)gl 5 — Eg(f +tg) e 0. (3.2)

Proof. The desired inequality (3.1) in the case p € (1,2] is immediate from (2.8), so we
suppose that p € (2,00). Let f,g € F, set a == E(f)Y®~D and b := £(g)"/®=V. Then we
have (3.1) since (Cla), implies that

E(f+9)+E(f—g)—2E(f) < 2((a+b)p’1—ap’1) =2(p—1) /a+ sP72ds < 2(p—1)(a+b)P~?b.

Next we show that for any ¢ € R,

i E(f+{t+08)g) +E(f+ (t—0d)g) —28(f +tg)
1m sup
310 geF;&(g)<1 0

=0, (3.3)

Let t € R, 0 € (0,00) and set

Dis(f;9) =E(f+ (t+0)g) +E(f + (t = d)g) —2E(f +tg). (3.4)
By (3.1), we have

20PE(g) if p e (1,2],
D,s(f;9) < 1) B 1 P2 1 .
2p = DI/ E(f +19)7T +E(0g)7T | (9T ifp e (2,00).
Hence we get
Dutria) _ [2 | ireas,
su L b L 1p—
e 0 2p ~ DOV (£ + 1) 7T 47| itp e (2.00),
(3.5)
which implies
limsup sup Dis(fi9) <0. (3.6)

510 geFgl<t O T

Since &£ is convex on F, we know that the limits

hmé’(f+(t+5)g) —E&fttg) hmé’(f+ (t—20)g) —E(f +tg)

50 1) 510 —0
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exist and

Dy s(f; & t+6 £ t—29)g) —2& t

lfi0) _EU+a+0)g) EUH0=0) 2 +t9)
J J

By combining (3.6) and (3.7), we obtain (3.3) and the differentiability of ¢t — E(f + tg).

From the convexity of t — E(f + tg) again, we have

d)g) — d Dgs(f;
sup E(f+(s+0)g) —E(f +s9) Letrrtg] < sup s,a(f,g)7
geF;:E(9)<1 0 dt t=s geF;:€(9)<1 0
which together with (3.6) implies (3.2). O

Proposition 3.5, especially (3.2), implies the Fréchet differentiability of £ on F/E71(0).
We record this fact and basic properties of these derivatives in the following theorem.

Theorem 3.6. Assume that (€, F) satisfies (Cla),. Then £: F/E71(0) — [0,00) is
Fréchet differentiable on the quotient normed space F/E7Y(0). In particular, for any
f9€eF,

1
the derivative E(f;g) = — ig(f +tg)| €R exists, (3.8)
p dt o
the map E(f;-): F — R is linear, E(f; f) = E(f) and E(f;h) = 0 for h € £71(0).
Moreover, for any f, fi1, f2, 9 € F and any a € R, the following hold:

R >t E(f +tg;g) € R is strictly increasing if and only if g & £*(0). (3.9)
E(afig) =sen(a) [l E(f19), E(f+hig)=E(fr9) forhe€T(0).  (3.10)

E(f;9)] < E(NPVPE(g) P, (3.11)
E(fii9) = E(fai9)| < CoERVE(R) " PE(fy = fo) €)Y, (3.12)

where oy, = 1% A ’%1 and some constant C,, € (0,00) determined solely and explicitly by p.

Remark 3.7. It seems that the Hélder continuity exponent o, appearing in (3.12) is
not optimal because this exponent can be improved to (p — 1) A 1 in the case E(f;g) =
i 2 (Vf,Vg)dz. However, such an improved continuity is unclear even for con-
crete p-energy forms constructed in the previous works [CGQ)22, Kig23, MS23-+, Shi24].
We can see the desired continuity ((3.12) with (p — 1) A 1 in place of «,) for p-energy
forms constructed in [KKS.a], where a direct construction of p-energy forms based on the
Korevaar—Schoen type p-energy forms is presented.

Proof. The existence of £(f;g) in (3.8) is already proved in Proposition 3.5. The proper-
ties £(f;ag) = a€(f;9), E(af;g) = sen(a) [a|”™" E(f;g) and E(f; f) = E(f) are obvious
from the definition. The equalities E(f + h;g) = E(f + g) and E(f;h) = 0 for any
h € £71(0) follow from the triangle inequality for £'/7, so (3.10) holds. The property
(3.9) is a consequence of the strict convexity of £ (see (2.2)) and the differentiability in
(3.8).
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To show that E(f; ) is linear, it suffices to prove E(f; 91 + g2) = E(f;01) + E(f; 92)
for any ¢1,9. € F. For any t > 0, the convexity of £ implies that
E(f +tlgr +g2) —E()  EGU +2tgr) + 5(f +2tga)) — E(S)

t t
E(f +2g) —E(f) | E(f +2192) — E())
- 2t 2t '

E(f;q1) + E(f;92). We obtain the

(3.13)

Passing to the limit as ¢ | 0, we get E(f;91 + ¢2) <
converse inequality by noting that

g(f_tg)_g(f)%_ig(f_*_tg) =—pE(f;g9) astlO,
t dt t=0

and by applying (3.13) with —g;, —gs in place of gy, g» respectively.
The Holder-type estimate (3.11) follows from the following elementary estimate:

aVvb
la? — b7 = / qt?! dt‘ < q(a” ' v a—b| for g€ (0,00), a,b € [0,00). (3.14)

Ab

Indeed, by (3.14) and the triangle inequality for £/7, for any t > 0,

'5(f thgt) - 5(f>‘ < p(c‘:(f 4 tg)l/p Vi g(f)l/p)p—lg(g)l/z?' (3.15)

We obtain (3.11) by letting ¢ | 0 in (3.15). We conclude that E(f; -) is the Fréchet
derivative of £ at f by (3.2), the linearity of £(f; -) and (3.11).

In the rest of this proof, we prove (3.12). Our proof is partially inspired by an argument
by Smulian in [Smu40]. In this proof, Cy;, i € {1,...,5}, is a constant depending only
on p. We first show an analogue of (3.1) for £/7. Using (3.14), we can show that there
exists ¢, € (0,277") depending only on p such that

Sup{‘g(f)—g(f+59)| f,9,€ F,8 € (0,00) such that} 1

E(f) 0<d<cl(f)V? and E(g) = ST (3.16)

Let 1(t) == |t|'* and fix g € F with £(g) = 1. Then there exist 6,65, 0 € [0,1] such that

0 <Y(E(f +dg)) +v(E(f —dg)) —2¢(E(f))

= (Aig) [E(f +69) — E(F)] — o' <A25)[ (f) —E(f = d9)]

V'(A1(6))Ds(f; 9) — (V' (Avrs) — ¥/ (A20)) [E(f) — E(f — b9)]

W' (A1) Ds(f19) — " (Ars + 0 Az 0 — A1) (Ags — A1) [E(f) — E(f — 69)], (3.17)

where Ds(f;g) = Dso(f;g) is the same as in (3.4) and

A =E(f) + 0 [E(f +09) = E(f)],  Ass = E(f —dg) + 0:[E(f) — E(f — dg)].
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By (3.16), we note that |4y 5| A[A1s + 0(Ass — A1) > 3E(f), which together with (3.17)
and (3.1) implies that for any (4, f) € (0,00) x F with 0 < § < c,.&(f)"?,

0 < V(ES +09) + H(E(S — dg)) — 20(E(N)
< a8 I e g )

< Cpyd - 5PN (g(f) =l 5(f)%*2+@>,
In particular, if £(f) = 1, then
E(f+09)/P + E(f —6g) /P <24 Cpr6P DNEDT'5 forany 6 € (0,¢,).  (3.18)
Next let fy, f» € F. Then, by (3.11) and (3.14),
E(f2; f1) = EDI < [E(f2; ) = E(f)| + [E(f2) = ECA)]
< (g(f2)(p—1)/p +p(g(f2)(P—1)/p Vv g(fl)(p—l)/p>>g(fl AN
<C,y <g(f1)(p—1)/p v g(f2)<p—1>/p>g(f1 AT (3.19)
Now, for any f1, fo, g € F with E(f;) = E(g) = 1 and 6 € (0, ¢,) we see that

E(fr;09) — E(fa309)
=E(fi: fr+09) +E(fo; fr — 0g) — E(fr) — E(fa; fr)

" (e E(R)IPY (£ + 000 + S~ 60)7) — £(1) — ECfus )

(3.14),(3.18)

< (14 Gl lh = R)77) (24 Cpud® M7 8) — () = E(fas ).
Similarly, we can show

E(f1;:09) — E(f2;09)
= —=E(fi; /1 = dg) = E(f2; f1 +09) + E(f1) +5(f2;f1)

— (14 Cpaf (i = )'77) (24 Coud® D07 8) 4 £(£1) + E(fo: o)
From these estimates, we have

£ g) — E(frg)] = V10D~ E2i00)

< (14 Cpallfy = f2)M7) (2071 4 G M) = 18 () — 67 E(fos i)
= (1+Cpallfi— f)77) (207 + Op,l(s@*”“p*””) =207 E(f) + 7 ES) — Ef 1)
(3.19)

< (1 +CosE(fi — f2)1/”> (25 + (1 5P=DAE ) 2071 4 Cpod LE(f1 — fo)VP
< Cpa (ﬂp_lwp_l)il +0E(fi = fo) /p>'
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IfE(fL — fa) < c;p2/((p71)w), then, by choosing & = £(f; — fo)(@"DVD/?* we obtain
1E(f159) — E(f259)] < CpsE(f1 — f2)((p71)/\1)/p2- (3.20)

The same is clearly true if E(f; — fo) > 2”@ since E(f,) < 21 (1+E(fr — o).
Finally, for any fi, fo,g € F with £(f1) A E(g) > 0, we have

5(6(%?)1@; 5(g~")1/p) - 5((«;(]{2)1/@ s<gg>1/p) '

(3.20) f f ((p—1)A1)/
< p=1)/p 1/p 1 2

ot (50608 s~ 7
(3.20)

< Cos(E(R) VES) T T E () PE(fy — fo) .

The same estimate is clearly true if £(fy) A E(g) > 0. Since (3.12) is obvious when
g€ EY0) or £(f1) VE(f2) =0, we obtain (3.12). O

IE(Fisg) — E(fo; 9)| = E(f1)P~D/Pg(g)V/P

The following theorem gives a quantitative continuity for the inverse map of f —

E(fs ).
Theorem 3.8. Assume that (€, F) satisfies (Cla),. Then for any f,g € F,

E(f-9) < Cy|(E(N)VE(g) v (e<f>v5<g>)a%}( sup |5(f;90)—5(9;90)|>, (3.21)

PEFE(p)<1

where o/, = Ly 2@=2"

=% | and some constant C, € (0,00) determined solely and explicitly by
.

Proof. For simplicity, for any linear functional ®: F — R, we set || ®|| -, == sup,ez.ew)<1 [P(u)].
Clearly, [|®1 + @ £, < (|15, +[|P2[ £, for any linear functionals <I>1, Oy F— R Note
that |E(f; )z, = E(f)P=V/P by (3.11) for any f € F. In particular, for any f,g € F,

&7 -l

e = 1€ Iz <NEW; ) = E(gs 7.

which together with (3.14) with ¢ = (p — 1)/p implies that

E(5) = &)l < SE (ENVED M IES ) €l lr, - (32)

Let us define ¢: R — R by ¢(t) == p*&(f +t(g — f)). Then ¥ € CY(R) by (3.2) and
(3.12); indeed, (3.2) implies that ¢’ (¢ ) E(f+tlg— f);9— f), which is continuous by
(3.12). Now we see that

[W'O) = 1E(f;9 = NI < 1E(f;9) = E(g)| + [E(9) — E(F)]
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02 IECf; ) — Egs Iz, E(@VP + %(8(f)1/p\/g(g>l/p) IECF: ) — Eg: )l
(1 + %) (5(f>1/p vV S(g)l/p) ||g(f; .) _ 5(9; ')HE*'
Similarly,

W] = E(grg = f)I < (1 + ﬁ) (EWN PV E@YIES: ) = g llpe-

Since v is C'-convex, we obtain

max [¢/(8)] < (1 ; pi) (ED)PV E@) E: ) — &g .

te0,1] —1

and hence

—e(+e (L3 = 1-e) +po2) = plotay) - vl < S )

< (ENPVEWQT)IES ) =g Mz

where we put ¢, = g(l + z%)‘ Similarly,

s +£ (L50) < ol < oo v e ) e ) - €0l

Therefore, it follows that

£ (%) > (£(1)V E9) — o EDV EW D) IEF: )~ g llz.) - (3:23)

Next we derive an estimate on £(45¢) by using (Cla), and (3.23). Set a = £(f) V £(9)

for simplicity. If p € [2,00), then
— Cla)p
£ <¥> <2 (E(f)VED 4 g(g) VD) e <¥)

(3.23) +
< o (a—qa?E(f; ) = Egi )iz
< G PS5 ) = Elg; iz

In the rest of the proof, we assume that p € (1,2]. We see that

/&= (Cla 1/(p-1) 1/(p-1)
(f g) (©2)p (S(f)+5( )) _S(f—gg)

2 - 2
(3.23) +1 Y/ =1
< = (a- g e )~ £ )| (3.21)
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In the case a < c,a? |E(f; -) — E(g; - )|| £, we have

. <¥) <a< Cpal/pHg(f; ) —E(g; )H}'*

Let us consider the remaining case a > c,a'/? |E(f; -) — E(g; )%, Then we have from
(3.14) with ¢ = ﬁ that

1/(p—1)

N\ VD
P (f 2 g) _ /) _ (a —c,aP||E(f; ) — Elg; ')”}',*)

C 2-p 1
< P E ) = Elgs s

Hence we obtain the desired estimate (3.21). O

The following proposition is a kind of ‘monotonicity on values of p-Laplacian’. This
result will play important roles in Subsection 6.4 later and in the subsequent works [I{S.b,
KS.c].

Proposition 3.9. Assume that (€, F) satisfies (Cla), and the strong subadditivity (2.5).
Let uy, ug,v € F satisfy ((ug—u1)Av)(z) =0 for m-a.e. v € X. Then E(uy;v) > E(ug;v).

Proof. Let t > 0. Define f,g € F by f = uj + tv and g = uy. Then we easily see that
fVg=us+tvand fAg=us. By (2.5), we have &(uz +tv) + E(u1) < E(uy +tv) +E(us),
which implies that
E(ug +tv) — E(ug) < E(uy +tv) — E(uy)
t - t '
Letting t | 0, we get E(ug;v) < E(uy;v). O

We conclude this subsection by viewing typical examples of p-energy forms.

Example 3.10. (1) Let D € N, let X := Q C R” be a domain, let B := B(X), let m
be the D-dimensional Lebesgue measure on X and let F = W'P(Q) be the usual
(1, p)-Sobolev space on €2 (see [AF, p. 60] for example). Define E(f) = |V f[|70xm):
f € F, where the gradient operator V is regarded in the distribution sense. Then ,
by following a similar argument as in the proof of Theorem A.19, one can show that
(€, F) is a p-energy form on (X, m) satisfying (GC),. In this case, we have

E(fig) = / V@) (V). Vo(a))an dr,  fog € F,

where (-, - )gp denotes the inner product on R”.

(2) In the recent work [Kig23, MS23-+|, a p-energy form (€, F) on a compact metrizable
space with some geometric assumptions is constructed via discrete approximations.
See [HPS04, CGQ22] for constructions of p-energy forms on post-critically finite self-
similar sets. The construction in [CGQ22| can be seen as a generalization of that in
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[HPS04]. As will be seen in more detail later in Section 8, we can prove that p-energy
forms constructed in [CGQ)22, Kig23, MS23+] satisty (GC), although even (Cla), is
not mentioned in [CGQ)22, Kig23]. Furthermore, very recently, Kuwae [[KXuw24] intro-
duced a p-energy form (&7, H'?) based on a strongly local Dirichlet form (&, D(&))
on L*(X,m). It is shown that (&7, H"?) satisfies (Cla), in [Kuw24, Theorem 1.8]. We
can also verify (GC), for (€7, H'?) (see Theorem A.19) by using some good estimates
due to the bilinearity. See Appendix A for details.

(3) There are various ways to define (1,p)-Sobolev spaces in the field of ‘Analysis on
metric spaces’ (see, e.g., [HKST, Chapter 10]). In these definitions, roughly speaking,
we find a counterpart of |Vul, e.g., the minimal p-weak upper gradient g, > 0 (see,
e.g., [HKST, Chapter 6] for details), and consider a p-cnergy form (€, F) on (X, m)
given by &(u = [y ¢vdm and F = {u € LP(X,m) | g, € LP(X, m)}. Unfortunately,
this p-energy form may not satisfy (Cla), because of a lack of the linearity of u — g,
(see, e.g., [HKST, (6.3.18)]). However, in a suitable setting, we can construct a

functional which is equivalent to £ and satisfies (Cla),; see the p-energy form denoted
by (F,, W'P) in [ACD15, Theorem 40|. Moreover, we can verify (GC), for (F,, Wh?)
since (Fs, p, W?) defined in [ACD15, (7.3)] satisfies (GC), and F, is defined as a
['-limit point of F;, , as k — 0o. (See also the proof of Theorem 8.19 later.)

3.2 p-Clarkson’s inequality and approximations in p-energy forms

In this subsection, in addition to the setting specified at the beginning of this section, by
considering F N LP(X,m) instead of F if necessary, we also assume that F C LP(X,m)
for simplicity.

We introduce a family of natural norms on F in the following definition.

Definition 3.11 ((£,a)-norm). Let a € (0,00). We define the norm || - || , on F by

1/p
1l = (ED +al i) -+ FEF (3.25)
We call || - [|¢ , the (€, a)-norm on F.

The following proposition states on the convexity of || - || .

Proposition 3.12. Let a € (0,00) and assume that (£, F) satisfies (Cla),. Then
(I 1I%.., » F) is a p-energy form on (X,m) satisfying (Cla),, and (F,|-[|¢,) s uniformly
convex. If (F,||-||¢ ) is a Banach space in addition, then it is reflexive.

Proof. We have (Cla), for the p-energy form (|- [|% , , F) on (X, m) by applying (2.20) for
T: R? — R given in Proposition 2.2-(e),(f). The uniform convexity || - ||, follows from
[Cla36, Proof of Corollary of Theorem 2].

Assume that (F,||-|l¢,) is a Banach space. Then (F,| -|c,) is reflexive by the
Milman-Pettis theorem (see, e.g., [LT, Proposition 1.e.3]) since (F, |- || ) is uniformly
convex. ’ O
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We will frequently use the following Mazur’s lemma, which is an elementary fact in
the theory of Banach spaces.

Lemma 3.13 (Mazur’s lemma,; see, e.g., [HKST, p. 19]). Let (v,)nen be a sequence in a
normed space V' converging weakly to some element v € V.. Then there exist {N;};en C N

with Ny > 1 and { Mgy € [0,1] | k= 1L14+1, ..., N} with S0l Ay = 1 such that 35, M v

converges strongly to v as | — .

We also prepare the following two lemmas.

Lemma 3.14. Assume that (€, F) satisfies (Cla), and that F equipped with |- |¢, is a

Banach space. For v € Lﬁ(X, m), we define a bounded linear map ¥, : LP(X,m) — R
by Wy(u) = [yuvdm. Then {¥,|r|v € L71(X,m)} is dense in F*.

Proof. Set M = {U,|r | v € Li1(X,m)} for 51mphc1ty Then M C F* s1nce

lull poixx.my < llullg, for any w € F. Suppose that vl # F*. Let ¢ € F*\ vl

By the Hahn Banach theorem, there exists ® € F** such that ®(p) # 0 and (I>|Mf* = 0.
Since F is reflexive by Proposition 3.12, there exists u € F such that ®(¢) = W(u) for
any ¢ € F*. Then for any ¢» € M, we have ¢ (u) = ®(¢) = 0, which implies that u = 0.
This contradicts ¢(u) = ®(p) # 0. O

Lemma 3.15. Assume that (€, F) satisfies (Cla), and that F equipped with |- |¢, is a
Banach space. If {un}neny € F converges in LP(X,m) to u € F and sup,cy E(un) < 00,
then {uy tnen converges weakly in (F, |- |lg,) to u.

Proof. For any ¢ € F* and any ¢ > 0, by Lemma 3.14, there exists v € Lﬁ(X, m) such
that || — U, | 7|l 7. <e. Then we easily see that

|o(u) = @(un)| < lp(u) = Ty(u)| + [V (u) = Wy (un)| + |@(un) = Uy (un)]

< el sup lanlley ) + 19 (0) = W)

whence limsup,, . |¢(u) — @(un)| < (]Jull¢; + sup,ey ||un||€1) Since € > 0 is arbitrary,
we obtain lim,,_, ¢(u,) = ¢(u). This completes the proof. O

We collect some useful results on converges in £ in the following proposition. Let
us regard £ as a [0, 0o]-valued functional on LP(X,m) by setting E(f) = oo for f €
LP(X,m)\ F.

Proposition 3.16. Assume that (€, F) satisfies (Cla), and that (F,| - ||z ,) is a Banach

space. 7

(a) If {un}nen € LP(X,m) converges to u € LP(X,m) in LP(X,m) as n — oo, then
E(u) < liminf, . E(uy).

(b) If {un}tneny € F converges to uw € F in LP(X,m) as n — oo and lim,_,o E(u,) =
E(u), then uw € F and limy, o0 [|[u — unll¢; = 0.
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Proof. (a): If liminf,, . &€ (u,) = oo, then the desired statement clearly holds. So, we as-
sume that liminf,, ., €(u,) < co. Pick a subsequence {u,, }ren such that limy_, E(u,, ) =
liminf, . &(uy,). Then {u,, }r is a bounded sequence in (F, || - H&l) and hence Lemma
3.15 implies that {uy, fren converges weakly in F to u. Since |- ||¢; is lower semicon-
tinuous with respect to the weak topology of F, we have from limy e ||t 1o(xmy =

[ull Lo my that E(u)Y? < liminf, s & (up)'?.

(b): If w € £71(0), then E(u — u,) = E(u,) — E(u) = 0. It suffices to consider the
case £(u) = 1. Since u + u, converges in LP(X,m) to 2u as n — oo, by (a),

2 =&(2u)/? < liminfé'(u—l—un)l/p < limsup & (u + un)l/p

n—00 n—o00

< lim E(un)? + E(u)'/? = 2,

n—oo

Le., lim, o E(u+ u,) = 2P. By (Cla),, if p <2, then

1/(p—1)
lim &(u — Un)l/(p_l) < 2(€(u) + lim E(Un)> T lim &(u —|—un)1/(p_1)
n—oo

n—oo n—oo

— 9.9/ (=1 _9p/(r=1) _ (.
If p > 2, then

lim & (u — u,) < 2071 (5(u) + lim S(un)> ~ lim E(utu,) =202 — 2P =0,

n—oo n—oo n—oQ

Since u,, converges in LP(X,m) to u as n — oo, we obtain the desired convergence. [

The following convergences in £ are also useful. These are analogues of [FOT, Theorem
1.4.2-(iii), Theorem 1.4.2-(v)].

Corollary 3.17. Assume that (€, F) satisfies (Cla), and that (F,||-||¢,) is a Banach

space. In addition, we assume the following property: if ¢ € C(R) satisfies 0(0) =0

and |@(t) — (s)| < |t —s| for any s,t € R, then o(u) € F and E(p(u)) < E(u) for any

ue F.

(a) Let {@ntnen € C(R) satisfy lim, o0 @n(t) = t, ©n(0
|t —s| for anyn € N, s,t € R. Then {¢,(u) }ne Q F
for any u € F.

(b) Letu € F, {untnen € F and p € C(R) satisfy lim, o ||u — unl[¢; = 0, ¢(0) =0,
lo(t) — @(s)| < |t —s| for any s,t € R and p(u) = u. Then {o(u,)}nen € F and
limy, 00 £(u — @(uy,)) = 0.

) = 0 and |@u(t) = on(s)]
and lim, o E(u— @, (u)) =

Remark 3.18. Let us make the same remark as [[{523+, Remark 2.21] for convenience.
Typical choices of {(pn}neN C C(R) in Corollary 3.17-(a) are ¢,(t) = (—n) V (t An) and
n(t) =t —(=2) V(¢ A L). A typical use of Corollary 3.17-(b) is to obtain a sequence
of I-valued functions converging to w in (F, |- [|¢;) when I C R is a closed interval and
u € F is I-valued, by considering ¢ € C(R) given by ¢(t) .= (inf I) V (t Asup I).
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Proof. (a): We have ¢, (u) € F by the assumption on (£,F). It is immediate from the
dominated convergence theorem that ¢, (u) converges in LP(X, m) to u as n — oco. By
E(pn(u)) < &(u) and Proposition 3.16-(a),

E(u) < liminf E(u,) < limsup E(u,) < E(u),
n—00 n—o0
which implies lim,, o E(u,) = E(u). We have lim,,_,o, £(u — ¢, (u)) = 0 by Proposition
3.16-(b).

(b): By the dominated convergence theorem, ¢ (u,) converges in LP(X, m) to ¢(u) = u
as n — oo. We have ¢(u,) € F by the assumption on (£, F). By E(p(u,)) < E(u,) and
Proposition 3.16-(a),

E(u) = E(p(u)) < liminf E(p(uy,)) < limsup E(p(u,)) < lim E(u,) = E(u),
n—o0 n—oo n—o0

which implies lim,, o, £(p(u,)) = E(u). We have lim,,_, o, E(u—¢(u,)) = 0 by Proposition
3.16-(b). O

3.3 Fréchet derivative as a homeomorphism to the dual space

In many practical situations, the quotient normed space F/E71(0) (equipped with the
norm £V P) becomes a Banach space (see Subsection 6.2). To state some basic properties
of this Banach space, we recall the notion of uniformly smoothness.

Definition 3.19 (Uniformly smooth normed space). Let (X, ]| -||) be a normed space.
The normed space X is said to be uniformly smooth if and only if it satisfies

lim 7~ sup
7—0

Ju-+ ol + u— o]
el =ty = 1ol = =o.

The following duality between uniform convexity and uniform smoothness is well
known. (See also [BCL94, Lemma 5| for a quantitative version of this theorem.)

Theorem 3.20 (Day’s duality theorem; see, e.g., [T, Proposition 1.e.2|). Let X be a
Banach space. Then X is uniformly convez if and only if its dual space X* is uniformly
smooth.

We also recall the notion of duality mapping and its fundamental results in the fol-
lowing proposition (see, e.g., [Miya, Definition 2.1, Lemmas 2.1 and 2.2]).

Proposition 3.21 (Duality mapping). Let X be a Banach space and let X* be the dual
space of X. Let |- |y, be the norm of W for each W € {X,X*}. For (z,f) € X x X*,
we set (x, f) = f(z). Forx € X, define F: X — 2 by

(@, f) = lallz = 1153,

which is called the duality mapping of X. Then the following properties hold:

F(z)={fex*
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(a) F(z)#0 for any z € X.

(b) If X is reflexive, then |J,c F(x) = X

(c) If X s strictly convex, i.e., |[Ax+ (1 =Nyl < Mz|ly + (1 = N ||ylly for any
A€ (0,1) and any z,y € X \ {0}, then #(F(x)) =1 for any x € X.

Now we can state a result on the dual space of F/E71(0).

Theorem 3.22. Assume that (€, F) satisfies (Cla), and that F/E~*(0) is a Banach space.

(a) The Banach space F/E7(0) is uniformly convex and uniformly smooth. In particu-
lar, it is reflezive and its dual Banach spaces (F/E71(0))" is also uniformly convex
and uniformly smooth.

(b) The map f > E(f;-) is a homeomorphism from F/E7Y(0) to (F/E71(0))". In
particular, (F/E71(0))" ={&(f;-) | f € F}.

Proof. For simplicity, set X == F/£71(0) and ||ul| , == E(u)/? for any u € X.

(a): The uniform convexity of X' is immediate from Proposition 3.4, whence X is re-
flexive by the Milman—Pettis theorem. Also, we easily see from (3.18) that X is uniformly
smooth. The same properties for X* follow from Theorem 3.20.

(b): Let u € X and define A(u) == E(u)*P'&(u; -) € &*. (We define A(u) = 0 if
E(u) =0.) We will show that A: X — X* is a bijection. By (3.11), we have

M@ . = E@)*PHE(us -]
Then (u, A(u)) = E(u)*? = ||ul} = [|A(u)]
A(w) € {f € X | (u, f) = |lully = [Ifllx-} = F(u),

where F': X — X* is the duality mapping. We see from Proposition 3.21 and (a) that
A: X — X* is a surjection. Note that the mapping F~1': X* — X** = X defined by
FU) ={u € X | (u,f) = |Jul> = ||fl|%-} for f € X* is the duality mapping from
X* to X. By Proposition 3.21 and (a) again, we conclude that A is injective. The map
f— E(f;-) and its inverse are continuous by (3.11) and by (3.21) respectively. O

e = E)PTHETIR = |

2
%~ and hence

We also present a similar statement for (F, ||| ,)-
Corollary 3.23. Let o € (0,00). Assume that F C LP(X,m), that (€, F) satisfies (Cla),
and that Xy, = (F, |- |l¢,) is a Banach space.

(a) The Banach space X, is uniformly convex and uniformly smooth. In particular, it is
reflexive and its dual space X} is also uniformly convexr and uniformly smooth.

(b) For each f € F, define a linear map \IJ;;OC: F =R by
¥.(0) =E(fig) +a [ s(pIfF gdm, geF. (3.26)
X

Then the map f — \IJ;;Q 15 a homeomorphism from X, to X}. In particular, X} =
{1 feF}
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Proof. We define &,: F x F — R by

Ealu;v) = E(u;v) + a/ sgn(u) [ul" " vdm, u,ve F.
X

and set E,(u) = Ea(usu) = |lullz,. Then (E,, F) is a p-energy form on (X,m) and it
satisfies (Cla), by Proposition 3.12. We have the desired result by applying Theorem 3.22
for (Ea, F). O

3.4 Regularity and strong locality

In this subsection, in addition to the setting specified at the beginning of this section,

similar to [FOT], we make the following topological assumptions®:

X is a locally compact metrizable space. (3.27)

m is a positive Radon measure on X with full topological support. (3.28)

Note that (3.28) is equivalent to saying that m(O) > 0 for any non-empty open subset
O of X. Under this setting, the map C(X) to L°(X, B, m), where B = B(X), defined
by taking u € C(X) to its m-equivalence class is injective and hence gives a canonical
embedding of C'(X) into L°(X, m) as a subalgebra, and we will consider C'(X) as a subset
of L°(X,m) through this embedding without further notice.

The following definitions are analogues of the notions in the theory of regular sym-
metric Dirichlet forms (see, e.g., [FOT, p. 6]).

Definition 3.24 (Core). Let € be a subset of F N C.(X).

(1) % is said to be a core of (£, F) if and only if € is dense both in (F, || - ||g“1) and in
(OC(X)7 ” ) ||sup)'

(2) A core % is said to be special if and only if % is a linear subspace of F N C.(X), € is
a dense subalgebra of (C.(X), || - [|,,,), and for any compact subset K of X and any
relatively compact open subset G of X with K C G, there exists ¢ € € such that
>0, p=1on Kand p=00on X \G.

Definition 3.25 (Regularity). We say that (£, F) is reqular if and only if there exists a
core € of (€,F).

We can show the following result on regular p-energy forms, which is an analogue of
[FOT, Exercise 1.4.1].

Proposition 3.26. Suppose that (€, F) is reqular and that F satisfies the following prop-
erties:
ut A1 eF foranyu€ F, (3.29)

w € F  for any uv € F N Cy(X). (3.30)
Then F N C.(X) is a special core of (€,F).
6We do not assume that X is separable unlike [FOT, (1,1,7)].
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Proof. 1t is clear that F NC.(X) is a core of (£, F). By (3.30), FNC.(X) is a subalgebra
of C.(X). Let K be a compact subset of X and G be a relatively compact open subset
G of X with K C G. By Urysohn’s lemma, there exists ¢y € C.(X) such that ¢y = 2 on
K and o9 =0on X \ G. Let € € (0,1/2). Fix ¢p € F N C.(X) satisfying ¢ = 1 on EX,
which exists by the regularity of (£, F), the locally compactness of X and (3.29). Since
FNC(X) is a core of (£, F), there exists ¢ € FNC,(X) such that [[py — ¢, < e Now

we define p € C.(X) by ¢ := (¢ —ep)* A 1. (Note that suppy[¢] is compact since G s
compact.) Then ¢ € F N C.(X) by (3.29). Clearly, p =1 on K and ¢ =0 on X \ G, so
the proof is completed. O

The proposition above ensures when there exist cutoff functions in F. We also intro-
duce the following condition stating the existence of cutoff functions in a weaker sense.

Definition 3.27. We say that a p-energy form (€, F) on (X, m) satisfies the property
(CF),," if and only if, for any compact subset K of X and any open subset U of X with
K C U, there exists ¢ € FNL>®(X,m) such that p(z) = 1 for m-a.e. z € K and p(z) =0
for m-a.e. x € X \ U.

Next we introduce two formulations of the notion of strong locality for (€, F).

Definition 3.28 (Strong locality). (1) We say that (£, F) has the strongly local property
(SL1) if and only if, for any fi, f2, g € F with either supp,,[f1 — aq] or supp,,[fs — az]
compact and supp,,[f1 — a1] N supp,,[fa — @] = 0 for some ay,ay € E71(0),

Efitfatg) +E@) =E(fi+g)+E(f2+9). (3.31)

(2) Suppose that (€, F) satisfies (Cla),. We say that (€, F) has the strongly local property
(SL2) if and only if, for any fi, fo, g € F with either supp,,[f1 — fo—«a] or supp,,[g— ]
compact and supp,,[f1 — f2 — a] Nsupp,,[g — ] = 0 for some «a, f € £E71(0),

E(f1:9) = E(f29). (3.32)
In the following propositions, we collect basic results about (SL1) and (SL2).

Proposition 3.29. Assume that (€, F) satisfies (Cla),.

(a) If (€, F) satisfies (SL1), then for any fi1, fayg € F with either supp,,[fi — a1] or
SUpp,,[fo — ao] compact and supp,,[f1 — a1] N supp,,[f2 — ] = 0 for some ay, s €
£710),

E(fi+ f2:9) = E(f19) + E(f219)- (3.33)

(b) If (€,F) satisfies (SL2), then for any fi, fo, g € F with either supp,,[f1 — fo — a]
or supp,,lg — ] compact and supp,,[fi1 — fo — a] N supp,,lg — B] = O for some

a, B € E7Y0),
E(g; f1) = E(g; J2). (3.34)

"We can consider several versions of this condition such as a version requiring ¢ € F N C(K) in
addition. Note that (CF),, holds if (£, F) admits a special core.
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Proof. (a): Note that (3.31) with g = 0 implies that E(f1 + f2) = £(f1) + E(f2). For any
t € (0,00), we have from (3.31) that

E(fi+ fot+tg) —E(fi+ f2)
t

+¢15@):501+a?—500_%505+u?—5g@‘

We obtain (3.33) by letting ¢ | 0 in this equality.
(b): Since £(g; - ) is linear by Theorem 3.6, it suffices to prove £(g; fi — f2) = 0, which
follows from (3.32) with g, 0, f{ — f2 in place of fi, fa, g. O

Proposition 3.30. Assume that (€, F) satisfies (Cla),.
(a) If (€, F) satisfies (SL1), then (€, F) also satisfies (SL2).
(b) Assume that (€, F) satisfies (SL2) and the following three conditions:

ww € FNOL®(X,m) for any u,v € FNL®(X,m). (3.35)

For anyu € F, u, = (—n)VuAn e F and lim E(u— u,) = 0. (3.36)
n—oo

(&€, F) satisfies (CF),,. (3.37)

Then (€, F) satisfies (SL1).

Proof. (a): Let fi, f2,9 € F and aj,ay € £71(0) with either supp,,[fi — f2 — ] or

supp,,,[g — B8] compact and supp,,[fi — f2 — o] Nsupp,,[g — 8] = 0. Let t € (0,1). By
(3.31) with ¢(f; — f2), 9,0 in place of fi, f2, g, we have

E(t(fr = f2) +9) = EUSL = f2)) + E(9),

whence

Eg+tfi—f) =€) . _
Since £(g; -) is linear by Theorem 3.6, we get E(g; f1) = £(g; f2). Similarly, by (3.31)
with fo — f1,tg, f1 in place of fi, fa, g,

E((fa— fi)+tg+ fi) +E(f1) =E((fa— f) + 1) +E(tg + fr),

which implies E(f1;9) = E(f2; 9)-

(b): We first consider the case g € F N L>®(X,m). Let fi, fo € F and ay,ay € E71(0)
with either supp,,[f1 — 1] or supp,,[f2 — az] compact and supp,,[f1 —a1]Nsupp,,[fo—as] =
(). We assume that supp,,[f1 — a1] is compact since both cases are similar. Let U be an
open neighborhood of supp,,[fi — a1] such that U C X \ supp,,[f> — as]. By (3.37) and
the locally compactness of K, there exists ¢ € F € L>®(X,m) such that ¢(x) = 1 for

m-a.e. x € U, supp,,[¢] is compact and supp,,[¢] Nsupp,,[f2 — @] = 0. Note that pg € F
by (3.35). Then we see from (SL2) that

Efitfatg)+E(g)=Efr+fatg i) +E L+ fatgifo) +HESL+ fatgi9) +E(9)
(SL2

:)g(fl +g;fi) +E(fa+ g fa) HEfL + fatg59) +E(9)
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=E(fHi+g: h) +Ef2+ g5 o)
+ &+ fta(l—9g) +Ef + fat+g09) +E(9). (3.38)

Since supp,,[¢g] and supp,,[f1 — a1] are compact, supp,,[f1 — a1] Nsupp,,[(1 —¢)g] =0
and supp,,[f2 — as] N'supp,,[¢g] = 0, we have the following equalities by (SL2):

E(fit+ fatgi(1—w)g) =E(fa+ g (1—¢)g).
E(fi+ fa+g;09) = E(fL + g5 09)-
E(g) =E(g; (1 —p)g) + E(g;09) = E(fr +g; (1 = p)g) + E(f2 + g;09)-

By combining these equalities and (3.38), we obtain

Efit fatg) +E@) =& +g fi) +E(fat+gi fo) +EfL+959) +E(f2+ 95 9)
=E(fi+tg) +E(f2+9),

which proves (SL1) in the case g € F N L>®(X,m).

Lastly, we prove (SL1) without assuming the boundedness of g. Let g € F and set
gn = (—n)V (g An), n € N. Then g, € F by (3.36), and the statement proved in the
previous paragraph yields that

for any n € N. Thanks to (3.36) and the triangle inequality for £!/?, we obtain the desired
equality (3.32) by letting n — oo in the equality above. ]

4 p-Energy measures and their basic properties

In this section, we discuss p-energy measures dominated by a p-energy form. Similar to
the case of p-energy forms, we will introduce two-variable versions of p-energy measures
and prove their basic properties.

As in the previous section, in this section, we fix p € (1, 00), a measure space (X, B, m)
and a p-energy form (£, F) on (X, m) with F C L%(X,m).

4.1 p-Energy measures and p-Clarkson’s inequalities

In this subsection, we also assume the existence of a family of finite measures {I'(f)} rer
on (X, B) whose definition is as follows.

Definition 4.1 (p-Energy measures dominated by a p-energy form). Let {I'(f)}scx be a
family of measures on (X, B). We say that {I'(f)};cr are p-energy measures dominated
by (€, F) if and only if the following hold:

(EM1), I'(f)(X) < &(f) for any f € F.

(EM2), T'(-)(A)P is a seminorm on F for any A € B.
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We then see that (I'(-)(A), F) is a p-energy form on (X, m) for each A € B by (EM2),,.

We say that {I'(f)}ser satisfies p-Clarkson’s inequality, (Cla), for short, if and only
if (I'(-)(A), F) satisfies (Cla), for any A € B, i.e., for any f,g € F,

{r<f+g><A>p¥ PO = g)(A)77 <2+ T@A)TT itpe (12, o
T(f + g)(A) + T(f — g)(A) < ( (AT +T{g)(A)r)"" ifp e (2,00).

We also say that {I'(f)}scr satisfies the generalized p-contraction property, (GC), for
short, if and only if (I'(-)(A), F) satisfies (GC), for any A € B.

Example 4.2. (1) Consider the same setting as in Example 3.10-(1). Then the measures
TUf)(A) = / V@) de for f € W'(Q) and A € B(RP) with A C 0,
A

are easily seen to be p-energy measures dominated by £(f) = [, |V f(z)[" dz sat-
isfying (EM1), and (EM2),. Similar to Example 3.10-(1), one can show (GC), for
{T(f)} fewr»(q) by following an argument in the proof of Theorem A.19. Recall that

9) = J, IV f(2)|P* (Vf(x), Vg(zx))go dz. Then we can see that, by the Leibniz
and chain rules for V, for any u, o € Wh(Q) N C'(9),

/QWZF(W = E(u; up) — (p;l)p_lf(l?dp& ). (4.1)

p

(2) Although p-energies are constructed on compact metric spaces [Kig23, MS23+|, we do

not know how to construct the associated p-energy measures because of the lack of the
density “|Vu(z)["”. (As described in (3) below, the theory of Dirichlet forms presents
2-energy measures {ft() }ucr, associated with a given nice Dirichlet form (&, F3).
On a large class of self-similar sets, it is known that p, is mutually singular with
respect to the natural Hausdorff measure of the underlying fractal [Hin05, KM20].)
In the case of self-similar sets with suitable assumptions, self-similar p-energy forms
are constructed in [CGQ22, Kig23, MS23-+, Shi24], and we can introduce p-energy
measures satisfying (EM1),, (EM2), and (GC), by using the self-similarity of p-energy
forms. See Section 5 for details.
In [KS.a], under suitable assumptions, the authors construct a good p-energy form
5;58, which is called a Korevaar—-Shoen p-energy form, on a locally compact separable
metric space (X,d) equipped with a o-finite Borel measure m with full topological
support. As an advantage of st, the right-hand side of (4.1) with st in place of £
can be extended to a bounded positive linear functional in ¢ € C.(X) and the p-energy
measure ng (u) associated with ngs is constructed as the unique Radon measure
corresponding to this functional through the Riesz—Markov-Kakutani representation
theorem. A notable fact is that this approach does not rely on the self-similarity
of the underlying space or of the p-energy form. In [KS.a, Sections 3 and 4|, basic
properties for T)\°(-) like (EM1),, (EM2), and (GC), are also shown.
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(3) The case p = 2 is very special thanks to the theory of symmetric Dirichlet forms. (See
[FOT, Section 3.2| for details on 2-energy measures associated with regular symmetric
Dirichlet forms.) If (&, D(&)) is a regular strongly local Dirichlet form on L?(X,m),
where X is a locally compact separable metrizable space and m is a Radon measure
on X with full topological support (see [FOT, (1.1.7)]), then &(u) = &(u,u) is a
2-energy form on (X,m) and it satisfies (GC), (see Proposition A.2). In addition,
the Dirichlet form theory provides us the associated 2-energy measures { i) }uen(#)
through the following formula®:

1
/ ©dpy = &(u,up) — 5(5"(u2, p) for any p € D(&) N C(X). (4.2)
b

(Recall (4.1).) We easily see that {/w) fuep(#) satisfies (EM1), and the parallelogram
law, which implies (EM2), and (Cla),. We can also verify (GC), for {1 fuen(s)
(see Proposition A.14). In the framework of [Kuw24| (see also Definition A.17), we
can introduce p-energy measures satisfying (EM1),, (EM2), and (GC), by setting
D(u)(A) = [, T,(u)% du, where i is a &-dominant measure; in particular i,y < p,
and I'), == d’;—ij). See Theorem A.19 for a proof of (GC), for these p-energy measures.

(4) Let g, be the minimal p-weak upper gradient of u € N'*(X, m), where N"*(X, m) =
{u € LP(X,m) | g, € LP(X,m)} is the Newton-Sobolev space (see |[HKST, Section
7.1]). Then I'(u)(A) = [, g dm defines p-energy measures satisfying (EM1), and
(EM2),. Indeed, we have (EM2), by [HKST, (6.3.18)]. However, (Cla), for these
measures is unclear because of the lack of the linearity of u — g,.

The same argument as in Proposition 3.5 yields the following result.

Proposition 4.3. Assume that {I'(f)}ser satisfies (Cla),. Then, for any f,g € F and
any A € B,
L(f + 9)(A) + T{f — g)(A) — 2I(f)}(A)
2I'(g)(A) if pe(1,2],
2o - DL+ T T Fre o).

In particular, R >t — T(f 4+ tg)(A) € [0,00) is differentiable and for any s € R,

00 AeB,geF; 0 dt t=s
E(g)<1

Definition 4.4. Assume that {I'(f)}scr satisfies (Cla),. Let f,g € F. Define
I'(f;g): B— R by

| =

D(f;g)(A) = = ST(f +1g)(4)|  for A€ B(X), (4.5)

t=0

D=
U

t
which exists by Proposition 4.3.

8Precisely, the formula (4.2) is valid for u € D(&) N L (X, m). We can extend it to any u € D(&) by
considering the limit of (u An) V (—n) as n — o0
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The following properties of I'(f; g) can be shown in a similar way as Theorem 3.6.

Theorem 4.5. Assume that {I'(f)}ser satisfies (Cla),. Let A € B. Then I'(f; -)(A) is
the Fréchet derivative of T(-)(A): F/E710) — [0,00) at f € F. In particular, the map
L(f; Y(A): F — Ris linear, U'(f; f)(A) = T{(f)(A) and I'(f; h)(A) = 0 if h € F satisfies
['(h)(A) = 0. Moreover, for any f, fi, f2,9 € F and a € R, the following hold:

Rot—T(f+tg;9)(A) € R is strictly increasing if and only if T'(g)(A) > 0.  (4.6)
D{af;g) = sen(a) la" ' T(f;9), T(f+h;g)(A) =T(f;9)(A) if T(h)(A) =0. (47
T(f; 9)(A)| < T(f)(A)P=DPT(g >(A)1/p (4.8)

IT(f15 9)(A) = T3 9) (A)] < Co(T{A)(A) VT{R)(A) 7 Tl — f2)(A) T T{g) (A)7,

(4.9)
where o, C, are the same as in Theorem 5.0.

The set function I'(f; g) is a signed measure as shown in the following proposition.

Proposition 4.6. Assume that {I'(f)}rer satisfies (Cla),. For any f,g € F, the set
function U(f; g) is a signed measure on (X, B). Moreover, for any B-measurable function
@: X = [0,00) with [l¢lly, < 00, [xwdl(-): F/ETH0) — R is Fréchet differentiable
and has the same properties as those of T'(-) in Theorem 4.5 with “T'(g)(A) > 0" in (4.6)
replaced by “fX @dl'(g) > 07, and for any f,g € F,

(4.10)

[ edrisio =2 & [ pris i
b t=0
Proof. The equalities T'(f; ¢)(0) = 0 and |T(f;9)(X)| = |E(f;9)| < oo are clear from
the definition. We will show the countable additivity of I'(f;¢) . The finite additivity
of I'(f; g) is obvious. Let {A,},en C B be a family of disjoint measurable sets. Set
By = Jp_n41 An for each N € N. Then we see that

(UA) z (Fa) (A

= [I'{f; 9)(Bn)

T (BT (g)(By) P —— 0,

N—oo

which shows that I'(f; g) is a signed measure on (X, B).

The other properties except for (4.10) can be proved by following the arguments in the
proof of Theorem 3.6, so we shall prove (4.10). By the finite additivity of [}, ¢ dI'(f; g) and
p i d [ odl(f +tg) ‘t o i, we can assume that ¢ > 0. Let s, = 22"21 apla, withap >0
and A € B be a sequence of simple functions so that s, T ¢ m-a.e. as n — co. Then we
immediately have (4.10) with ¢ = s,,. Since lim,, o [y s, dU'(f; 9) = [y @ dI'(f;g) by the
dominated convergence theorem, it suffices to prove

(4.11)

lim i/ Sp dU(f + tg)
be

n—00 d

: /
= — [ @dl(f +tg)
o dt )y

t=0
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Since (3.15) with [ ¢ dI'(-) in place of £ holds by the fact that ([ ¢dI'(-),F) is a

p-energy form on (X, m), we know that for any B-measurable function ¢: X — [0, 00

with |¢],, < oo
s(é}wmﬁ)mﬂm(éywmm)ma (412)

By combining (4.12) with ¢ = ¢ — s,, and the dominated convergence theorem, we obtain
(4.11). O

Remark 4.7. As mentioned in the introduction, a signed measure corresponding to
I'(f; g) is discussed in [BV05, Section 5] under some non-trivial assumptions, which have
not been verified for fractals like the Sierpinski gasket and the Sierpinski carpet in the
literature.

d
G |+

t=0

The following proposition gives a Holder-type estimate with respect to the total vari-
ation measure |I'(f; g)]|.

Proposition 4.8. Assume that {I'(f)}ser satisfies (Cla),. For any f,g € F and any
B-measurable functions ¢,1: X — [0, 0],

Awwwmmm(éwﬂﬂﬁoww(ﬂwmwﬁw' (113)

Proof. Let X = P UN be the Hahn decomposition with respect to I'(f;g) such that
I'(f;9)(A) > 0 for any Borel set A C P and I'(f;¢)(A) < 0 for any Borel set A C N.
Then the total variation measure |I'(f; g)| is given by

(i (A) =T(f;g)(PNA) =T(f;g)(N N A) forany A€ B.
Therefore, by (4.8),
IT(f3 9)| (A) <T(f)(P N A)PVPD(g) (PN AP+ T(f)N N A)P=DPT(g) (N N AP
< (TP AA) +T(HN N AT (T ()P A) +T(g)(V N A))Y?
= D{f)(A)P=DPT(g) (A)VP, (4.14)

where we used Hoélder’s inequality in the third line.

Now we prove (4.13). First, we consider the case that ¢ and 1) are non-negative simple
functions, that is,

N1 N2
p=> ayla, =Y blp, wheredy, b € [0,00) and Ay, By € B.
k=1 k=1
Then we can assume that there exist N € N, {as}_,, {bx}_, C [0,00) and a disjoint

family of measurable sets { £} }2_, C B such that ¢ = S0 axlg, and ¢ = S0 bl g, .
Since uv = Zgzl axbr1 g, , a combination of (4.14) and Holder’s inequality yields

AWM%MIZMN%MMI
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N (r-D/p , N 1/p
< (Za’é/(”_”Nﬁ(Ek)) (megxm) .

k=1

Hence, for any non-negative simple functions u and v, we have

[ evairisio < ( / sop/<p-1>dr<f>)(p_1)/p ( / wpdr<g>>1/p- (4.15)

Next, suppose that u and v are non-negative B-measurable functions and let {s, ., }n>1 be
sequences of non-negative simple functions such that s, ,, T w m-a.e. as n — oo for each

w € {p,¥}. Then, by (4.15), for any n € N,

(r=1)/p 1/p
[ sswaral< ([ sevain) ([ o)
X X X

It is clear that {s,,4Sn.}n>1 1S & sequence of non-negative simple functions and s, S, T
v m-a.e. as n — oo. Hence letting n — oo in the inequality above yields (4.13). O]

In the following proposition, we show that integrals with respect to p-energy measures
satisfying (GC), are p-energy forms on (X, m) satisfying (GC),.

Proposition 4.9. Assume that {I'(f)}ser satisfies (GC),. Then for any B-measurable
function ¢: X — [0,00) with ||¢|l,, < 00, ([x@dl(-),F) is a p-energy form on (X, m)
satisfying (GC),.

Proof. Let ni,ng € N, ¢¢ € (0,p], g2 € [p,oo], u = (ug,...,u,,) € F™ and
T = (Ty,...,T,,): R" — R™ satisfying (2.1). Similar to (2.20), by using the trian-
gle inequality for the ¢%2/P-norm and the reverse Minkowski inequality (Proposition 2.7)
for the £%/P-norm, we see that for any non-negative simple function ¢ on (X, B),

H (( / sodrm(u»)l/p) (( / wdr<uk>)1/p)

We can extend (4.16) to any B-measurable function ¢: X — [0, 00] by the monotone
convergence theorem. The proof is completed. O

ng ni

< (4.16)

I=11l¢a2 k=11l¢a1

The following Fatou type result is useful.

Proposition 4.10. Assume that F C LP(X,m) and that F equipped with ||-[¢, is a
Banach space. Let p: X — [0,00) be B-measurable and satisfy ||¢||y,, < 00 If {un}nen C
F converges weakly in F to u € F, then

n—00

/ @dl(u) < liminf/ @ dl(uy,). (4.17)
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Proof. Let {uy, } be a subsequence with limy,_,o [y ¢ dI'(up, ) = liminf, o [, @ dT(uy).
By Mazur’s lemma (Lemma 3.13), there exist N(I) € N and {al,k}g:(? C [0, 1] such that
N(l) > 1, fo:(é) app =1 and v == Zl]{v:(? oy puy converges to v in F as [ — oo. We see
from the triangle inequality for ([, ¢ dI(- >)1/p that

(Awﬂmﬁwsgam(4¢ﬂw@yi

which implies (4.17) by letting [ — oc. O

4.2 Extensions of p-energy measures

Let D C F be a linear subspace, which is fixed in the rest of this section. In the rest of
this subsection, we assume that there exist p-energy measures {I'(f)}rep dominated by

(€,D). We will extend p-energy measures to I'(u) for u € D’ in the following proposition.

Proposition 4.11. For any u € ﬁf, there exists a unique measure I'(u) on (X, B) such
that for any {up}nen € D with lim, o E(u — u,) = 0 and any B-measurable function
v: X — [0,00) with ||¢|l,,, < oo,

sup

/XgodF(w = lim [ @dl(u,), (4.18)

n—oo X

and T'(u) further satisfies T'(u)(X) < E(u). Moreover, for each such ¢, ([, @dl'(- >,§f)

is a p-energy form on (X, m).

Proof. By (EM2), and the monotone convergence theorem, for any B-measurable function
¢: X — [0,00] and any u,v € D,

(/Xsodr<u+v>>l/p§ (/Xgodr<u>>l/p+ (/chdl“(v))l/p_ (4.19)

In the rest of this proof, let ¢: X — [0,00) be B- measurable and satisfy [[¢],, < oo.
Letu e D and {tun}nen C D satisty lim,, o, E(u—wu,) = 0. By (4.19), {fX @dF(un>}n€N
is a Cauchy sequence in [0,00) and lim, o [y @ dl'(u,) = I,(¢) is independent of the

choice of {u,},. In addition, we have that

Kéwﬂwﬁmlapr

that 0 < I,(¢) < [l¢llg,, €(u) and that I, is linear in the sense that Iu(zlivzl arpr) =

SV arlu(pr) for any N € N, (az)N_, C [0,00) and B-measurable functions ¢y: X —
0, 00) with ||kl < oo, k€ {l,...,N}. Now we define I'(u)(A) = I,(14) € [0, 00) for

< llpllu® & (up — u)'7?, (4.20)

sup

sup
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A € B, and show that I'(u) is a finite measure on (X, B). Clearly, I'(u) is finitely additive
and ['(u)(X) < &(u) < oco. Let us show the countable additivity of I'(u). By (4.20),
for any ¢ > 0 there exists Ng € N such that sup epxy |D(u)(A)? = T(u,) (A)V?| < e
for any n > Ny. Let {Ax}ren € B be a sequence of disjoint measurable sets, and set
By = U?’:NH Ay for each N € N. Then we see that for any N € N and any n > N,

D{u) (U Ak> — 3 Tu)(Ay)

keN

1/p
= I'(u)(Bn)"? < &+ T{un)(By)"?,

whence limy oo ‘F(u) (Uren Ak) — Sy F(u)(Ak)‘ = 0, proving the desired countable
additivity.

Note that I,.,(p)"? < L(p)"? 4+ I,(¢)"/? for any u,v € il by (4.19) and the
definition of I4(yp). This together with the monotone convergence theorem implies the

triangle inequality for (fXgde<->)1/p on D’ ; in particular, (fXgde<->,Df) is a p-

energy form on (X, m). Next we show (4.18). Let {u,}neny € D be a sequence satisfying

=F

lim,, 00 €(u — u,) = 0. By the triangle inequality for ([, ¢ d['(-),D" ),

(w0 (f o)

which together with (4.20) implies (4.18); indeed,

hWV”-(A}MNM)W
b </X wan))up (/X godl“<un>)l/p - (/X godl“(u))l/p

< 2@l E(u — up)/P — 0. O

sup n—+00

1/p
< ( / godr<u—un>) < Nl € — u) >,
X

< +

If in addition {I'(f) } ep satisfies (Cla),, then we can easily see that {I'(f)
satisfies (Cla),. We record this fact in the following proposition.

Proposition 4.12. Assume that {I'(f)}sep satisfies (Cla),. Then {F<f>}f€5]-' satisfies
(Cla),,.

} ep” also

Proof. 1t is clear from (4.18) that {F<f>}f€§]-' satisfies (Cla),,. O

If 7 C LP(X,m) and F equipped with [|-[|¢ ; is a Banach space, then (GC), is also

extended to p-energy measures {I'(f)} P

Proposition 4.13. Assume that F C LP(X, m), that F equipped with || - ||¢ , is a Banach
space and that both (£,D) and {I'(f)}sep satisfy (GC),. Then, for any B-measurable

function p: X — [0, 00) with ||¢|y,, < oo, ([ @dl(- ),5]:) is a p-energy form on (X, m)
satisfying (GC),.
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Proof. Let us fix ny,ny € N, ¢1 € (0,p], ¢ € [p,oc] and T = (T3,...,T,,): R —
R™ satisfying (2.1). Let w = (ug,...,uy,) € (5f)m. For each k € {1,...,n},
fix {upntnen € D so that lim, . ||uk—uk7n||£1 = 0. Set w, = (U1n,---;Unyn)-
By (GC), for (£,D) and (2.1), we know that {7j(w,)}, is bounded in F and that
limy, o0 [ Ti(wn) — Ti(w) || po(x ) = 0. Since F is reflexive (see Proposition 3.12) and F

is continuously embedded in LP(X,m), we see that Tj(u) € D’ and that there exists a
subsequence {Tj(u,,)}; such that Tj(u,,) weakly converges to Tj(u) in F as j — oo for
any [ € {1,...,no}. If g2 < 0o, then we see from Proposition 4.10 that

H <(/X Mrm(u»)l/p) = (Zl gty (/X @dF<Tl<unj>>)l/p>

na 1/q2

=1

=1
ny 1/p 1/q1

<1 f dl (ug »,

e (35 (o) )
k=1
1/p\ ™
= H <(/ wdF<uk>> )
X k=1l a1
The case g, = oo is similar, so ([, @ dI'(- ),5f) satisfies (GC),. O

4.3 Chain rule and strong locality of p-energy measures

In this subsection, we see that strongly local properties for p-energy measures hold if
p-energy measures satisfy a chain rule (see Definition 4.14 below). In addition to the
setting specified at the beginning at the previous subsection, we assume that (X, m)
satisfies (3.27) and (3.28), that B = B(X) and that D C FNC(X). We also assume that
F C LP(X,m) and equip F with the norm ||| ;.

Definition 4.14 (Chain rules for p-energy measures). (i)  We say that {I'(f)}ep sat-
isfies the chain rule (CL1) if and only if for any « € D and any ® € C*'(R), we have
®(u) € D and

dU(®(u)) = |®'(u)[” dT{u). (4.21)

(i)  Assume that {I'(f)}sep satisfies (Cla),. We say that {I'(f)}ep satisfies the chain
rule (CL2) if and only if for any n € N, uw € D, v = (vy,...,v,) € D", ® € C'(R)
and ¥ € C'(R"), we have ®(u), ¥(v) € D and

dD(®(u); T(v)) = > sgn(®(u)) |@'(u)["~" 0¥ (v) dI (u; vy). (4.22)

Proposition 4.15. Assume that {I'(f)}sep satisfies (Cla), and (CL2).
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(a) {T(f)}fep satisfies (CL1).
(b) (Leibniz rule) For any u,v,w € D, we have vw € D and

dl (u; vw) = vdl{u;w) + wdl (u;v). (4.23)

Proof. The statement (a) is clear. Noting that vw = 1[(v+w)?—(v—w)?], we immediately
have (4.23) from (CL2). O

We have the following theorem as a consequence of (CL1).

Theorem 4.16 (Image density property). Assume that (€,D) satisfies (2.3), (2.6) and
(Cla),, that (F, |- |l¢,) is a Banach space, and that {TI'{f)}ep satisfies (CL1). Then, for
any u € D, the Borel measure T'{u) ou™" on R defined by T{(u) ou"'(A) == T'{u)(u"'(A)),
A € B(R), is absolutely continuous with respect to the Lebesgue measure on R.

Proof. This is proved, on the basis of (4.21), in exactly the same way as [Shi24, Proposition
7.6], which is a simple adaptation of [CF, Theorem 4.3.8], but we present the details
because in [Shi24] the underlying topological space X is assumed to be a generalized
Sierpiriski carpet. It suffices to prove that I'(u) o u™'(F) = 0 for any u € D and any
compact subset F of R such that Z'(F) = 0, where £' denotes the 1-dimensional
Lebesgue measure on R. Let {¢, }nen C C.(R) satisfy |¢,| < 1, lim, o0 @n(z) = 1p(x)
for any x € R and

00 0
/ on(t)dt = / ©n(t)dt =0 for any n € N.

0 —00
We define @, () = [ pn(t)dt, 2 € R, and u, = &, o u for any n € N. Then we easily
see that @, € C'(R) N C.(R), ®,(0) =0, and @/, = ¢, for any n € N. Also, u,, converges
to 0 in LP(X,m) as n — oo by the dominated convergence theorem. By (2.3) for (€, D),
we deduce that u, € F and sup,,cy €(uy,) < 00. Since F is reflexive by Proposition 3.12
and F is continuously embedded in LP(X,m), there exists a subsequence {u,, }ren weakly
converging to 0 in F. By Mazur’s lemma, there exist N(I) € N and {alk}N(l C [0,1]
such that N(l) > [, Zk _/ ai, =1 and Zg:(? a xUy, converges to 0 in F as | — oo. Let
us define ¥, € CY(R) by ¥, := S0 4, @, . Then ¥,(0) = 0 and lim_,o, ¥}(z) = Lp(z)
for any « € R. Furthermore, by Fatou’s lemma, (4.21) and (EM1),,

[(u) ou ' (F) = /thm (U (&) |7 (T (u) ou™")(dt)
< liminf / 0 ()| T {u)(de)

l—o0

—thllan (u)(X)<hm1nf5( 1(w) =0,

which completes the proof. O]

The following theorem gives arguably the strongest possible forms of the strong locality
of p-energy measures.
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Theorem 4.17 (Strong locality of energy measures). Assume that (£,D) satisfies (2.3),
(2.6) and (Cla),, that (F,||-|l¢,) is a Banach space, and that {I'(f)}sep satisfies (CL1).
Let u,uy,us,v € D, a,a1,a2,b € R and A € B.

(a) If ACwu(a), then T{u)(A) = 0.
(b) If AC (u—wv)"'(a), then T{u)(A) = T{v)(A).
(¢) If ACuy'(ay) Uuy'(as), then

Te(ur + s + ) (A) + Te(0)(A) = Te(ur + ) (A) + Te (us + v) (A). (4.24)
If in addition {U{f)}ep satisfies (Cla),, then for any A C ui'(ar) Uuy ' (ag),
Te (g + ug; v)(A) = Defug; v)(A) + Te{ug; v) (A). (4.25)
(d) If {T(f)}sep satisfies (Cla), and A C (u1 — us)~ (a) Uv=L(b), then
Te(up; v)(A) = Te(us; v)(A)  and Telv;ui)(A) = Telv; us) (A). (4.26)

Proof. (a): This is immediate from Theorem 4.16.
(b): This follows from (a) and the triangle inequality for e (- )(A)'/?.
(c): Set A; == ANwu; (a;), i € {1,2}. We see from (b) that

Ceuy + us +v)(A) + Te(v)(A)

= Le(uz + 0) (A1) + Te(ur 4+ 0)(Az2) + Te(v)(A)

= Te(us +v) (A1) + De{uy + v)(A2) + Teuy +v)(Ar) + De(ug + v)(As)
=Te(u; +v)(A) + Telus + v)(A),

which proves (4.24). Note that I'e(u; + u2)(A) = Ie(ur)(A) + Fe(ua)(A) by (4.24) in

the case v = 0. Next assume that {I'(f)} rep satisfies (Cla),. By using this equality and
applying (4.24) with v replaced by tv for ¢t € (0,00), we have

Cefin 0+ 0)(A) = Telon + 1)) | a0

Pe{ur + t0)(A) = Te(wn) (4) | Tefus + 1) (4) — Le(ua) (4)
t t ’

which implies (4.25) by letting ¢ | 0.
(d): The proof will be very similar to that of Proposition 3.30-(a). By applying (4.24)
with uy — uq, tv, uy for t € (0,00) in place of uy, us, v, we have

De(uy +tv)(A) = Te(ur)(A)  Te(ug + tv)(A) — Leug)(A)

t t ’

which implies the former equality in (4.26) by letting ¢ | 0. This equality in turn with
v,0,u; — uy in place of uy,uy, v yields the latter equality in (4.26) by the linearity of
Le(v; ) (A). u
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5 p-Energy measures associated with self-similar p-energy
forms

In this section, we focus on the self-similar case. We will introduce the self-similarity
for p-energy forms and construct p-energy measures with respect to self-similar p-energy
forms. Some fundamental properties of p-energy measures will be shown.

5.1 Self-similar structure and related notions

We first recall standard notation and terminology on self-similar structures (see [Kig01,
Chapter 1] for example). Throughout this section, we fix a compact metrizable space K,
a finite set S with #S > 2 and a continuous injective map F;: K — K for each 7 € §.
We set L = (K, S, {F;}ics)-

Definition 5.1. (1) Let W, = {0}, where ) is an element called the empty word, let
W, = 85" ={w...w, | w; € Sfori € {1,...,n}} for n € N and let W, =
Unenuioy Wa- For w € W,, the unique n € NU {0} with w € W, is denoted by |wl|
and called the length of w. For w,v € Wy, w = wy ... Wy, UV = V1 ...0,,, we define
wv € W, by wv = wy ... w01 ... 0, (W) = w, v = v).

(2) We set ¥ == SN = {wiwows ... | w; € S for i € N}, which is always equipped with the
product topology of the discrete topology on S, and define the shift map o: ¥ — %
by o(wiwews ... ) = wowswy . ... For i € S we define 0;: ¥ — ¥ by 0;(wiwows ... ) =
iwiwows . . .. For w = wiwaws ... € ¥ and n € NU{0}, we write [w], = w; ...w, € W,.

(3) For w = wy ... w, € W,, we set F, = F,, 0o---0F, (Fy=Iidg), K, = F,(K),
Ow = Oy, O+ 00y, (0p:=idy) and X, = 0,(2).

(4) A finite subset A of W, is called a partition of ¥ if and only if 3, N'X, = () for any
w,v € A with w # v and X = [J,,cp Zo-

Definition 5.2. £ = (K, S,{F;}ics) is called a self-similar structure if and only if there
exists a continuous surjective map y: > — K such that F; oy = yoo; for any i € S.
Note that such x;, if it exists, is unique and satisfies {x(w)} = ,cn K, for any w € X.

In the following definition, we recall the definition of post-critically finite self-similar
structures introduced by Kigami in [Kig93|, which is mainly dealt with in Subsection 8.3.

Definition 5.3. Let £ = (K, S, {F}}ics) be a self-similar structure.
(1) We define the critical set Cr and the post-critical set Py of L by

Co=X"(Uijesiz; KiNK;)  and  Pp =, y0"(Cr). (5.1)

L is called post-critically finite, or p.-c.f. for short, if and only if P, is a finite set.
(2) We set Vo = x(Pr), Voo = Upew, Fu(Vo) for n € Noand Vi = U, cnugoy Vo
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The set Vj should be considered as the “boundary” of the self-similar set K’; indeed,
by [Kig01, Proposition 1.3.5-(2)], we have

K,NK,=F,(Vo) N F,(Vp) for any w,v € W, with ¥, N %, = 0. (5.2)

According to [Kig0O1, Lemma 1.3.11], V,,_; C V,, for any n € N, and V, is dense in K if
Vo # 0.

The family of cells { Ky }wew, describes the local topology of a self-similar structure.
Indeed, { K,z }n>0, where K, , = UweWn;xE k., Kw, forms a fundamental system of neigh-
borhoods of z € K [Kig01, Proposition 1.3.6]. Moreover, the proof of [KKigO1, Proposition
1.3.6] implies that any metric d on K giving the original topology of K satisfies

lim max diam(K,,d) = 0. (5.3)

n—oo weWn,

Let us recall the notion of self-similar measures.

Definition 5.4 (Self-similar measures). Let £ = (K, S, {F;}ics) be a self-similar structure
and let (6;);es € (0,1)% satisfy >, s 6; = 1. A Borel probability measure m on K is said
to be a self-similar measure on L with weight (0;);cs if and only if the following equality
(of Borel measures on K) holds:

m=>0;(F).m. (5.4)

ies

Proposition 5.5 ([Kig01, Section 1.4] and [Kig09, Theorem 1.2.7]). Let L = (K, S,{F;}ics)
be a self-similar structure and let (6;)ics € (0,1)° satisfy >.,.50; = 1. Then there ex-
ists a self-similar measure m on L with weight (6;)es. If K # VOK, then m(K,) = 0,

and m(Fw(VDK)) = 0 for any w € W,, where 0, = 0y, -0y, forw = wy---w, € W,
(9@ = 1).

5.2 Self-similar p-energy forms and p-energy measures

In this subsection, we introduce the self-similarity for p-energy forms on self-similar struc-
tures and define the p-energy measures associated with a given self-similar p-energy form.
In the rest of this subsection, we fix a self-similar structure £ = (K, S, {F;}ics), a o-
algebra B which contains B(K'), a measure m on B with m(O) > 0 for any non-empty
open subset O of K, p € (1,00) and a p-energy form (€, F) on (K, m) with F C L°(K,m).
Also, we assume that K is connected.

Definition 5.6 (Self-similar p-energy form). Let p = (p;)ics € (0,00)°. A p-energy form
(E,F) on (K, m) is said to be self-similar on (L, m) with weight p if and only if the
following hold:

FNCK)={feC(K)| foF;,eFforanyiecS} (5.5)
S(f):ZpiE(foFi) for any v € F N C(K). (5.6)

€S
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Note that for any partition A of ¥, (5.6) implies
= pué(foF,), ueFnC(K), (5.7)
weA

where py, == Py, -+ pu, for w =w;...w, € W,. Indeed, (5.7) follows from an induction
with respect to max,ea |w|.

In the rest of this subsection, we assume that (€, F) is a self-similar p-energy form on
L with weight p = (p;)ics. We can see that the two-variable version £(f;g) also has the
following self-similarity.

Proposition 5.7. Assume that (£,F N C(K)) satisfies (Cla),. Then

9) =Y p€(foF;goF) forany f,g€FNC(K). (5.8)
€S

Proof. For any f,g € FNC(K) and t > 0, we have

(f+tg ZP oFﬁt(goE))—g(foE)

t
€S

Letting ¢ | 0 yields (5.8). O

Next we will see that p-energy measures are naturally introduced by virtue of the
self-similarity of (£, F) (see also [Hin05, MS‘)d ). For f € FNC(K), we define a finite
measure mén)<f> on W = S" by putting mg N {w)) = pu&(f o F) for each w € W,
Then, by (5.7), {mg (f)}n>0 satisfies the consistency condition and hence Kolmogorov’s
extension theorem yields a measure mg (f) on ¥ = S¥ such that mg(f)(Zy,) = pu&(foFy)
for any w € W,. In particular, mg(f)(X) = £(f). Basic properties of mg(-) are collected
in the following proposition.

Proposition 5.8. (a) Assume that (€, F N C(K)) satisfies (GC),. Then, for any A €
B(K), (mg(-)(A), FNC(K)) is a p-energy form on (K, m) satisfying (GC),.

(b) Assume that (£, FNC(K)) satisfies (Cla),. Then, for any A € B(K), (mg(-)(A), FN
C(K)) is a p-energy form on (K, m) satisfying (Cla),. In particular, for any f,g €
FNC(K), the following limit exists in R:

melfig)(4) = 5 el +1)(A)| | (5:9)

Moreover, mg(f; g) is a singed measure on (3,B(X)).

Proof. (a): Let ny,ne € N, ¢; € (0,p] and ¢2 € [p,o0]. For any T' = (13, ...,1,,): R" —
R" satisfying (2.1) and any w = (uy,...,u,,) € (FNC(K))™

[ (me(Tu@)) (A7)} |y < [ (meCwd (AP o A € B(K). (5.10)
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If A=Y, for some w € W,, then (5.10) is clearly true by (GC), for (£, F). By a similar
argument using the reverse Minkowski inequality on ¢9/? and the Minkowski inequality
on (®/P as in (2.20), (5.10) holds on the finitely additive class generated by {¥,}wew. .
Hence the monotone class theorem implies that (5.10) holds for any A € B(X).

(b): Note that a special case of (5.10) proves (Cla), for (mg(-)(A), F N C(K)); see
also Proposition 2.2-(e), (f). Then the derivative in (5.9) exists by Proposition 3.5 and
(5.10). In addition, mg(f; ¢g) turns out to be a signed measure on (¥, B(X)) by Proposition
4.6. (Even when (&€, F) does not satisfy (GC),, this argument together with the triangle
inequality for £Y/7 shows (5.10) in the the case (ni,n2,q1,¢) = (2,1,p,p) and Ty (z,y) =
x +y, i.e., the triangle inequality on F N C(K) for mg(-)(A)V7.) O

We now define a finite Borel measure I'¢(f) on K by
Le(f)(A) =me(f) o x ' (A) = me(f)(x ' (A), A€ B(K) (5.11)

where x: ¥ — K is the same map as in Definition 5.2. The following proposition states
basic properties and the self-similarity of {I'e(f)} rernc(x)-

Proposition 5.9. Let {T's(f)}rernc(k) be the measures defined by (5.11).

(a) {Te(f)}rerncx) satisfies De(f)(K) = E(f), in particular (EM1),, and (EM2),.
(b) Forany f € FNC(K), any w € W, and any n € NU {0},

pwE(f o Fy) <Te(f)(Ky) < Z poE(f o Fy). (5.12)

VEW; Ky MK #£D

(c) Assume that (€, FNC(K)) satisfies (GC), and let ny,ne € N, ¢1 € (0,p], ¢2 € [p, 0].
Then for any T=(T1,...,T,,): R"™ — R" satisfying (2.1), any w = (uy,...,u,,) €
}"ﬂ C(K nl and any Bm“el measurable function ¢: K — [0, 00], we have

H( T2 (T >>)1/p>n2 (( / godrg<uk>)1/p>

I=1
In particular Proposition 2.2 with ([, ¢ dTs(-), F N C(K)) in place of (€,F) holds
provided ||¢]|,,,, < oo.

sup

(d) The following equality holds:

ni

< (5.13)

092 k=11l¢a1

Te(f) = ple(foF)oF " forany f € FNC(K). (5.14)
i€s
(e) Assume that (£,F N C(K)) satisfies (Cla),. Then {U'e(f)}rerncw) also satisfies
(Cla), and
Te(fig) = ple(foFigoF)oF " forany f,ge FNC(K).  (5.15)
i€S

(f)  Assume that (€, F NC(K)) satisfies (Cla),. Then mg(f;g)ox ™' =Te(f;g) for any
f,ge FNC(K).
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Proof. (a): We easily have I'g(K) = me(f)(x H(K)) = me(f)(2) = E(f). The proof of
(EM2),, will be included in the proof of (c¢) below.

(b): This statement is the same as [MS23 1, Lemma 9.15|, which is easily proved by
noting that 3, C y}(K,) C Usew,:reonin 20 So-

(c): Assume that (£, F) satisfies (GC),. Let us fix T' = (11,...,T,,): R™ — R™
satisfying (2.1) and w = (uq,...,un,) € (FNC(K))". Let B € B(K). By (GC), for
(me(-)(x"Y(B)),FNC(K)) (see Proposition 5.8-(a)), we obtain

|(Ce(Tiw) (B) ) |, < | (Cetwd (B 7). B eBU).  (5.16)

=1 k=1

Again by a similar argument as in (2.20), we see that (5.13) holds for any non-negative
Borel measurable simple function ¢ on K. We get the desired extension, (5.13) for any
Borel measurable function ¢: K — [0, o0], by the monotone convergence theorem.

(d): The proof is very similar to [Shi24, Proof of Theorem 7.5|. Let k € N, w =
wi...w, € W, and n € N. We see that

> pime(f o F) (07 (Bw)) = pume(f 0 Fu, )05 (Bw) = puyme(f © Fu,)(Sus . )
€S
= ,Owlpwg,,.wkg«f o Fw1> o ng...wk) = m5<f>(2w>

Since w € W, is arbitrary, by Dynkin’s 7m-A theorem, we deduce that

me(£)(A) = 3 pme(f o F) 007 1(4), A€ B().
€S
We obtain (5.14) by x o g; = F; 0 x.

(e): Assume that (£,F) satisfies (Cla),. Then {I's(f)}serncx) satisfies (Cla), by
(5.16) (see also Proposition 2.2-(e),(f)). Now we obtain (5.15) by letting ¢ | 0 in

Pe(f +1g)(A) = > pile(f o Fy +t(g o F1)) (F'(A)).
ics
(f): This is immediate from (5.11), (4.5) and (5.9). O
We next prove the chain rule (CL2) for T'g(-). Such a chain rule is also obtained

in [BV05], but we provide here a self-contained proof because there are some differences
from the framework of [BV05].

Theorem 5.10 (Chain rule). Assume that Rl C E71(0) and that (€, FNC(K)) satisfies
(2.3), (2.6) and (Cla),. Then {F‘E(f)}fe]—'ﬂC(Kn? satisfies (CL2), i.e., for any n € N,
ue FNC(K), v=(v1,...,v,) € (FNC(K))", ® € CY(R) and ¥ € C*(R"), we have
O(u), V(v) e FNC(K) and

dTe(D(u); U(v)) =Y sgu(P'(u)) [ (w)" 05T (v) dle (u; vy). (5.17)
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Proof. We easily obtain ®(u),¥(v) € F by Corollary 2.4-(a) and Rlx C £71(0). To

show (5.17), we will prove

llim Pl (®(uo F,); ¥(vo F,)) —S(w)| =0 for any w € W, (5.18)

where xg € K is fixed and

Si(w) =Y pur <CI>’(u0FwT(x0))-(u0FwT); Zakxp(qum(xo))-@koFm)), I € NU{0}.

TeW,;

We need some preparations to prove (5.18). Note that, for any z € W, and x € K,
©(u(F(2))) — @ (u(Fx(20)))
= [u(F.(2)) — u(F.(z0))] (QI)’(U(FZ(%)))

[ [0 B0 + 0P 0)) = 0l (20))) = ¥ (P an)) dt).
In particular,

P(uoF.) — U, = ®(u(F.(z0)) — ®' (u(Fa(20)))u(F:(20)) + D1,
(K

where u,, D,, I, € C(K) are given by

"(u(Fa(0))) - (wo F.)(x),
(Fx(z )) u(F:(x0)),

L(z) = /0 [@/(U(FZ(I‘O)) +1D.(x)) —cp'(u(Fz(;co)))} dt, z¢€K.
Hence we have |pw€(<I>(u o F,);¥(vo F,)) — Sw)| < Aiy + Asy, where
= Z@k\ll(v(Fz(azo))) (vg o F,)(x) for ze W,z € K,

Al,l = Z Puwr }8 uo F’LUT (’U o F’LUT)) - E(CD(u o Fw‘r);@\w7>| )

TeW,;
AQ,Z = g Pwr ‘S 'LL © FwT U’LUT) - g(uwﬂ'; U'wr) ‘ .
TeW,;

(Note that u,,v, € F by (5.5).) Next we show lim; ., A;; = 0 to obtain (5.18). By
Corollary 2.4-(a), I, € F and there exists a constant Cy, ¢ € (0,00) depending only on
P |l gup > 12 sup, -2 ) such that £(I.) < Cue&(uo F.) and E(P(uo F.)) <

sup’?

Cua€(uo F,). Therefore, for any [ € NU {0},

Z Puwr€ (@(u o Fyr)— ﬂw)

TeW]
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<27 pur (1Ll EDu) + 1Dl (L)

TeW]

< 2r- 1(max\|zm Ny + max [ Dus Hsup> > pm( wr +cu¢5(quwT))

'eW
TeW,

< 2p71<1 + Cu,@)(‘:(u) <max ”LUT Hsup + max HDU}T HSUP)

Since u and @ are uniformly continuous on K, we have from (5.3) that both max, cw, || Ly ||
and max,ew, || Dy ||, converge to 0 as [ — oo, and hence

sup

sup

lim >~ pur€ ((wo Fupr) = Tur) = 0. (5.19)

Similarly, we can show that

zliglo Z Puwr€ (\If(v o Fyr) — @\wf) =0. (5.20)

TeW,;

Then, by (3.11), (3.12) and Holder’s inequality, we have

1/p
Al,l SJg(uOF (p Y <Z IOUIT 'UOFwT) _@\w7)> y

TeW]

and

Ag’l < Z prE(u o Fw7>(p—1—ap)/pg(q)(u o er) _ awT)ap/pg(i}\wT)l/p
TEW,

ap/p 1/p
S E(UOF (p=1=ap)/ <Z pr UOFwT) _awﬂ')) (Z pwﬂ'g(awq—)>

TeW] TeW]

ap/p
S E(uo B)omi= <me qum—ﬂw)) max £(vy 0 1),

TeW]

Combining these estimates with (5.19) and (5.20), we obtain lim; ., A;; = 0 and thus
(5.18) holds.

By the uniform continuities of ®’, d¥, and the fact that mg(f;g)(Xy) = pu&(f o
Fy;g0F,) forany f,g € FNC(K) and w € W,, we easily observe that

lim =0.
l—o0

Z/ sgn (@' (uox)) [P (uo )P 0.0 (v o ) dmg (u; vi) — Si(w)
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Hence, by (5.18) and the Dynkin class theorem,

dme (D(u); U(v)) = > sgn(®'(uwox)) ¥ (wo X)) 0¥ (vox)dme(usvy).  (5.21)

Then we obtain the desired equality (5.17) by (5.21) and Proposition 5.9-(f). O

In the case n =1, ¥ = & and v; = u in the theorem above, by noting that the proof
of (5.17) does not need (Cla), for (£, F), we get the following corollary.

Corollary 5.11. Assume that Rl C £7Y(0) and that (€,F N C(K)) satisfies (2.3)
and (2.6). Then {Ts(f)}ernck) satisfies (CL1), i.e., for any u € F N C(K) and any
® € CH(R), we have ®(u) € F and

dTe(D(w)) = |&'(w)]” dTe(u). (5.22)

We also have the following representation formula (see also [Cap03, Theorem 4.1]).

Proposition 5.12 (Representation formula). Assume that Rl C £71(0) and that (€, F)
satisfies (2.3), (2.6) and (Cla),. For any u,p € FNC(K),

-1

/Xsong<U> = E(uyup) — (p—)p_lé’(IUI”pl ). (5.23)

p

Proof. Define ® € C*(R) by ®(z) := |l’|p/(p71)' Note that ®'(z) = ﬁsgn(x) |x|1/(p*1).
By Theorem 5.10, we see that

/ngn( u)) |’ (u) D (u; @)

wdrs<u>—(f%)p (%) /K sen(u) o] dT (s o

:/Kgodfg<u>. =

In the following corollaries, we recall useful consequences of the chain rule in Theorem
5.10, which are immediate from Theorems 4.16 and 4.17.

Corollary 5.13. Assume that Rlx C £71(0), that (€,F N C(K)) satisfies (2.3), (2.6)
and (Cla),, and that (F,|-|lg,) is a Banach space. Then, for any u € F N C(K), the
Borel measure Te{u) ou™" on R defined by Te(u) ou ' (A) = Te(u)(u"1(A)), A € B(R),

15 absolutely continuous with respect to the Lebesque measure on R.

Corollary 5.14. Assume that R1x C £71(0), that (£, FNC(K)) satisfies (2.3), (2.6) and
(Cla),, and that (F, || - ||¢ ) is a Banach space. Let u,uy,us,v € FNC(K), a,ar,as,b € R
and A € B(K).
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(a) If ACu'(a), then Tg{u)(A) = 0.
(b) If AC (u—v)"Ya), then Tg(u)(A) = Te(v)(A).
(¢) If ACwuit(ay) Uuyt(ay), then

Fg <U1 + us + ’U>(A) + Fg(l)) (A) = Fg <U1 + U) (A) + F5<U2 + U> (A), (524)
LCe(ug + ug;v)(A) = Te{ug; v)(A) + Telug; v)(A). (5.25)

(d) If AC (u; —uz) *(a) Uv=t(D), then
Cefur;v)(A) = Telug;v)(A)  and Te(v;ui)(A) = Te(v;ug)(A). (5.26)

5.3 Extensions of self-similar p-energy measures

As in the previous subsection, we fix a self-similar structure £ = (K, S,{F;}ics), a o-
algebra B which contains B(K'), a measure m on B with m(O) > 0 for any non-empty
open subset O of K, p € (1,00) and a self-similar p-energy form (£, F) on (£, m) with

weight (p;)ics € (0,00)%. We always equip F with || - || ; and assume that K is connected.
f

In this setting, we discuss extensions of self-similar p-energy measures to F N C(K) .
Lemma 5.15. Assume that F equipped with || -||¢ | is a Banach space and that m is a
self-similar measure on K. Let u € F and {uy}neny € F N C(K). If {uy}nen converges
in F tou, then {u, o Fy}tnen converges in F to wo F,, for any w € W,. In particular,

uoF, € FN C’(K)f for any w e FN C(K)]E and any w € W,. (5.27)
E(u) = Zpié'(u oF;) foranyué€ FN C’(K)I. (5.28)
i€s

Proof. Let {uy,}nen satisfy lim, o ||u — unH&1 = 0. Then we easily see from the self-
similarity of m that {u, o F}, },en converges in LP(K, m) to uo F,, for any w € W,. Since
E(up o Fy —ugo Fy) < pgtE(u, —uy) for any n, k € N by (5.6), {u, o F,, }nen is a Cauchy
sequence in F. Therefore, it has to converge to u o F,, in F, which shows (5.27). By
letting n — oo in (5.6) for u,, we obtain (5.28). O

Once one obtains the identity (5.28), in a similar way using Kolmogorov’s extension
theorem as in the previous subsection, one can define a finite Borel measure mg(u) on X

for each u € F N C’(K)]E so that mg(u)(X,) = pw€(uo F,) for any w € W,. The following
lemma states the triangle inequality for mg{-)(A4)Y? on F N CO(K )f.

Lemma 5.16. Assume that F equipped with || -||¢ | is a Banach space and that m is a

self-similar measure on K. Then for any u,v € F N C(K)F and any A € B(X),
me (u + 0) (A7 < me(u) (AP + me (v)(A)VP.

Proof. One can easily obtain the desired triangle inequality by following the argument in
the proof of a special case of Proposition 5.9-(c). ]
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Now we identify the p-energy measures {T'¢(u)} Frew) obtained by applying Propo-

ueFNC(K
sition 4.11 for the measures defined in (5.11) with {mg(u >

X }ue]-'ﬁC( 7

Proposition 5.17. Assume that F equipped with || - ||571 is a Banach space and that m
is a self-similar measure on K. Then for any u € F N C’(K)F and any A € B(K),

Te(u)(4) = me(u)(x ' (4)). (5.29)

Proof. The equality (5.29) for u € F N C(K) is obvious from the definition of I'g(u)
n (5.11). Then the desired assertion immediately follows from (4.18), Lemma 5.16 and

SUP e (s Me (1) (A) < E(u). o

We conclude this section by seeing that self-similar p-energy measures can be extended
to a localized version of F in Definition 5.19 below. To this end, we need the following
lemma.

Lemma 5.18 (Weak locality of self-similar p-energy measures; [MS23+, Lemma 9.6]).
Assume that F equipped with || - || is a Banach space and that m is a self-similar measure

on K. Let U be an open subset of K. If u,v € ]—“F‘IC(K)JT satisfy uw = v m-a.e. on U,
then Tg(u)(U) = Te(v)(U).

Proof. The proof is exactly the same as [MS23+, Lemma 9.6], but we recall the details
here for the reader’s convenience. By the inner regularity of I'c(u) and I'g(v) (see, e.g.,
[Dud, Theorem 7.1.3|), it suffices to show I'g(u)(A) = T'e(v)(A) for any closed subset A
of U. Let d be a metric on K giving the original topology of K. By (5.3), we can choose
0 € (0,distq(A, K\U)) and N € N so that max,ew, diam(K,,d) < § for any n > N. For
n € N, define C,, = {w € W,, | 3, N x"'(A) # 0}. Since uo F,, = vo F, (m-a.e. on K)
for any n > N and any w € C,,, we have

u)(Xe,) = Z puw€(uo Fy) Z pu€(vo Fy) =me(v)(Xcg,).

weChn wely,

Since {X¢, }nen is a decreasing sequence satisfying (), .y Xc, = x ' (4) (see [Hln )5, Proof
of Lemma 4.1] or [MS23 +, Proof of Proposition 9.3|), we obtain I'g(u)(A) = T's(v)(A) by
letting n — oo in the equality above. D

Definition 5.19. Let U be a non-empty open subset of K.
(1) We define a linear subspace Fio.(U) of L%(U, m|y) by

FioelU) = {f e LU, mly)

f = f* m-a.e. on V for some f# € F for (5.30)
each relatively compact open subset V of U [~

(2) Assume that F equipped with || - ||, is a Banach space and that m is a self-similar
measure on K. In this setting, for each f € Fioo(U), we further define a measure
Le(f) on U as follows. We first define T¢(f)(E) = Te(f#)(E) for each relatively
compact Borel subset E of U, with A C U and f# € F as in (5.30) chosen so that
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E C A; this definition of T'g(f)(FE) is independent of a particular choice of such A
and f# by Lemma 5.18. We then define I'g (f)(E) := lim,, o [e(f)(E N A,) for each
E € B|y, where {A,}nen is a non-decreasing sequence of relatively compact open
subsets of U such that | J,.y A, = U; it is clear that this definition of I'¢(f)(£) is
independent of a particular ch01ce of {A, }nen, coincides with the previous one when
E is relatively compact in U, and gives a Radon measure on U.

5.4 Self-similar p-energy form as a fixed point

In this subsection, we present a standard method to construct a self-similar p-energy
form. The main result of this subsection (Theorem 5.21) is essentially the same as the
fixed point theorem in [Kig0O0, Theorem 1.5|, but we present the details to show a useful
version of this fixed point theorem where a fixed point is explicitly given as a limit.

As in the previous subsection, we fix a self-similar structure £ = (K, S,{F;}ics), a
o-algebra B which contains B(K), a measure m on B with m(O) > 0 for any non-empty
open subset O of K and p € (1,00), and a linear subspace F of LP(K,m). We assume
that K is connected and that F satisfies the following property:

wo F, € F forany u € F and w € W,.
We define
C,(F) ={E: F = [0,00) | (£, F) is a p-energy form on (K, m)}.
Definition 5.20. Let p = (p;)ics. For n € NU {0}, we define S,,,: €,(F) — &,(F) by

= Z pwE(uo F,) for E € &,(F)and ue F. (5.31)

weWn,

(Note that the triangle inequality for S, ,(F)'/P can be shown easily.) Set S, == S, for
simplicity. Clearly, Sy, =S :=8,08,0--05,,.

n

The desired self-similar p-energy form with weight p will be constructed as a non-
trivial fixed point of S,. The following theorem, which can be regarded as a version of
[Kig00, Theorem 1.5] in a specific situation, describes when we can find such a fixed point
and how it is obtained.

Theorem 5.21. Let p = (pi)ics and let E° € €,(F). Assume that F equipped with
| +1l¢o1 is a separable Banach space and that there exists a constant C' € [1,00) such that

C1E%u) < 8pn(E)(u) < CE ()  for anyu € F and any n € NU {0}. (5.32)
Then there exists {ny}ren € N with ng < ngyq1 for any k € N such that the following limit
ezists in [0,00) for any u € F:

nE—1

el 0
E(u) = lim - Z S, (% (5.33)
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Furthermore, (€, F) is a p-energy form on (K, m) satisfying
CE%u) < E(u) < CEu)  for any v € F and any n € NU {0}, (5.34)

where C' is the constant in (5.32), and

= Z pw€(uo Fy)  for any uw € F and any n € NU {0}. (5.35)

’LUGWn

Proof. The Set &" = n™! Z;.:Ol S,;(E°) for n € N for simplicity. Then it is clear that
E" € €,(F). Let € be a countable dense subset of F. Since {£"(u)}nen is bounded in
[0, 00) for any u € F by (5.32), by a standard diagonal procedure, there exists {ng rey C N
with ng < ngq for any k£ € Nsuch that {E™ (u) }ren is convergent in [0, 0o) for any v’ € €.
Let u € F, ¢ > 0 and u, € € satisfy £°(u — u,)'/? < . Then for any k,l € N, by the
triangle inequality for £*(-)¥? and (5.32),

‘gnk (u)l/p _ gnz( 1/p|

‘5%( )1/p 5nk l/p} + ‘gnk 1/p gnz l/p‘ + ‘gnz 1/p_5nz<u*)1/p}
< 20VPe 4 ’gnk l/p E™ (u) 1/p|7

whence lim supy_,q [E™ (1)!/? — E™(u)/?| < 2C'/Pe. Therefore {£™ (u)}ren is conver-
gent in [0,00) for any u € F, so the limit in (5.33) exists. It is clear that (£,F) is a
p-energy form on (K, m) satisfying (5.34).

Let us show (5.35). For any n € N and any u € F, we easily see that

%) + 8,(6") () = ~E"(u Z Spi1(EM)(w) = £"(u) + Sy (€M)(w).  (530)

Since limy, o S,(E™)(u) = S,(E)(u) and limy, o 1}, 'Sy, (E°)(u) = 0 by (5.32), we obtain
S5, (€) = & by letting n — oo along {ny}ren in (5.36). Hence (5.35) holds. O

By virtue of the explicit representation (5.35), the resulting p-energy form (&, F)
inherits some nice properties of (£°, F). In the following proposition, we see that (GC),
and the invariance under good transformations are examples of such properties.

Proposition 5.22. Assume the same conditions as in Theorem 5.21 and let £ be given
by (5.35).
(a) If (E° F) satisfies (GC),, then (€, F) also satisfies (GC),.

(b) Let T be a family of Borel measurable maps from K to K. Assume that uoT € F
and E%(uoT) = E%u) for anyw € F and any T € T . Furthermore, we assume that

F'oToF,€J foranyw e W.. (5.37)

Then E(uoT) = E(u) for anyuw € F and any T € 7.
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Proof. (a): Let ny,ny € N, ¢1 € (0,p], g2 € [p,oc] and T = (T4,...,T,,): R — R
satisfy (2.1). Let w = (uq,...,u,,) € F. Then T)(ux o F,,) = T)(ux) o F,, € F for any
ke{l,...,n1} and any w € W, by (GC), for (£°, F) and Lemma 5.32. If g5 < oo, then
by a similar estimate as (2.20),

;Sp(50)<ﬂ QQ/P Z

q2/p

> pi(Ti(u) o F)

€S

/a2 q2/p

S0 (Ti(u) o )™

=1

Zpi

€S

Zpl [ZSO uy, o F)) q1/p

€S

(by the triangle ineq. for || - || ,4/»)

pla\ /P

P

a/p ey n a2/q
- (Saenwrs)

whence || (S,(E%)(Ty(u))"/?)” o < II(S 5 (E0) (ug)?) L |l on - The case g = oo is similar,
s0 (S,(EY), .7-" ) satisfies (GC),. Snmlarly, one can easily show that (S,,(€), F) satisfies
(GC)p for any n € N. Hence (GC), for (€, F) holds by (5.35) and Proposition 2.9-(b).

(b): By (5.35), it suffices to prove S,,(E®)(uoT) = S,,(E%)(u) for any u € F and
any T € 7. We immediately see that

Spn(€)woT) = 3 pu€%(uoT)oF,)

Z[Zpl (ug o F})

k=1 LieS

weWy,
= Z puE((uo Fy) o F ' oT o Fy)
weWn,
=1 ) pufl(uoFy) = Spn(€)(u),
weWn,
which completes the proof. O]

Also, (€, F) in Theorem 5.21 turns out to be strongly local under a mild condition.

Proposition 5.23. Assume the same conditions as in Theorem 5.21 and let £ be given
by (5.35). If {u € F | E%u) = 0} = Rlg, then {u € F | E(u) = 0} = Rlg and (€, F)
satisfies the strongly local property (SL1).

Proof. 1t is immediate from (5.34) that {u € F | £(u) = 0} = R1x. We will show (SL1)
for (£, F). Let uj,ug,v € F and ay,ay € R. Set A; := supp,,[u; — a;1k]| for i € {1,2}
and assume that A; N Ay = (. By (5.3), there exists n € N such that (U, (4, Kw) N
(Uwew,(as) Kw) = 0, where W, [A;] == {w € W,, | K,y A; # 0}. Note that u; 0 I, = a;1x
for w € W, \ W,[4;]. This together with £(1x) = 0 and (5.35) yields that

5(’(1,1 + U2 +’U)
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= Z puw€(uy o By +vo Fy) + Z puw(uz o Fyy +vo Fy)

wEW,[A1] wEW,[A2]

+ Z puw€(vo Fy)

WEWn\ (Wi [A1]UWn[A2])
=&E(ur +v)+ E(ug +v) — Z pwE(vo Fy,) — Z puw€(vo Fy)

wEWn\Wn [Al] wEWn\Wn [AQ}
+ Z pu€(vo Fy)
wEWR\(Wn [A1]UW,[A2])
=E(uy +v) + E(ug +v) — E(v),

which shows (SL1). O

6 p-Resistance forms and nonlinear potential theory

In this section, we will introduce the notion of p-resistance form as a special class of p-
energy forms, and investigate harmonic functions with respect to a p-resistance form. In
particular, we prove fundamental results on taking the operation of traces of p-resistance
forms, weak comparison principle and Holder continuity estimates for harmonic functions.
We also show the elliptic Harnack inequality for non-negative harmonic functions under
some assumptions, and introduce the notion of p-resistance metric with respect to a given
p-resistance form.

Throughout this section, we fix p € (1,00), a non-empty set X, a linear subspace F of
R¥ and £: F — [0,00). (This setting corresponds to choosing m as the counting measure
on X in the previous sections.)

6.1 Basics of p-resistance forms

The next definition is a LP-analogue of the notion of resistance form; see [Kig01, Kig03,
Kig12] for details on resistance forms.

Definition 6.1 (p-Resistance form). The pair (£,F) of F C R¥ and £: F — [0,00)

is said to be a p-resistance form on X if and only if it satisfies the following conditions

(RF1),-(RF5),:

(RF1), F is a linear subspace of R¥ containing R1x and £(-)Y? is a seminorm on F
satisfying {u € F | £(u) =0} = Rly.

(RF2), The quotient normed space (F/R1y,EYP) is a Banach space.

(RF3), If z # y € X, then there exists u € F such that u(z) # u(y).

(RF4), For any z,y € X,

u(z) — u(y)l”

Re(z,y) = Rep(r,y) = sup{ E(u)

u€f\RﬂX}<oo. (6.1)
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(RF5), (€,F) satisfies (GC),,.

Remark 6.2. (1) The notion of 2-resistance form coincides with the original notion of

(2)

resistance form (see [KigOl, Definition 2.3.1] for the definition of resistance forms)
although the condition (RF5), is stronger than (RF5) in [KigO1, Definition 2.3.1].
Indeed, we can obtain (RF5), by [Kigl2, Theorem 3.14] and the explicit definition of
Er,, in |[Kigl2, Proposition 3.8|.

Let (€, F) be a p-resistance form on a finite set V. Then F = R by (RF1),, (RF3),
and (RF5H), (see also [Kigl2, Proposition 3.2]), so we say simply that £ is a p-resistance
form on V' if V is a finite set.

Example 6.3. (1) Consider the same setting as in Example 3.10-(1) and suppose that

2 is a bounded domain satisfying the strong local Lipschitz condition (see [AF, Para-
graph 4.9]). Then the p-energy form ([, |V f|" dz, W'?(Q)) is a p-resistance form on
Q2 if and only if p > D. Indeed, (RF1), and (RF5), are clear from the definition
(we used the boundedness of € to ensure R1g C LP(Q2)), (RF2), and (REF3), follow
from [AF, Theorem 3.3 and Corollary 3.4] for any p € (1,00). If p > D, then we can
use the Morrey-type inequality [AF, Lemma 4.28] to verify (RF4),. Conversely, the
supremum in (6.1) is not finite when p < D. To see it, we can assume that z =0 € .

Let 0 € (0,00) be small enough so that B(0,d) C 2 and y ¢ B(0,6). For all large
n € N so that n~! < 4, define u,, € C(Q2) by

log |z| ' —log 6! i
= 1 Q.
n(2) ( logn — log 6! ) AL 2€

Then we easily see that u,(0) =1, u,(y) = 1 and u,, € W'?(Q) with
1 1

p p 6
|Vu,|” dz < / |2| ™ dz = |Sp_1| |——— / rpPtP=1 gy
/Q log (n0) | JB.s0\B0ON-1) log (nd)| J1

* (ISp-11J1og (ns)| "V it p = D,
= log (nd)| (5D*p - n’(D’p)) if p<D,

where |Sp_i| is the volume of the (D — 1)-dimensional unit sphere. In particular,

W — 00 as n — 00, so (RF4), does not hold.
nlllLp )

The construction of a regular p-energy form on a compact metric space (K,d) in
[Kig23, Theorem 3.21] needs the assumption p > dimagrc(K, d), where dimagrc (K, d)
is the Ahlfors regular conformal dimension of (K,d). (See Definition 8.5-(4) for the
definition of dimarc(K,d). The same condition p > dimarc(K, d) is also assumed
in [Shi24].) This condition p > dimagrc (K, d) plays the same role as p > D in (1)
above (see also [CCK24, Theorem 1.1]). In Theorem 8.19, we will see that p-energy
forms constructed in [Kig23, Theorem 3.21| are indeed p-resistance forms. We also
show that p-energy forms on p.-c.f. self-similar sets in [CGQ)22, Theorem 5.1| under
the condition (R) in [CGQ22, p. 18| are p-resistance forms in Theorem 8.42.
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(3) Here we recall typical p-resistance forms on finite sets given in [KS23+, Example 2.2-
(1)] because these examples are important to construct self-similar p-resistance forms
on p.-c.f. self-similar structures in Subsection 8.3. Let V' be a non-empty finite set.
Note that in this case £ is a p-resistance form on V if and only if £: RV — [0, c0)
satisfies (RF1), and (RF5),; indeed, (RF3), is obvious for F = RY, (RF2), and
(RF4), are easily implied by (RF1), and dim(F/R1y) < oco. Now, consider any
functional £: RV — [0, 00) of the form

Ew)= 3 Y Leylula) —u(y)” (62)
x,ycV

for some L = (Lyy)zyev € [0,00)"*V such that L,, = Ly, for any z,y € V. It is
obvious that & satisfies (RF1), if and only if the graph (V, EL) is connected, where
Ep ={{z,y} |z,y € V, z #y, L, > 0}. Itis also easy to see that & satisfies (RF5),.
It thus follows that £ is a p-resistance form on V' if and only if (V| E) is connected.
Note that, while any 2-resistance form on V is of the form (6.2) with p = 2, the
counterpart of this fact for p # 2 is NOT true unless #V < 2.

In the rest of this section, we assume that (£, F) is a p-resistance form on X. Then
the following proposition is immediate from the definition of Re and Theorem 3.22.

Proposition 6.4. (1) For any u € F and any z,y € X,
u(z) — u(y)|” < Re(x, y)&(u). (6.3)

(2) Ré/p is a metric on X.

(3) (F/Rlx,EYP) is a uniformly convex Banach space, and thus it is reflexive.

In particular, X can be regarded as a metric space equipped with Ré/ P We equip X
with the topology induced from R(lg/ P Then we note that F C C(X).

We introduce the regularity of p-resistance forms as follows.

Definition 6.5 (Regularity). Assume that X is locally compact. (£,F) is said to be
reqular if and only if F N C.(X) is dense in C.(X) with respect to the uniform norm.

The regularity ensures the existence of cut-off functions.

Proposition 6.6. Assume that X is locally compact and that (€, F) is reqular. For any
open subsets U,V of X with v compact and v C U, there exists p € F N C.(X) such

that 0 < ¢ <1, ¢ =1 on an open neighborhood of 7 and supp[y)] C U. In particular,
FNCX) is a special core.

Proof. Since X is locally compact, we can pick open subsets €21, {25 of X such that I C
Q; C )y, Q_ZX C U and Q_QX is compact. By Urysohn’s lemma, there exists g € C.(X)
satisfying 0 < 19 < 1, b9 = 1 on €, and supp[tpy] C U. Since (&€, F) is regular,
for any e > 0 there exists ¢. € F N C.(X) such that [|¢o — ¢l ,, < e Now define
¢ = [(1-2¢e)7 (- —€)T] A1, then ¢ € F by (RF1), and Proposition 2.2-(b). The other
desired properties of v are obvious. O
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We need the following notation to define traces of a p-resistance form later.

Definition 6.7. Let B be a non-empty subset of X. Define a linear subspace F|g of F
by.7:|B:{u|B|u€.7:}.

The following proposition is useful to discuss boundary conditions on finite sets.

Proposition 6.8. For any subset B of X with 2 < #B < oo, we have F|p = R5.

Proof. Tt suffices to show that 12 € F|p for any z € B by virtue of (RF1),. Let = € B.
For each y € B\ {z}, by (RF1), and (RF2),, there exists u, € F satisfying u,(z) = 1

and uy(y) = 0. Let f = 3" p (y(uy A1) and g = ZyeB\{z}((l — u,)" A'1). Then
f,g € F by (RF1), and (RF5),. Since f(x) = #B — 1, f|p\fay < #B — 2, g(x) = 0 and
gB\{z} > 1, the function h € F given by

hi=(f—(#B-2)(g" A1) A1
satisfies h|p = 12 and hence 17 € F|3. O

The next definition is introduced to deal with Dirichlet-type boundary conditions.

Definition 6.9. For a non-empty subset B C X, define

F'B)={uec F|u(x)=0forany z € X\ B}, B := m u™(0).
u€FO(X\B)

For basic properties of B”, see [Kig12, Chapters 2, 5 and 6]. Here we only recall the
following results, which will be used later.

Proposition 6.10 (|[Kigl2, Theorems 2.5 and 6.3]). Let B be a non-empty subset of X.
(a) Cr = {B | B C X,B = Bf} satisfies the axiom of closed sets and it defined a
topology on X. Moreover, {x} € Cx for any x € X.

(b) For any B C X and x & B”, there exists u € F such that u € F°(X \ B), u(z) =1
and 0 < u <1.

(c) Assume that X is locally compact and that (€, F) is reqular. Then B = B” for any
closed set B of X.

Proof. The statements (a) and (b) follow from [Kigl2, Theorem 2.4 and Lemma 2.5|. The
argument showing (R1) = (R2) in [Kigl2, Proof of Theorem 6.3] proves (c). O

For B C X and = € B”, we define

Ju(z)”
E(u)

Note that Re(z, {y}) = Re(z,y) for y € X \ {z} by Proposition 6.10-(a).

Re(x, B) = R ry(x, B) = sup{

u€ FUX\ B),u(r) # o} <oo.  (6.4)
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6.2 Harmonic functions and traces of p-resistance forms

In this subsection, we consider harmonic functions with respect to p-resistance forms and
traces of p-resistance forms to subsets of the original domains.

The following proposition states that the variational and distributional formulations
of harmonic functions coincide for p-resistance forms.
Proposition 6.11. Let h € F and B C X. Then the following conditions are equivalent:
(1) £(h) =inf{€(u) | u € F,ulp = h|g}.
(2) E(h; ) =0 for any ¢ € FO(X \ B).

Proof. Let ¢ € F°(X \ B) and set E(t) :== E(h + ty) for t € R. Then E is differentiable
by Proposition 3.5. If £(h) = inf{&(u) | u € F,u|p = h|p}, then E takes its minimum at
t = 0. Hence pE(h; p) = %E(mz&:o = 0, which implies £(h;¢) = 0 and proves (1) = (2).

Conversely, suppose that £(h;p) = 0 for any ¢ € F(X \ B). Let v € F with

v|g = h|g. Then E(h) — E(h;v) = E(h; h —v) = 0. By (3.11) and Young’s inequality,
-1 1
E(h) = E(hsv) < EMOIIEW < E g (h) +£(v),

which implies £(h) < &(v). Therefore, £(h) = inf{E(u) | v € F,u|lp = h|g} and the
implication (2) = (1) is proved. O
Definition 6.12 (£-harmonic functions). Let B C X and h € F. We say that h € F is
E-subharmonic on X \ B if and only if

E(h;p) <0 for any ¢ € FO(X \ B) with ¢ > 0. (6.5)

We say that h € F is E-superharmonic on X \ B if and only if —h is £€-subharmonic on
X \ B. If h is E-subharmonic and £-superharmonic on X \ B, i.e., h satisfies either (and
hence both) of (1) and (2) in Proposition 6.11, then h is called £-harmonic on X \ B. We
set He g = {h € F | h is E-harmonic on X \ B}.

E-harmonic functions with given boundary values uniquely exist, and their energies
under £ define a new p-resistance form on the boundary set, as follows. This new p-
resistance form is called the trace of (£, F) on the boundary set.

Theorem 6.13. Let B C X be non-empty, and define E|p: F|p — [0,00) by
E|lp(u) =inf{€(v) |v e F,vlp=u}, ueF|s. (6.6)

Then (€|p, F|p) is a p-resistance form on B and Rg), = Re|pxp. Moreover, for any
u € F|p there exists a unique h[u] € F such that h%[u”B = u and E(h5[u]) = E|p(u),
so that h%(F|g) = He.p, and

hGlau + bl ) = ahyu] + blx  for any u € Flp and any a,b € R, (6.7)
Elp(u;v) zg(h‘;[u];h%[v]) for any u,v € F|g, )
Elp(flz;gls) = E(f;9) for any f € Hep and any g € F, (6.9)

where E|p(u;v) = % LE|p(u+ tU)‘t:O for u,v € Fl|p (recall (3.8)).
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Remark 6.14. The map h%|-] does not satisfy either h§[u + v] < h§[u] + h§[u] for any
u,v € F|p or h§[u + v] > h§[u] + h§u] for any u,v € F|p in general, unless p = 2 or
4B <2.

Proof. We first show the desired existence of h§[u] for any v € F|p. Let us fix y, € B
and let o == inf{&(v) | v € F with v|p =u} € [0,00). Then there exists {v,}nen such
that v, € F, v,|p = v and E(v,) < a+n~! for any n € N. Note that ”’“TJ”” € F also
satisfies (”’“TJ“”) |B = u for any k,l € N. In the case p € (1, 2], we see that

(2.7) .
(o — v)YP D < 2(E () + E(u)) YT = E(ug 4 0) /D

<22 4kt 17T gm0 1/ -1

_ 2(205)1/(}771) _ 2p/(p*1)a1/(p*1) — O (610)

kNl—00

Similarly, in the case p € [2,00), we have

(2:9) .
E(vp —vy) < 2(8<Uk)1/(p_1) + 8(@;)1/(”_1))” b E(vy, +vy)

< 2((Oz + k:_l)l/(p_l) + (o + [—1)1/(17—1))?*1 _ 9Py

——— (2P _org =, (6.11)

kAl—o0

Consequently, {v, }nen is a Cauchy sequence in (F/Rly,EY?). By (RF2),, there exists
h € F such that h(y.) = u(y.) and lim,, o E(h — v,) = 0. For any y € B, by (RF4),,

1h(y) —u)|” = 1My) —va(W)]" = [(h =) (y) = (h = va) ()" < Rely, y=)E(h—vy,) — 0,

and hence h|p = w. In particular, h is a minimizer of o. Suppose that g € F also
satisfies g|p = v and €(g) = a. Then a similar estimate to (6.10) or to (6.11) imply that
E(h—g)=0. Since h —g € FO(X \ B) and B # ), we have h = g = h§[u] by (RF1),.
The property (6.7) immediately follows from (RF1), for (£, F).

Next we prove that (€|p, F|p) is a p-resistance form on B. It is clear that &|g(au) =
lal’ €|p(u) for any u € F|g. Let us show the triangle inequality for &|z(-)"/?, Since
(h5[u] + h5[v])|, = u + v for any u,v € F|p, we see that

Elp(u+0)? = E(Wgu+ )" < E(hG[u] + M5 [v]) "
< E(hGMu)) " + E (W51 7 = El()/” + Els(v) 7.

By (6.7), we easily see that F|p contains Rlp. If u € F|p satisfies £|p(u) = 0, then
h%[u] € R1x and hence h§[u]|, = u € R1p. Thus (RF1), for (€], F|p) holds. To prove
(RF2), for (&|p, FlB), let {u,} C F|p satisty limunm—oo €| 5(Un — um) = 0. Then, by the
triangle inequality for &|p(-)'/?, we easily see that {&€|p(u,)}nen is a Cauchy sequence
in [0,00). By (Cla), for (£,F) and a similar argument to (6.10) (or to (6.11)), we have
limn/\mﬁooé'(h% [un] — h%[um]) = 0. Hence there exists h € F such that lim, ,. E(h —
h%[u,)) = 0 by (RF2), for (€, F). Then €|p(h|p —u,) < E(h—h§[u,]) — 0, which proves
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the completeness of (F|p/R1g,&|p(-)"?). The condition (RF3), for F|p is clear from
that of 7. The inequality Rg|, < Re|pxp (and hence (RF4), for (€|p, F|p)) follows from
the following estimate:

jule) — u@) _ |Wlul()
Elp(u) E(h

h5[ul(y)|”
[u])

To show the converse inequality Rg|, > Re|pxp, let 2,y € B and let u € F \ Rly.
Suppose that u(z) # u(y). Then u|p € F|g \ Rlp and E(u) > &|p(u|p) > 0. Therefore,

< Reg(x,y) for any z,y € B, u € F|g.

™

() — u@) _ Juls(z) — uls@)
£w) = Elplup)

The same estimate is clear if u(z) = u(y), so taking the supremum over u € F\R1 yx yields
Re(x,y) < Re,(x,y). Lastly, we prove (RF5), for (€|, F|g). Let ni,ny € N, ¢ € (0, p),
@ € [p,o0], w = (u1,...,u,) € (F|p)"", and suppose that T = (T3,...,T,,): R™ — R™
satisfies (2.1). Note that Tj(u) = T;(h[w], . .., h[un,])| ; € Flp. Therefore, if g» < oo,
then

< Rg‘B(x,?J)-

1/g2

2 Haz 112 q2/p
(zaB(Tl(u»‘””) < <Z<‘J(ﬂ(h%[m],--.,h‘é[um])> />
=1 l:? Ve .
< (Z 5(h%[uk])ql/p> _ (Z 5|B(uk)q1/p>

The case ¢o = oo is similar, so (£]p, F|p) satisfies (GC),.

a1

We conclude the proof by showing (6.8) and (6.9). By Proposition 3.5, we know that

lim Elpluttv) —E&|p(u)

d
in o = £5|B(u + tv)

)
t=0

and

o £ 15 ] = 1) — & (1)
10 +t

For any ¢ > 0, we have

£ (] — thlo]) — E(W5[u]) _ Elalu—to) — Elnw
—t = —t
< Elp(u+tv) —&|p(u) < E(hg[u] + thg[v]) — €(hG[u))
o t - t ’
and hence we obtain (6.8) by letting ¢ | 0. If f € He p, i.e., h§[f|5] = f, then E(f;g) =

E(f;h%lg)) = Els(flp;glp) since g — h§g|s] € FO(X \ B) for any g € F. This proves
(6.9). 0

= p& (h5[u]; h5[v]).

The following proposition states a compatibility of the operation taking traces.
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Proposition 6.15. Let A, B be subsets of X such that) # A C B. Then (E|g|a, F|sla) =
(Ela, Fla) and hé o hE® = h& for any u € Fla. In particular, b5 [u] = h4[u]| -

Proof. Clearly, we have F|p|a = F|a. For any u € F|4, we see that

Ela(u) = E(h4[u]) > min{&(v) | v € F such that v|p = hi[uHB}
:g|B(hi[UHB)
> min{&|p(w) | w € F|p such that w|s = hi[u”A =u}
= &lpla(u) = Eln (n5" [u]) = € (W5 (157 ]
> min{E(v) ‘ v € F such that v]4 = (h§ o hi'B)[uHA = u} = &|a(u),

which implies £[4(u) = €|pla(u) and E(hG[u]) = E((hG o hiIB)[u]). Since restrictions of
both functions h4[u] and (h% ohg|B )[u] to A are u, the uniqueness in Theorem 6.13 implies

hlu) = (h% 5|B) [u]. Considering the restriction to B yields hng[ ] = hé[u] }B. O

The following theorem presents an expression of (£, F) as the “inductive limit” of its
traces {€]v }vcxi<#v<oo to finite subsets, which is a straightforward extension of the
counterpart for resistance forms given in [Kaj, Corollary 2.37|. This expression can be
applied to get a few useful results on convergences of the seminorm £/7.

Theorem 6.16. It holds that

F= {u c R sup Elv(uly) < oo}, (6.12)
VCX;1<#V <o
E(u) = sup Elv(uly) for anyu e F. (6.13)

VCX1<#V <o
Proof. Let us define (&,, F.) by

E(u)= sup  Ely(uly), uweRY,
VCX1<#V <00

and F, == {u € RY | £,.(u) < co}. Then EM7 is clearly a seminorm on F, and {u e F. |
E.(u) = 0} = Rlx. We first show that, for any V' C X with 1 < #V < oo and any
u€RY,

hylu) € Fo and  Elyv(u) = min{&(v) | v € F,v|y = u} = E(h{ [u]), (6.14)
both of which are obtained by seeing that, for any U C X with 1 < #U < oo,
Elo (W [ul],) < E (T [u]) = Elv(w)

Indeed, taking the supremum over U, we get &, (h§[u]) < €]y (u) and hence (6.14) holds.
(The converse Ely(u) < & (hf[u]) is clear from the definition.) We also note that &,
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satisfies (Cla), since (€|y, Fl|y) is a p-resistance form for each Y C X and &|y(uly) <
E|v(uly) for any U,V C X with 0V C U and u € RY.

The inclusion F C F, and &, < & (on F) easily follow from the following estimate:
Elv(uly) = E(h{[ulv]) < E(u) for any u € F and V C X with 1 < #V < cc.

To show F, C F and £ < &,, let u € F,, let us choose a subset V,, C X for each n € N
such that 1 < #V,, < oo and &|y, (ulv,) > E.(u) —n!, and set u, = hf, [uy,]. Then

(6.14) (6.14)

E(u) —n"! < &y, (uly,) =" E(u) < Ei(u),

which implies that lim, . & (u,) = lim,_,o E(u,) = Ei(u). Using (Cla), for &, and
E (M) > &, (uy), we easily obtain lim, o & (u — u,) = 0 similarly as (6.10) or (6.11).
We next show that {u, }ney is a Cauchy sequence in (F/R1y,EY?). From (Cla), for &,
limy, o0 E(uy) = limy, o0 Ex(uy,) = E.(u) and

5.14
E(ue +w) > E(hY, o[ (ur + w)lvionl) = 2°€ v (ulv,on) C2Y 9re, (ug ),

we can obtain limya;—eo € (ur —u;) = 0 similarly as (6.10) or (6.11). Hence, by (RF1), for
(€, F), there exists v € F such that lim, ., E(v—wu,) =0. By & < & on F, we conclude
that lim, . E(v — u,) = 0, which together with the triangle inequality for EYP and
limy,, 00 E(u — uy,) = 0 implies that £,(u —v) = 0 and thus v — v € Rlx. In particular,
u=(u—v)+veF and £(u) = lim, o E(u,) = E(u), completing the proof. O

Corollary 6.17. Let u € F and let {uy, }fneny C F.

(a) Assume that lim, o (uy(x) — uy(y)) = u(x) — u(y) for any x,y € X. Then E(u) <
liminf,, . (uy,).

(b) lim, o0 E(u — uy,) = 0 if and only if limsup,,_, . E(u,) < E(u) and lim, o (u,(x) —
un(y)) = u(x) — u(y) for any x,y € X.

Proof. Suppose that u,u, € F, n € N, satisfy lim,,_,o. (u,(x) — u,(y)) = u(z) — u(y) for
any x,y € X. For any € > 0, by Theorem 6.16, there exists V' C X with 1 < #V < oo
such that &|y(uly) > £(u) —e. Then we have

Tim Ely (unlv) = Elv(ulv) > E(u) — e,

since RV is a finite-dimensional vector space, &£|y(-)"? is a seminorm on RY and
lim,, 00 max, yev |(un(x) — un(y)) — (u(x) —u(y))| = 0. In particular, there exists Ny €
N (depending on ¢) such that E(u,) > E|lv(unly) > Eu) — e for any n > N
and hence liminf, . £(u,) > E(u), proving (a). Next, in addition, we assume that
limsup, . €(u,) < E(u). Then lim, o E(uy) = E(u). Since {*Tin}, cy satisfies the
same conditions as {uy}nen, We obtain lim, . &(*t2) = £(u). Similar to (6.10) or
(6.11), we have from (Cla), for £ that lim,, . &(u —u,) = 0. The converse part of (b) is
clear from (6.3). O
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Corollary 6.18. (a) Let {on}nen C C(R) satisfylim, o pn(t) =t and |p,(t) — pn(s)] <
|t — s| for anymn € N, s,t € R. Then {¢,(u) }neny C F and lim, o E(u — @, (u)) =0
for any u € F.

(b) Letu € F, {up}nen C F and p € C(R) satisfylim,, o, E(u—u,) =0, im,,_, u,(z) =
u(z) for some x € X, |p(t) —p(s)| < |t —s| for any s,t € R and p(u) = u. Then
{o(un) bnen € F and limy, 00 E(u — @(uy,)) = 0.

Proof. The statement (a) is immediate from Corollary 6.17 and (RF5),, so we show (b).
Since, under the assumptions of (b), for any y € X

[u(y) = ua(y)] < Relw,y)"7E (u — w) P + [ul(z) — un ()] —— 0,

n— o0
we get limy, 00 @(un(y)) = u(y). By (RF5),, we have p(u,,) € F and limsup,,_, . E(p(u,)) <
limy, 00 E(uy,) = E(u), so Corollary 6.17 yields lim,, o E(u — ¢(uy,)) = 0. O

If X is separable, then we have the following useful version of Theorem 6.16.

Proposition 6.19. Assume that X (equipped with the topology induced by R}S/p) 1S sep-

arable. Let {V, }nenugoy be a increasing sequence of finite subsets of X with V_*X =X,
where V, = UnGNU{O} V. We define (€', F") by

F = {u € O(X) ‘ lim Ely, (uly,) < oo}, (6.15)
E'(u) = lim Ely, (uly,) € 10,00), ueF, (6.16)

note that {E|v, (u|v,) tnenuqoy is non-decreasing since V, € Vyiq. Then (€', F') = (€, F).
Moreover,

lim &(u— A3, [uly,]) =0 foranyueF, and (6.17)

n—oo

E(uyv) = lim &y, (uly,;vly,) for any u,v € F. (6.18)
n—o0

Proof. By Theorem 6.16, & < £ and F C F’ are clear. To show the converse, let
u € F, set u, = h§, (uly,) € F and fix o € Vy. We can assume that u(zg) = 0
by considering u — u(xg) instead of u. A similar estimate to (6.10) or (6.11) for £ and
(RF2), together imply that lim,,_,o £(v — u,) = 0 for some v € F with v(zy) = 0. Since
lv(z) — u(z)|” < Re(x,20)E(u—wuy,) for any x € V, and any n € N with z € V,, by (6.3), we
have v|y, = uly,. By V.Y =X and u,v € C(X) (see (6.3)), we conclude that u =v € F
and thus F = F/, E(u) = &' (u) and lim,, o, E(u — u,) = 0, ie., (£, F) = (€,F) and
(6.17) hold. The convergence in (6.18) is immediate from (6.17), (3.11) and (3.12). O

Based on Proposition 7.4, a standard machinery for constructing the “inductive limit”
of p-energy forms on p.-c.f. self-similar structures can be stated in Theorems 6.21 and 6.22
below, which are extensions of the counterpart for resistance forms given in [Kaj, Lemma
2.24, Theorem 2.25 and Corollary 2.43]. This approach will be used in Subsection 8.3,
where the construction of p-energy forms due to [CGQ)22] is reviewed. See also [Kig01,
Sections 2.2, 2.3 and 3.3] for the details in the case p = 2.
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Definition 6.20 (Compatible sequence of p-resistance forms on finite sets). Let V), be
a non-empty finite set and let £™ be a p-resistance form on V, for each n € N U {0}.
We say that the sequence S = {(V,, 5("))}n€NU{O} is a compatible sequence of p-resistance
forms if and only if V,, C V,;; and E7*Y|y, = €M for any n € NU {0}.

Theorem 6.21. Let S = {(Vn,S(”))}neNu{o} be a compatible sequence of p-resistance
forms. We define V. ==, cni0y Vs

Fs = {u e RY | lim £M(uly,) < oo}, and (6.19)
n—00
Es(u) = lim £M™(uly,), u € Fs. (6.20)

Then (Es, Fs) is a p-resistance form on V, and Es|y, = E™ for any n € NU {0}.

Proof. Noting that {€ (")(u|vn)}n€Nu{0} is non-decreasing for any u € RY*, we easily obtain
(RF1), for (€s,Fs). To see (RF5), for (Es., Fs), fix ni,na € N, ¢4 € (0,p], ¢2 € [p, 9]
and T' = (T1,...,T,,): R™ — R™ satisfying (2.1). Let w = (uy,...,u,,) € Fg'. Then,
for any I € {1,...,ns}, (GC), for £™ implies that

EC(Ti(u)ly,) 1/p<||( (Tl ) 2

< ” uk‘Vn)l/p)m Heql = H(‘%* uk)l/p . Hetn < 0.

By letting n — oo, we obtain (GC), for (€s, Fs), i.e., (RF5), for (€s, Fs) holds. Before
proving (RF2),-(RF4), for (s, Fs), we shall show the following claim:

For any n € NU {0} and any u € RV, there exists a unique hs) [u] € Fs such

that 1§, ul],, = and & (hS, [u]) = min{Es(0) | v € Fo,vly, = up = EM(w). O

v,
To prove (6.21), by (RF1), and (RF5), for (Es, Fs), we first note that #{v € Fs | Es(v) =
a} <1, where a == min{€s(v) | v € Fs,v|y, = u}. (Recall the arguments in (6.10) and
(6.11).) Hence it suffices to show the existence of the minimizer realizing «. For any
ke > ki > n, we have hiﬁl@[uﬂvk = hf,;k”[u] by E®[y, = £F1) and Proposition 6.15,

which implies that u.(x) = hiik) [u](z) for x € Vi with k > n is well-defined. Clearly,
Usly, = u. For any k > n, we have E®)(u,y,) = E*¥FV(w,|y,.,) by Proposition 6.15
again, whence u, € Fs and Es(u,) = £M™(u). Since £™(u) < Es(v) for any v € Fs with
vly, = u, we also get Es(u,) = a, so hf [u] == u, is the desired function.

Now let us go back to the proof of (RF2),-(RF4),.

(RF3),: This is immediate since Fsly, = R" for any n € NU {0} by (6.21).
(RF4),: Let z,y € V, with  # y and let n € NU {0} satisfy =,y € V,. Let u =

hf; 0 []lg{cx’y}} € RY". Then for any v € Fs with v|(, ) = Itix’y},

(6:21)

Es(v) > EM(uly,) > Renla,y)™ = €0 (u) 2 (b, [u]).

Therefore, we have

Reg(z,y) = Es(hs), [u])_1 = Rem (1,y) < 00. (6.22)
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(RF2),: Fixz, € V, and let {uy, }ren be such that uy, € Fs, uk(z,) = 0 and limyn;—o0 Es(ur—
w) = 0. From (RF4),, {ug(x)}ren is a Cauchy sequence in R for any = € V,, so we
define u € RY* by u(x) := limy_,o u(z). For any € > 0 there exists Ny € N such that
supy >y, Es(up — w;) < . Since £™ ()7 is a norm on the finite-dimensional vector
space RV /R1y, , we obtain

EM™ (uly, —wly,) < lign inf Es(ur —u;) < e for any | > Ny and any n € NU {0}.
—00

Since n € NU {0} is arbitrary, we conclude that v € Fs and lim; o, Es(u — u;) = 0,
which proves that (fg/R]lV*,Sé/p) is a Banach space.

Now we know that (£s, Fs) is a p-resistance form on V,. Then (6.21) means that
hs, = hii [u] for any u € RV, whence Esy, = £™ by (6.21) again. O

The following theorem yields a p-resistance form on the completion of (X, R(lg/ P).

Theorem 6.22. Let ()A( c/i\) be the completion of the metric space (X, Ré/p). We define
FCRY and £: F — [0,00) by

A: {ueC(X)|ulx e f}’ (6.23)
E(u) = (u|X) ueF. (6.24)

Then (€, F) is a p-resistance form on X, Rl/p d, and the map F > u — ulx € Fisa
linear isomorphism.

Proof. Set E(x y) = c?(as y)? for convenience, then R ’X x = Re. For any u € F, we

know that w is uniformly continuous with respect to d by (6.3) for (€, F), so there exists
a unique u € C(X X) satisfying @y = u and then @ € F. This implies that the - map
Four ulx € F is a bijection and thus it is a linear isomorphism. Also, for u € ]-" we

define the continuous function 7,: X x X — R by n.(z,y) = |u(z) — u(y)|’ — R(z, y)&(u).
Since 1, |xxx < 0 by (6.3) for Re, the continuity of 7, yields

lu(z) — u(y)]” < R(z,y)EW), zyeX xX. (6.25)

Now we show (RF1),-(RF5), for (€, F).

(RF1),: Clearly, F is a linear subspace of R¥X containing R1 ¢ and & ( )1/ P is a semi-

norm on F. By 1;|x = 1x and (RF1), for (£, F), it holds that {u € Fl &) = 0} =
Ri,.

(RF2),: This is immediate from (RF2), for (£, F) since F 3 u + u|x € F is a linear
isomorphism.

(RF5),: This is immediate from (RF5), for (€, F).

(RFS),, and (RF4),: Let z,y € X with z # y and let {Zn}n>0, {Un}n>0 C X satisfy
lim,, 00 R(x Tn) = lim, o0 R(y Yn) = 0. We can assume that z,, # y, for any n > 0.



74 N. Kajino and R. Shimizu

Let u, € F be the unique function satisfying u,|x = h‘fxn . }[]lii” y”}]. Then {&(un)}no

is bounded in [0, 00) since &(uy) = Re(Tn, yn) ' = R(2n, yn)! = R(z,y)~" as n — .
Also, it is easy to see that 0 < u, < 1. From (6.25) and the Arzela—Ascoli theorem,

there exist a subsequence {u,, }r and u, € C(X) such that limy_s [Jus — Uny || gup. = 0-
A similar argument as in the proof of (RF2), for (£s, Fs) in Theorem 6.21 implies that

u, € F and limy_o0 & (u, — Up,) = 0. Now we define u € F by u = u, — u,(y) so that
u(y) = 0. Then we have from (6.25) that

|u<xnk) - u<ynk) - 1’10 < R<xnk7 ynk)g(u - unk) — 07

k—o0

whence u(z) = 1, in particular, (RF3), holds. By (6.25) again, we obtain Rz(z,y) <
R(z,y) < oo, so (RF4), holds. Moreover, this also shows Rz(x,y) = R(x,y) = E(u)~".

U

Corollary 6.23. Let S = {(Vmg(n))}neNU{O} be a compatible sequence of p-resistance
forms and let (K, d) be the completion of (V, R}gép), where (Es, Fs) is the p-resistance form
on V, = UneNU{O} V., given in Theorem 6.21. We define ]?5 C R¥ and EAS: ]?3 — [0, 00)
by

Fs={uecCK) |uly, € Fs} = {u c O(K ‘ lim €0 (uly,) < oo} (6.26)
Es(u) = Es(uly.) = lim EM(uly,), u e Fs. (6.27)

Then (55,.7?3) s a p-resistance form on K, R(‘l?/p = d, and the map ]-A-g > u > uly, € Fs
S

18 a linear isomorphism. In particular, gg =& for anyn € NU {0}.

v,

Proof. We obtain the desired assertions by applying Theorem 6.22 with V., (£s,Fs)
in place of X, (£, F). Also, by Esly, = ™ (see Theorem 6. 21) and the fact that

FsDurs uly, € Fs is a linear isomorphism, we have 53|V =& -

We conclude this subsection with the strong locality of p-resistance forms.

Definition 6.24 (Strong locality for p-resistance form). We say that (£, F) is strongly
local if and only if £ (uy;v) = E(ug;v) for any uy, ug, v € F with either supp y [u; —us—al x]
or suppy|v — bl x| is compact and (uy(z) — us(x) — a)(v(x) —b) = 0 for any x € X for
some a,b € R.

In the following proposition, we discuss relations among the strong locality in Defini-

tion 6.24, (SL1) and (SL2) of (&, F).

Proposition 6.25. (a) If (€, F) is strongly local (in the sense of Definition 6.24), then
(&€, F) satisfies the strongly local property (SL2).
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(b) If (€,F) is reqular and strongly local (in the sense of Definition 6.2]), then for
any uy,us, v € F with either suppy|u; — a;lx| or suppylus — asl x| compact and
(ur(z) — ay)(uz(x) — ag) =0 for any x € X for some ay,ay € R,

E(ur +ug +v) + &) =E(uy +v) + E(ug +v).

In particular, (€, F) satisfies the strongly local property (SL1).

(c) Assume that (€, F) is regular and satisfies the strongly local property (SL2). Then
(&, F) is strongly local (in the sense of Definition 6.24).

Proof. (a): If uy, us,v € F and a,b € R satisfy supp y [u; —us —al x]Nsuppy[v—bl x| = 0,
then it is immediate that (u;(z) — uz(x) — a)(v(z) — b) = 0 for any x € X. Hence (£, F
satisfies the strongly local property (SL2).

(b): Let ¢, € C(R) be given by ¢, (t) :=t—(—1)V(tAL) for cach n € N. Set uy () =
©n(u1(x) —ay) and ug,, (2) == pp(ug(x) —az). Then w;, € F and lim,, o E(u; — u;p) =0
for i € {1,2} by Corollary 6.18-(a) and (RF1),. Furthermore, suppx[u1 ] Nsuppy|[ug,] =
() and either suppy[u1,] or suppy|us,] is compact. By (a), Proposition 3.30-(b) and
Proposition 6.6, we have &(u1, + uopn +v) + EW) = E(ury, +v) + E(ugy, + v) for any
v € F. We obtain the desired assertion by letting n — oo.

(c): Set vp(x) = @u(v(z) — b) for each n € N, where ¢,, is the same as in the proof
of (b). Then v, € F and lim, ,,.E(v — v,) = 0 by Corollary 6.18-(a) and (RF1),.
Furthermore, supp y[u; — us — al x| Nsuppy|[v,] = 0 and either supp y[u; — us — alx] or
suppy|v,] is compact. Hence, by (SL2), it follows that &(ui;v,) = E(us;v,). We obtain
E(uy;v) = E(ug;v) by letting n — oo. O

6.3 Weak comparison principles

In this subsection, we show some weak comparison principles in this context. The first
one is an application of the strong subadditivity.

Proposition 6.26 (Weak comparison principle I). Let B be a non-empty subset of X.
Then, for any u,v € F|p satisfying u(y) < v(y) for any y € B, it holds that

r5u](z) < Rg)(x)  for any x € X. (6.28)
In particular,

i%fu < hgu)(z) < supu for anyx € X. (6.29)
B

Proof. Let f = h%[u] and g :== h%[v]. We will prove f Ag = f, which immediately implies
(6.28). Since (f Ag)|p =w and (f V g)|p = v, we have

E(f)<E&(fng) and E(g) <E(fVg)

By the strong subadditivity in (2.5), we obtain E(f A g) = £(f) (and E(f V g) = £(g)),
which together with the uniqueness in Theorem 6.13, we have f A g = f. O
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We can extend the weak comparison principle above to arbitrary open subsets (see
Proposition 6.30 below) if (£, F) is regular and strongly local. This version of weak
comparison principle will be used to prove the strong comparison principle on p.-c.f. self-
similar structures in a forthcoming paper [KS.b]. We begin with some preparations.

Definition 6.27. Let U be a non-empty open subset of X.
(1) Define

Floc(U) = {f e RY

fly = f#1y for some f# € F for each
relatively compact open subset V of U |°

(2) Assume that (€, F) is strongly local. Let V' C U be an open subset. A function
h € Foc(U) is said to be £-harmonic on V if £(h#;p) = 0 for any ¢ € F°(V) with

supp[e] compact (with respect to the metric topology of Ré/ ), where h* € F satisfies
hlsupply) = h#]lsuppM'

Remark 6.28. (1) If X = K comes from a self-similar structure and the topology in-
duced by R(lg/ P coincides with the original topology of K, then the definition of F,.(U)
above is the same as (5.30) by virtue of F C C'(K).

(2) By the strong locality of (£, F), the value £(h#; ) is independent of a particular
choice of h¥.

We need the following proposition to achieve the desired weak comparison principle.

Proposition 6.29. Assume that X is locally compact and that (€, F) is reqular and
strongly local. Let U be a non-empty open subset of X and let uw € F satisfy u(x) =0 for

anyxé@XU:UX\U. Then uly € F.

Proof. Define ¢,, € C(R) by ¢, (t) :=t— (%) V (¢t A1) and set A, := UNsuppy[¢n(u)] for
each n € N. Since ulsgy =0, A, = [ supp x[¢n(u)] and thus A, is a compact subset
of U. By Proposition 6.6, there exists v, € F such that 14, < v, < 1y. Then we easily
obtain ¢, (u)1y = ¢n(u)v,, hence by Corollary 6.18-(a) and Proposition 2.2-(d) we have
on(u)ly € F. By the strong locality and Corollary 6.18-(a), {y,(u)1y }nen is a Cauchy
sequence in (F/Rly,EYP). Thus, by (RF2), and (6.3), {@,(u)1y }uen converges in norm
in (F/Rly,EYP) to its pointwise limit w1y, whence uly € F. O

Now we can state the desired version of the weak comparison principle.

Proposition 6.30 (Weak comparison principle II). Assume that X is locally compact
and that (€, F) is reqular and strongly local. Let U be non-empty open subset of X such

that U is compact and U # X. If u,v € C’(UX) N Froc(U) are E-harmonic on U and
u(x) < wv(x) for any x € OxU = T \ U, then u(z) <v(x) for any x € T

Proof. We first observe that dxO # () for any non-empty open subset of X such that o
is compact and O # X. To this end, suppose that dxO = 0 and then show O = X.
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We see from Proposition 3.26 that there exists ¢ € F N C.(X) such that ¢|op = 1 and
¢|x\o = 0 since O = 0" is compact. By the strong locality for (£, F) and (RF1),, we
have £(p) = 0 and hence ¢ € Rl y. Therefore, X \ O = ) since O is non-empty.

Let us go back to the proof. Since u and v are uniformly continuous on 7" and
OxU # 0, for any € > 0 there exists § > 0 such that

V= {o e U distyyn(z,0xU) > 6} £,

and u(z) < v(x) + ¢ for any z € i \ V. Then V is a relatively compact open subset
of U and hence there exist v*,v# € F such that uly = u* 1y and vly = v* 1. Define
f=u? — (¥ —v#) 1x\y, g == v¥ + (u¥ —0v#)T1x\yv. Then f,g € F by u*(z) < v#(z)
for any x € 0xV # 0, Propositions 2.2-(b) and 6.29. We also have f,g € He x\v by the
strong locality for (£, F). Since f(z) = (u A v#)(z) < (u? V v#)(x) = g(z) for any
x € X\ V, Proposition 6.26 implies that u(z) = v#(z) = f(z) < g(x) = v¥(z) = v(2)
for any x € V. Therefore, we conclude that u(z) < v(z) + ¢ for any = € U~ Since e > 0
is arbitrary, we complete the proof. O]

6.4 Holder regularity of harmonic functions

In this subsection, we present a sharp Holder regularity estimate on £-harmonic functions
and prove that Ré/ =1 is a metric on X.

As an application of Proposition 3.9, we can show the following Hdélder continuity
estimate for £-harmonic functions.

Theorem 6.31. Let B be a non-empty subset of X. Then for any x € X \ B” and any
y € X \{z},

BU{z} Rg(ZE, y)l/(pil)

I
hBU{x} []lB }(y) = Relx, B)l/(p_l)' (6.30)

Moreover, for any h € He g with supg |h| < oo, any x € X \ B and any y € X,

1/(p—1)
R, y) osc[h]. (6.31)

|h(x) = h(y)| < Re(z, B)/@-1 5

Proof. To show (6.30), on one hand, we see that

—E|ufr(I; 1) = €| uey(Is; Lpugay) — €|Buger(1; 1,)
= &|puey(1p;15) = Re(z, B) ™. (6.32)

On the other hand,

- 5|Bu{x}(]13; ]lw)
= -£ (h%u{:v} [15]; h%U{%y} []lJ’D
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= ~Elpoeat (Mo 16| gy 1)
> —&lputew ((hgu{x} 1816) - hay 1) | oy L«) (by Proposition 3.9)

= oy )0 €t (B 1) 5 1) = B L8]0 e )
(6.33)

Here, we used 1y, — h‘fx L] = h‘fx [ Le] (see Remark 6.14) in the last equality. We
obtain (6.30) by combining (6.32) and (6.33).

Next we prove (6.31). Let x € X \ B”, y € X and h € He g with supy |h| < co. We
can assume that = # y. Then we see that

h—h(z) < hBU{I} [(h h(z by Propositions 6.26 and 6.15)

D o]
< BBy [osc[h] : ]1§U{x}] (by Proposition 6.26 and (h — h(x))"(z) = 0)

= OEC[h] hBU{x}|: BU{I}]

Similarly, we have

h=h(w) = | (0= | = —osclh] - 0 [157].

’BU{w}
Hence, by combining with (6.30), we get (6.31). O

Using Theorem 6.31, we can show the triangle inequality for R, /1)

Corollary 6.32. RY"™": X x X = [0,00) is a metric on X.

Definition 6.33 (p-Resistance metric). We define ./ép’g = R(lg/(p_l). We call Epf the
p-resistance metric of (€, F).

Proof of Corollary 6.32. Tt suffices to prove Rg(x, 2)Y/®~1) < Re(x, y)V/ P~V 4 Re(y, 2)V/ =1
for any z,y, z € X with #{z,y, z} = 3. By (6.30) with B = {z}, we have h{x 3 []lg{f’z}} (y) <

Be(z.g) /01 By exchanging the roles of x and z, we get h{x 2 []l{x z}} (y) < Re(y,)!/ (77

Re(@) /D" S Re(e) /D
Since 1y = h¢ []l{z Z}] + h{x 2} []lix Z}}, we have

{z,2}

1/(p—1) 1/(p—1)
1< RE(‘T?y) Rg(y,Z> ’
= Re(z,2)! /(p—1) Rg(x72>1/(p—1)

which proves the desired triangle inequality for Ré/ P-1), [

Example 6.34. Let p € (1,00) and (£, F) be a p-resistance form on the unit open interval
(0,1) given by

F=W""0,1) and &E(u / Vul’ dx.
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(Recall Example 6.3-(1).) For any x,y € (0,1) with 0 < z < y < 1, we easily see that
u € Wh(0,1) defined by u(t) = (y — x) '(t — )Ly (t), t € (0,1), is E-harmonic on
(0,1) \ {z,y}. Therefore we have Re(z,y) = (y — 2)P~! and the p-resistance metric ﬁp’g
coincides with the Euclidean metric on (0, 1). In particular, the Holder regularity estimate
(6.31) is sharp. This example also shows that exponent 1/(p—1) in the p-resistance metric
is sharp, that is, Rg is not a metric for « > 1/(p — 1) in general.

6.5 Elliptic Harnack inequality for non-negative harmonic func-
tions

Throughout this subsection, we assume the existence of p-energy measures {I'(u)},er
(dominated by (&, F)) satistying (Cla),. For simplicity, set R, = R, ¢ = Ré/ (p=1)

In this subsection, we establish the elliptic Harnack inequality for non-negative &£-
superharmonic functions (Theorem 6.37) under some extra analytic conditions. The fol-

lowing two lemmas are key ingredients of the proof of Theorem 6.37.

Lemma 6.35 (Two-point estimate). Assume that there exist a Borel measure pn on X,
B,Q € (0,00) with 5 > Q and A,C € [1,00) such that for any (x,s) € X x (0,00) and
any u € F,

Q
0< /L(Bﬁp(x,r)) <C (g) u(Bﬁp(x, s))  for any r € [s,00), (6.34)
and »
/ u(y) —][ udp| p(dy) < Csﬁ/ dl(u). (6.35)
Bﬁp (z,s) Bﬁp(z,s) Bﬁp(z,As)

Then there exists A,C € [1,00) such that for any (z,s) € X x(0,00), any y, z € By (,5)
and any u € F,

. §B
u(y) —uz)F <C = dl(u). 6.36
) = ) < O / gy 00 (6.36)

Proof. The proof will be done by a standard telescopic argument (see, e.g., [HK98, Proof
of Lemma 5.17]). For y € By (z,s) and n € NU {0}, set By, = B (y,27"s), ABy, =
Bz (y,27"As) and u,,; == fo _udp. Then for any n € N,

Rp
n n 1/1’
[ty — o] D fuys =y < (f | — " du)
i=1 i=1 By,i—1
1/p
| =ty l" d“)

(6.31) _™

<

s> (1

. : 1/p

(6.35) _™ 9-ig)B

SY(BL ) arw)
. M(ByJ) ABy’i

=1 Y,i
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where we used Holder’s inequality in the second inequality. Letting n — oo, we obtain

00 —ig)B w
u(y) — uyo| S Z (f(Byi) /AB ; dmu))

i=1

(624) (L/ dr<u>>1/p§:2i(662)/p

~ 1(ABy) ABy0 P

(624) ( sP / dr<u>>1/p' 67
™~ \u(Bg,(z, (A+1)s)) Bp (2,(A+1)s)

Similarly, for any y, z € B (,s), we have from (6.35) that

|“y,0 - uz,0|

Uy,0 — ][ udjp
B5 (z,2s)

Rp
(1
Bﬁp(y’s)

u— ][ wdp
Bﬁp(x,Qs)

(6.34)
<
Bs (x,2s)

Rp

< +

Uz0 — ][ u d:u
B5 (z,2s)

Rp

P 1/p
Bﬁp(z,s)
P 1/p
u— ][ wdp| du
Bs (z,2s)

Rp
eI i / dr (u) " (6.38)
< u . .
M(Bﬁp (IL‘, 2AS)) Bﬁp (z,2A5)

By (6.37) and (6.38),

[uy) — ()" S [uly) = uyol” + g0 = uzof” + [u(2) = uzof”
B
s

< [ ),
H (Bﬁp (.CL’, 2AS)) Bﬁp (z,2As)

which shows (6.36). O

Lemma 6.36 (Log-Caccioppoli type inequality). Assume that {I'(u)}.cr satisfies the
chain rule (CL2). Then there exists C € (0,00) (depending only on p) such that for any
(x,5) € X x(0,00), any e > 0 and any u € F that is E-superharmonic in By, (x,2s) with
u>0 and E(u) =T (u)(X).

/( AP(@:() < CE{E(P) | ¢ € Fpliy, n = Lswppslel € By (2,29,
Bﬁp T,s

(6.39)
where ®. € CY(R) is any function satisfying ®.(x) = log (x + €) — loge for x € [0, 0).
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Proof. Let ¢ € F satisty ¢[p, (zs) =1, suppx|¢] € Bg (z,2s) and
P

E(p) =inf{E(¢) | ¢ € F.¢lp, (@s) = Lsuppxlp] € By (z,29)},

which exists by Theorem 6.13. Let € > 0 and set u. = u + &. Note that pPul™? € F by
Proposition 2.2-(d) and Corollary 2.4-(a). We see that

dlN{® (u)) < Pdl (P, (u
/Bﬁp(w,5> o)< [ g w)

Bﬁp(x,Qs)
- 1
(@ _° P T (ug; ul ™)
P =15, (@os)
1
(@ _= / dr (ug; ePul™P) / ug P dl (ue; ")
1— b By (x,2s) Bﬁp(m 2s)
=) 1 € P, 1-py _ 1=pqr
-1 (ue,SD Ue ) te <u£7¢ >
—p Bﬁp(:v 2s)
(%) —1
< — ul de(“sa@ >

s p (1 ey w
<Pl / @ dT (D, (u)) 2 / dI'(p)
p=1\2 /5, (z29) Bp, (2,25)

-1 op—1
< PP paewyrT- [ ).
p— 1 2p Bﬁp (z,2s) p Bﬁp(:p,Qs)

where we used Theorem 4.17 and I'(u.)(X) = E(u.) in (x), the fact that wu. is &-

superharmonic in Bﬁp (x,2s) in (xx), and Young’s inequality in the last inequality. Hence

we obtain [, o dl(®(u)) < p~12PE(yp). O
Rp \"™"?

With these preparations, we can show the desired elliptic Harnack inequality as follows.

Theorem 6.37 (Elliptic Harnack inequality). Assume that there exist a Borel measure

won X, B,Q € (0,00) with § > Q and A,C € [1,00) such that the following conditions
are satisfied.

(i)  p satisfies (6.34) and (6.35) holds for any (z,s) € X x (0,00) and any u € F.
(i)  For any (z,s) € X x (0,00) with By (z,s) # X,

| w(Bz (x,s)
inf{&(¢) | ¢ € F, ¢lp, (@s) = L suppxle] € By, (v, 25)} < O%

(6.40)
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(i) {T'(u) }uer satisfies the chain rule (CL2).

Then there ezist Cy € (0,00) and oy € (0,1) such that the following hold. Let (z,s) €
X % (0,00) with By, (x, 6r'8) # X and let u € F with u > 0. If T{u)(X) = E(u) and u

is E-superharmonic in Bﬁp (z,04's), then

sup u < Cyx inf w. (6.41)
Bﬁp(x,s) Bﬁp(xvs)

Proof. Let e > 0and oy := (212()_17 where A is the constant in Lemma 6.35. Set u, = u+e,
M. ‘= supp_ (44 Ue and me = infp_ (45 te. By combining (6.36), (6.39) and (6.40), there

exists Cy € (0,00) independent of z, s, u, e such that

sup logu. — inf logu. < Cy,

Bﬁp(x,s) Bﬁp(xvs)

whence log (%—z) < Cy. In particular, M, /m. < e“©. We obtain (6.41) by lettinge | 0. [

7 Self-similar p-resistance forms and p-energy measures

In this section, we investigate p-resistance forms by focusing on the self-similar case as
in Section 5. Throughout this section, we fix p € (1,00) and a self-similar structure
L= (K,S {F;}ics) with S > 2 and assume that K is connected.

7.1 Self-similar p-resistance forms

We first introduce the notion of self-similar p-resistance form. Note that the topology
induced the p-resistance metric may be different from the original topology of K. We
always equip K with its original topology.

Definition 7.1 (Self-similar p-resistance form). Let p = (p;)ics € (0,00) and let (£, F)
be a p-resistance form on K. We say that (€, F) is a self-similar p-resistance form on L

with weight p if and only if F C C(K) and (&, F) satisfies (5.5) and (5.6).

In the rest of this section, we also fix a self-similar p-resistance form (£, F) on £ with
weight p = (pi)ies € (0,00)°.
The following properties of the p-resistance metric are elementary.

Proposition 7.2. (1) For any z,y € K,

Re(Fy(), Fu(y)) < pi,' Re(@,y) (7.1)

2) If minecs p; > 1 and diam K,ﬁ ) < oo, then R ¢ 1s compatible with the original
P, P,
topology of K. In particular, Vi is dense in (K, R,¢).
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(3) If min;es p; > 1 and L is a p.-c.f. self-similar structure, then ﬁp’g 15 compatible with
the original topology of K. In particular, V. is dense in (K, Ry,¢).

Remark 7.3. In the case p = 2, min;esp; > 1 and L is a p.-c.f. self-similar structure,
then it is known that there exists ¢ € (0, 00) such that for any z,y € K and any w € W,,

Re(Fy(x), Fu(y)) > cp,,' Re(z,y); (7.2)

see [Kig03, Theorem A.1]. Such a result is also true for p-resistance form. See Theorem
B.10.

Proof. (1): It is immediate from (5.6). (See [KigO1, Lemma 3.3.5] for the case p = 2.)
(2): We can follow the argument in [Kig09, Proof of Proposition B.2] to show that
Eng is compatible with the original topology of K. (Note that the condition that F is
dense in C(K) in [Kig09, (RFA3)| is not used in [Kig09, Proposition B.2].) Then Vi is
dense in (K, Eng) since V" = K by [Kig01, Lemma 1.3.11].
(3): We can follow the argument in [KigO1, Proof of Theorem 3.3.4]; see also Lemma
8.41. [

The following proposition presents compatible sequences of p-resistance forms having
a self-similarity:.

Proposition 7.4. Assume that Epyg is compatible with the original topology of K. Let
n € NU {0} and let A be a partition of ¥. Define Vi a = U,ep Fu(Va). Then for any
u € f‘Vn,A7

8|Vn,A<u) = pr8|Vn(quw)- (73)
wEA
Moreover, for any w € A,
hxg,n’A(u) o F, =h{ (uoF,). (7.4)
In particular, for any m € NU{0} and any v € Fly,,,.,
Elvpn (@) = D pullv,(uo F,). (7.5)
WEW

Proof. Note that (7.5) follows from (7.3) by choosing A = W,,, and that S := {(V,x,&v, ) }

is a compatible sequence of p-resistance forms by Proposition 6.15. Let u € Fly, ,. Then
we see that

neNU{0}

Elv, »(u) =min{&(v) | v € F with vly, , = u}

%) min{z puwé(vo Fy)

wEA

v e F with vy, , = u}

> pr min{&(v) ‘ v € F with v|y, =uo F,} = pr8|Vn(quw)'

weA weEA
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To prove the converse, we define v € C(K) = C(K, Ep’(&;) so that vo F,, = h [uo F,]
for any w € A; note that such v is well-defined by (5.2). Then vy, , = u and v € Fs by
(5.5). Since

Elvn @) < E0) DS puE@o Fu) = S pu (b, [uo F)) = 3 puélv, (wo Fy),

wEA wEA weEA

we have (7.3). Next we prove (7.4). We have E(hf,mA [u] o ) > E(h§, [uo F,]) for any
w € A. Since

Elv, () = £, [u]) = 3 put (1, ,[u] o F)

wEA
> Z pwg(h“s/n [uo Fw]) = Z pullv,(uo Fy) = Elv, ,(u),
wEA wEA

we obtain £(hf, [u]o F,) = E(hY, [uo F,]) for any w € A. The uniqueness in Theorem
6.13 implies h§, [u] o F,, = A, [uo F,). O

The following corollary is an immediate consequence of Proposition 6.19.

Corollary 7.5. Assume that L = (K, S,{Fi}ics) is a p.-c.f. self-similar structure and
that R, ¢ is compatible with the original topology of K. Then

F= {u e O(K) ‘ Tim &y, (uly; ) < oo}. (7.6)
v.,) for anyu,v € F. (7.7)

E(u;v) = lim &y, (uly,;v
n—oo

The following proposition gives characterizations of £-harmonic functions on K \ V.

Proposition 7.6. Assume that ﬁp,g 1s compatible with the original topology of K. Let

n € NU{0}. Then for each h € C(K, ﬁp,g), the following two conditions are equivalent
to each other:

(1) h e %S,Vn-
(2) hoF, € Hey, for any w € W,.

If in addition £ = (K,S,{F;}ics) is a p.-c.f. self-similar structure, then (1) (or (2)) is
also equivalent to the following condition:

(3) For any m € N with m > n and any x € V,,, \ V,,,

S el <h o Fylv: ]1?;1(@) —0. (7.8)

WEW; z€Fy (Vo)

Proof. To see (1) = (2), let us fix w € W,, and let ¢ € F°(K \ ;). Then (F,).p € F by
(5.5) and (Fy)«p € FO(K \ V,,) by (5.2). By (5.6), we have

0 = E(h; (Fy)ep) = pu€(ho Fy; ),
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which implies h o F,, € Hey,. The converse implication (2) = (1) is obvious from (5.6).

Next we prove the equivalence of (1) and (3) for a p.-c.f. self-similar structure L.
We first show (1) = (3). For any m > n and any ¢ € F°(K \ V,), we note that
s [@lvavn = 0. Then, for any h € H¢y,, we have from (7.5) that

0=2_Ev, (hlv,,;elv.,) = Z Pullv (h o Fulvy; oo Fuly,) for any o € FO(K \ V).
weWpm,

By choosing ¢ € FO(K \ V,,) so that ¢|y,, = 1Y for z € V,, \ V,,, we obtain (3). We
next suppoes that h € C'(K) satisfies (7.8) and fix ¢ € F°(K \ V;,) in order to show the
converse implication (3) = (1). For m > n, we see from (7.5), ¢|y, = 0 and (7.8) that

£|Vm(h‘Vm;90|Vm>: Z pw8|V0<hOFw’V0;§OOFw‘V0)

weWm
= Z Z (Fu(y))pullvy (h o Fulvy; ﬂg‘;/o)
weWm yeVp
_ AW _
=3 el Y et (hon\VO,]le;l(x)) —0.
€V \Vn wWEWm;2€Fy (Vo)
By letting m — oo, we obtain £(h; ) = 0 and hence h € He y, . O

Thanks to the self-similarity, we can get the following localized version of the weak
comparison principle (Proposition 6.26).

Proposition 7.7 (A localized weak comparison principle). Assume that ﬁp’g 18 compatible
with the original topology of K. Let n € NU{0}, w € W, and let u,v € Hey, satisfy
u(x) <wv(x) for any x € F,(Vo). Then u(z) < wv(zx) for any x € K,,.

Proof. This is immediate from a combination of Proposition 6.26 and the implication from
(1) to (2) in Proposition 7.6. O

Next we will show a new monotonicity on the equal weight of the p-resistance form on
a p.-c.f. self-similar structure in p. We need the following basic result, which is immediate
from (5.2) and Proposition 2.9-(a).

Proposition 7.8. Let k € N U {0} and let E be a p-resistance form on V. Define
S,(E): RV+1 — [0,00) by

Sy(E)(u) =) pE(uoF), ucR"% (7.9)

i€s
Then S,(E) is a p-resistance form on Vj.

The following theorem states the desired monotonicity. (See also Theorem 8.31 for a
similar result in another framework including the generalized Sierpiniski carpets.)
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Theorem 7.9. Let p,q € (1,00) with p < q and let ps € (1,00) for each s € {p,q}.
Assume that K is connected, that L is a p.-c.f. self-similar structure and that (&, Fs) is
a self-similar s-resistance form on L with weight (ps)ics for each s € {p,q}. Then

pYB=D < pl/a=D), (7.10)

Proof. We start by some preparations on discrete energies. Let s € {p,q}. For any
s-resistance form E; on Vy and n € N, we define S, ,(E;): R — [0, 00) by

Spun(B)(u) = p > Ey(uoF,), ueR™
veW,

Note that S} | = S, » and that S, ,(E) is also a s-resistance form on V,, by Proposition
7.8. We also define a s-resistance form E;,, on V,, by

Wil S Y luFe) —u(R), we R

veW, {z,y}ely

Then S,, »(Eso) = Esn. Since both Ej (- )M/ and &y, (-)'/* are norms on the finite-
dimensional vector space RY /R1y,, there exists a constant Cy > 1 depending only on s
and #V such that

Cs_lEs,O(u) < 55|Vo (U) < CSE&O(u) for any u € RVO' (711>

Since Sy, n(Eslvy) = Eslv, by (7.5), we have from (7.11) that
C B n(u) < &y, (u) < CyE,,(u) for any n € NU{0} and any u € R, (7.12)
Now we move to the proof of (7.10). Let us fix xo,y0 € Vo with zy # yo and set B =
{x0,y0}. Then we can find w € W, so that BN K,, = 0 and h,,, = h, o F, ¢ Rlg,
where h, = hf/z [1,,]. (If hyoF, € Rlg for any w € W, with BN K,, = 0, then we
can easily obtain a contradiction by using (6.3) and [KigO1, Theorem 1.6.2], where the

connectedness of K is used.) Since ¢ = inf,ex, Re,(z,B) > 0 and 0 < h, < 1 by (6.29),
for any n € N,

Eqlvi (hpwlvi,)
(7.12)
< OqEq,n(hp,an)

=Copy > D hp(Fun(®) = Bp(Fus )"+ s (Fo()) = s (Fu(w))I”
veWn {z,y}€Ey

a—p

Comy % (Rgp (@) P %””)p_ () = o (Fu(e)P

weWn {z,y}eFo (.Z'),

(2) (ch*(q’p) J6-) sup Re (2 y>(q,p)/(p71)>(p p, V=N B (Bl
< 3 ’ ,n , W n
z,yeK

(7.12) n
< (Oquc*q*W@*U sup Rgp@’y)(qu)/(p—n)(pqp;(q—n/(p—l)) Elhpw).  (7.13)
z,ye K

Since both &,(hy.) and &;(h,.,) are not equal to 0, we conclude that p,p, Sla=D/e=1) 5

by letting n — oo in (7.13). This proves the desired monotonicity (7.10). O
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7.2 Associated self-similar p-energy measures and Poincaré in-
equality

In this subsection, we show a Poincaré type inequality in terms of self-similar p-energy
measures under some geometric assumptions on the p-resistance metric.

Recall that we fix a self-similar p-resistance form (£, F) on £ with weight p = (p;)ics €
(0,00)%. We also let {T'¢(u)},er be the associated p-energy measures defined in (5.11).
In the following definition, we introduce natural scales {AS}SE(O,H with respect to the

p-resistance metric ./éng = ﬁp. See [Kig09, Kig20| for further details on scales.

Definition 7.10. (1) We define Alﬁp = {0},

Al = {w ‘ w=w ... wy, €W\ {0}, (Puy.w,_,) VPV > 5> p;l/(pfl)}

for each s € (0,1). (Note that {A?”}se(o,u is the scale associated with the weight
function g(w) = pw/?V; see [Kig20, Definition 2.3.1].)

(2) For each (s,xz) € (0,1] x K, we define Afg(x) = {w € Af’” | x € K,} and
Uf”(x,s) = UweAfg(x) K,. Inductively, for M € N, define Af"M(x) ={w € Af” |

K, N Uﬁﬂl(z, s) # 0} and Uﬁp(x, s) = K.

wGAiﬁd(z)
It is easy to see that lim,omin{|w| | w € A"} = oo, that AL is a partition of ¥
for any s € (0,1], and that AE < AP for any 1,8 € (0,1] with s; < s9. By [Kig20,

Proposition 2.3.7], for any = € K and any M € NU{0}, {U,?(z, 5) }se(0,1] 1s non-decreasing
in s and forms a fundamental system of neighborhoods of x in K.

The following lemma is standard; see, e.g., [BB, Lemma 4.17].

Lemma 7.11. Let g € [1,00) and let (Y, A, u) be a measure space. For any f € L'(Y, u)
and any E € A with u(A) € (0,00),

][Ef—]ifcm

Now we can present a Poincaré inequality in this context.

q
dp < 29 inf][ |f —al? du. (7.14)
a€R | p

Proposition 7.12 ((p, p)-Poincaré inequality for self-similar p-resistance form). Assume
that there exist oy, s € (0,00) such that for any (z,s) € K x (0,1],

By (z,a15) C UJ\IZZ(Q:, s) € Bg (x,25). (7.15)
Let p be a Borel probability measure on K satisfying the following condition:

inf M(Bﬁp(x,s)) > 0. (7.16)

(z,8)€ K X (a1,00)
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Then there exist C, A € (0,00) with A > 1 such that for any (z,s) € K x (0,00) and any
u € EOC(Bﬁp(:L‘7 As)),

][ u(y) — ][ udp
Bﬁp (z,) BAP (z,)

Proof. We can assume that a; < as and a; < 1 without loss of generality. Set ¢, =
(inf(w)eKX(ahoo),u(BRp(x,s)))_l € (0,00) and A = a;'(ay V diam(K, R,)). We first
consider the case s € (a1,00). In this case B (z, As) = K and

P s
foolr-f w < of fa
B Bz (z,s) Bﬁp(:p,s) K

Rp (z,s) p
p
< 2Pc, ][ fdu| du

< ore, / ][ uly) — ()P pldy)p(d)

(6.3)

< e, diam(K, B,)""1E(u) = CyTe (u) (K),

p

p(dy) < C’sp_lfg<u)(B§p(ac,As)). (7.17)

p

dp

where we used Holder’s inequality in the third inequality and set C = 2P¢, diam (K, Ep)p_l
This shows (7.17).
Next let s € (0,aq]. Let U be a relatively compact open subset of K such that

U D Uy (z,a7's) and let u# € F satisfy u = u# on U. For any y,z € By (x,s), there
exists {v(i)}220 ! C ARL ML (z) such that y € K,q), 2 € Kyom.41) and K,;NEKyiq1) 7 0
for each i € {1, e ,2M } Let us fix x; € Ky;)NKyi11) and ¢; € Vj so that z; = F,)(q;).
We note that, for any ¢/, 2" € Ky,

u(y') — u()" = Ju(Foo) (Fyiy (1) — w(Fup (Fy) ()

< Re(Fy (), Fuy (2D))E(u? 0 Figi)

P

(5.12)

< diam(K, R,)"™ py T (u#) (K (5) = diam (K, By)P " p, 4 Te (u) (Ko

Hence
|uy) —u(z)”
2M,—1
< (2M, + 1)1 (\u( — u(z)] Z lu(z;) — w(@ip)]” + |u(zon,) — u(z)|p>
6:3) L e
< (@0 + ) diam(K )Y P (o)
i=1

2M,+1

< Cys? g (u) ( U KU(Z-)) < CysP7'Tg, (u) (Bp(w, oy ' ass)), (7.18)

=1
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where Cs = ((2M, + 1)a; ' diam(K, ﬁp))p_l. Now we see that

][ u(y) — ][ udp
Bp Bz (z,9)

ERp

p(ff»‘S)
(7.18) .
s][ 7[ [u(y) — ()P ju(dz) pldy) < Cos L) (Bp (x, As)),
Bﬁp(m,s) Bﬁp(r,s)

p

1(dy)

where we used Holder’s inequality in the first inequality. This completes the proof. [

8 Constructions of p-energy forms satisfying the gener-
alized p-contraction property

In the preceding sections, we have established fundamental results on p-energy forms sat-
isfying the generalized p-contraction property (GC),, in particular p-Clarkson’s inequality
(Cla),. In this section, we would like to describe how to get a good p-energy form satisfy-
ing these properties in a few settings inspired by [Kig23| and [CGQ)22]. (See also [IS.a]
for another approach toward such a construction.)

8.1 Construction of p-energy forms on p-conductively homoge-
neous compact metric spaces

In this subsection, we verify that p-energy forms on p-conductively homogeneous compact
metric spaces constructed in [Kig23] satisfy (GC),. We mainly follow the notation and
terminology of [Kig23] in this and the next subsections. We refer to [Kig23, Chapter 2|
and [Kig20, Chapters 2 and 3| for further details.

Throughout this subsection, we fix a locally finite, non-directed infinite tree (7', Er)
in the usual sense (see |Kig23, Definition 2.1] for example), and fix a root ¢ € T of T.
(Here T is the set of vertices and Er is the set of edges.) For any w € T'\ {¢}, we use
ow to denote the unique simple path in 7 from ¢ to w.

Definition 8.1 (|[Kig23, Definition 2.2|). (1) For w € T, define 7: T'— T by

{wnl if w# ¢ and ow = (wy, . .., wy),
m(w) = .
[0) if w = ¢.

Set S(w) = {v € T | m(v) = w} \ {w}. Moreover, for k € N, we define S*(w)
inductively as

S w) = S*().

veS(w)

For A C T, define S*(A) ==, ., S*(A).

wEA
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(2) For w € T and n € NU {0}, define |w| := min{n > 0 | 7" (w) = ¢} and T,, = {w €
T ||w|=n}.

(3) Define ¥ = {(wn)n>0 | wn € T), and w,, = m(wpy1) for all n e NU{0}}. For w =
(Wn)n>0 € X, we write [w], for w, € T,,. For w € T, define £, == {(wp)n>0 € X |
Wi = w}. For A C T, define ¥4 =, s Zuw-

weA

Let us recall the definition of a partition parametrized by a rooted tree (see [Kig20,
Definition 2.2.1] and [Sas23, Lemma 3.6]).

Definition 8.2 (Partition parametrized by a tree). Let K be a compact metrizable topo-
logical space without isolated points. A family of non-empty compact subsets { Ky, bwer
of K is called a partition of K parametrized by the rooted tree (T, Er,¢) if and only if it
satisfies the following conditions:

(P1) Ky = K and for any w € T, #K,, > 2 and K,, = Uves(w) K,.
(P2) For any w € ¥, (,,»o K, is a single point.

In the rest of this subsection, we fix a compact metrizable topological space without
isolated points K, a locally finite rooted tree (T, Er, ¢) satisfying #{v € T | {v,w} €
Er} > 2 for any w € T, a partition { K, },er parametrized by (7, Er, ¢), a metric d on
K with diam(K,d) = 1, and a Borel probability measure m on K. Now we introduce a

graph approximation {(75,, E}) }nenugoy of K (see [Kig23, Proposition 2.8 and Definition
2.5-(3))).

Definition 8.3. For n € NU {0} and A C T, define

E: = {{v,w} ‘ v,we€ Ty, v #w K,NK, #0},
and E;(A) = {{v,w} € E; | v,w € A}. Let d, be the graph distance of (T,, E}). For
M € NU{0} and w € T,,, define

Cy(w)={veT,|d,(v,w) <M} and Upy(x;n):= U U K,.

wETn;x€Kyw ’UEF}W )

To state geometric assumptions in [Kig23], we need the following definition (see [Kig20,
Definitions 2.2.1 and 3.1.15].)

Definition 8.4. (1) The partition { K, }yer is said to be minimal if and only if K, \
Uueﬂwl\{w} # 0 for any w € T.

(2) The partition {K,, bwer is said to be uniformly finite if and only if sup,,.p #I'1(w) <
0o. We set L, = sup,,cp #1'1(w).

We also recall the following standard notion on metric measure spaces (see, e.g., [Hei,
Kig20, MT] for further background).

Definition 8.5. (1) The measure m is said to be wvolume doubling with respect to the
metric d if and only if there exists Cp € (0, 00) such that

m(Bg(z,2r)) < Copm(By(z,r)) for any (x,r) € K x (0, 00). (8.1)

The constant Cp is called the doubling constant of m.
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(2) Let @ € (0,00). The measure m is said to be Q-Ahlfors regular with respect to the
metric d if and only if there exists Cag € [1,00) such that

O 79 <m(By(x,7)) < Cagr® for any (z,7) € K x (0,diam (K, d)). (8.2)

The measure m is simply said to be Ahlfors reqular (with respect to d) if there exists
@ € (0,00) such that m is @-Ahlfors regular. Also, the metric d is said to be Q-
Ahlfors regular if there exists a Borel measure p on K which is @-Ahlfors regular
with respect to d.

(3) A metric p on K is said to be quasisymmetric to d, p e d for short, if and only if

there exists a homeomorphism 7: [0, 00) — [0, 00) such that

b d(xz,b
Mgn M for any x,a,b € K with x # a.
p(z,a) d(z,a)
(4) The Ahlfors regular conformal dimension of (K, d) is the value dimarc (K, d) defined

as

there exists a metric p on K such that
dimARc(K, d) =inf< @ >0

p 5 d and p is @-Ahlfors regular

If m is Ahlfors regular, then it is clearly volume doubling. It is well known that the
existence of a ()-Ahlfors regular m on (K,d) implies that the Hausdorff dimension of
(K,d) is Q.

Now we recall basic geometric conditions in [Kig23|. The conditions (1), (2) and (3)
below are important to follow the rest of this paper.

Assumption 8.6 ([Kig23, Assumption 2.15]). Let (K, O) be a connected compact metriz-
able space, { Ky, }wer a partition parametrized by the rooted tree (7, ¢), d a metric on K
that is compatible with the topology O and diam(K,d) = 1 and m a Borel probability
measure on K. There exist M, € N and r, € (0,1) such that the following conditions
(1)—=(5) hold.

(1) K, is connected for any w € T, {K,}wer is minimal and uniformly finite, and
inf,,,>0 minger,, #S(w) > 2.

(2) There exist ¢; € (0,00), 7 € {1,...,5}, such that the following conditions (2A)-(2C)
are true.

(2A) For any w € T,
el < diam(K,, d) < corl®l, (8.3)

(2B) For any n € Nand z € K,
Ba(x,c3r) C Upp,(x;n) C By(x, cqry). (8.4)

(In [Kig20], the metric d is called M,-adapted if the condition (8.4) holds.)
(2C) For any n € N and w € T,,, there exists z,, € K, satisfying

Ky 2O By(my, csrl). (8.5)
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(3) There exist m; € N, 71 € (0,1) and v € (0,1) such that

m(Ky) > ym(Krw)) forany weT, (8.6)
and
m(K,) < yym(K,) forany we T and v € S™(w). (8.7)
Furthermore, m is volume doubling with respect to d and
m(Ky) = Z m(K,) forany weT. (8.8)
veS(w)

(4) There exists My > M, such that for any w € T, k > 1 and v € S*(w),

L, (v) N SH(w) C {U/ € Ty there exist [ < Mo and (vy,...,v;) € S’“(w)ﬁl}.

such that (vj_1,v;) € E} forany j € {1,...,1}

o]

(5) For any w € T, m(I'ar.+1(w)) C I'ag, (m(w)).
We record a simple consequence of (8.8) in the next proposition.

Proposition 8.7. Assume that the Borel probability measure m satisfies (8.8). Then
m(K, N Ky) =0 for any v,w € T with v # w and |v| = |w|.

Proof. Let n € NU{0} and v, w € T, such that v # w. Enumerate T,, as {z(1), 2(2), ..., 2(l,) }

such that z(1) = v and 2(2) = w, where I, = #7},. Inductively, we define K., by

K.q) = K.q)

and i
K+ = Ko \ (U Kz(z’)) :
=1

Then {Kz(j)}i‘ll is a disjoint family of Borel sets and U?‘”:l f{z(j) = K. Therefore,
1= m(K) = Zm(Kz(j)>.

On the other hand,(8.8) implies that

In
L=m(Ky) => m(K.q).

J=1

Therefore, we conclude that m(Kz(j) \ I?Z(j)) =0 for any j € {1,...,1,}. In particular,

0= m<Kz(2) \ fN(z(z)> = m<Kw \ (Ko \ (K, N Kw))) = m(K, N Ky),

which completes the proof. O]
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Next we introduce conductance, neighbor disparity constants and the notion of p-
conductive homogeneity in Definitions 8.10, 8.8 and 8.11, following [Kig23, Sections 2.2,
2.3 and 3.3|. We will state some definitions and statements below for any p € (0, 00) or
p € [1,00), but on each such occasion we will explicitly declare that we let p € (0,00) or
p € [1,00). Our main interest lies in the case p € (1, 00).

Definition 8.8 (|[Kig23, Definitions 2.17 and 3.4]). Let p € (0,00), n € NU {0} and
ACT,.

(1) Define £7',: R* — [0, 00) by

palH)i= D> |fw—f)F, feR"
{u,v}eE; (A)
We write £(f) for &)1, (f).
(2) For Ay, A; C A, define capy (Ao, A1; A) by
CaPZ(AoaAl;A) = inf{c‘fﬁA(f) ‘ feRA f

(3) (Conductance constant) For A;, Ay C A and k € NU {0}, define

4, =i for i € {0,1}}.

Epi(Ar, Az, A) = capZ*k(Sk(Al),Sk(AQ); Sk<A))-
For M € N, define Eyyp i = super Epr({w}, T \ Tar(w), Ti).

Let us recall the notion of covering system, which will be used to define neighbor
disparity constants and the notion of conductive homogeneity.

Definition 8.9 (|Kig23, Definitions 2.26-(3) and 2.29|). Let Ny, Ng € N.

(1) Let n € NU{0} and A C T,,. A collection {G;}%_, with G; C T, is called a covering of
(A, EX(A)) with covering numbers (Np, Ng) if and only if A = 5| G, max,ca #{i |
x € G;} < Np and for any (u,v) € E’(A), there exists [ < Ng and {w(1),...,w(l +
1)} € A such that w(l) = u, w(l+1) = v and (w(i),w(i+1)) € U?:l E}(G;) for any
ie{l,...,1}.

(2) Let 7 € U,enuioyt4 | A € T} The collection 7 is called a covering system with
covering number (Nr, Ng) if and only if the following conditions are satisfied:

(i) supye y #A < oo.

(ii) Foranyw € T and k € N, there exists a finite subset A4~ C _# NTj,4x such that
A s a covering of (S*(w), Efr, ., (S*(w))) with covering numbers (N, Ng).

(iii) For any G € _# and k € NU {0}, if G C T,,, then there exists a finite subset
N C _# N T,y such that A is a covering of (S*(G), E:, . (S*(G))) with
covering numbers (N, Ng).

The collection ¢ is simply said to be a covering system if and only if there exist

(N7, Ng) € N? such that ¢ is a covering system with covering number (Np, Ng).

Definition 8.10 ([Kig23, Definitions 2.26-(1),(2) and 2.29]). Let p € (0,00), n € N and
ACT,.
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(1) For k e NU{0} and f: T),1x — R, define P, f: T,, — R by

(Pn,kf) (’LU) =

Zuesk( m m(K, Z fv w e T,.

UESk(w)

(Note that P, xf depends on the measure m.)
(2) (Neighbor disparity constant) For & € NU {0}, define

opx(A) = sup ;’ik—.
rest-r € gy (f)

(3) Let # CU,50{A| A CT,} be a covering system. Define

o’ = max{c,;(A)|Ae #,ACT,} and 0}‘:2 ‘= sup O{ém

p,k,n
neNU{0}

Definition 8.11 ([Kig23, Definition 3.4|). Let p € [1,00). The compact metric space K
(with a partition { K, },er and a measure m) is said to be p-conductively homogeneous if
and only if there exists a covering system _# such that

sup UZiSMhp,k < 00. (8.9)
keNU{0}

When we would like to clarify which partition is considered, we also say that K is p-
conductively homogeneous with respect to { Ky fwer-

The next consequence of (8.9) is more important than the original definition of the
p-conductive homogeneity for our purpose.

Theorem 8.12 (A part of [Kig23, Theorem 3.30]). Let p € [1,00) and assume that
Assumption 8.6 holds. If K is p-conductively homogeneous, then there exist ag,a; €
(0,00), 0, € (0,00) and a covering system _# such that for any k € NU {0},

—k

a0, " < Eppypi < 0,

» and  agoy < O'/ < ayo). (8.10)

In particular, the constant o, is determined by the following limit:

1/k

op = lim (Enr, pie) (8.11)

k—oo

Remark 8.13. The existence of the limit in (8.11) is true without the p-conductive homo-
geneity. Indeed, if (K, d,{ K, }wer) satisfies the conditions Assumption 8.6-(1),(2),(4),(5),
then [Kig23, Theorem 2.23| together with Fekete’s lemma implies the existence of the
limit in (8.11) for any p € (0,00). For convenience, we call o, the p-scaling factor of

(Kv da {Kw}weT)'

We also recall the “Sobolev space” WP introduced in [Kig23, Lemma 3.13].
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Definition 8.14. Let p € [1,00). Assume that Assumption 8.6-(1),(2),(4),(5) hold and
let o, be the constant in (8.11).

(1) For n € NU{0}, define P,: L'(K,m) — R by P,f(w) = f,. fdm, weT,.
(2) Define N,: LP(K, m) — [0, 00] and a linear subspace Wp of LP(K,m) by

1/p
No(f) 12( sup o, E( nf)> , [ e LP(K,m),
neNU{0}

Wr i {f € DP(K,m) | Ny () < oo,
and we equip WP the norm || - [|,,, defined by

1/
1w = (1 sy + 7)€ W2

(3) For a linear subspace D of WP, we define

U,(D) = {@@: D — [0,00)

&P is a seminorm on D, there exist ag,a; € (0, 00)

such that agN,(f) < E(F)Y? < ayN,(f) forany f € D
For simplicity, set U, :== U, WVP).

(4) Forn €e NU{0} and A C T,,, we define c‘i’}’A: LP(K,m) — [0,00) by

A;?,A(f) D pA(P f) fELp(K,m).
We also set g’g(f) = gng(f)_

We have the following property on N, thanks to the connectedness of K and Assump-
tion 8.6-(3).

Proposition 8.15. Let p € [1,00). Assume that Assumption 8.6 holds. Then N,(f) =
if and only if there exists ¢ € R such that f(x) = ¢ for m-a.e. x € K.

Proof. Tt is clear that N,(f) = 0 if f is constant. Suppose that f € LP(K,m) satisfies
N,(f) = 0. Note that (7, E¥) is a connected graph for each n € NU {0} (see [Kig23,
Proposition 2.8]). Therefore, N,(f) = 0 implies that there exists ¢, € R such that
P,f(w) = ¢, for any n € NU{0} and any w € T,,. By (8.8), we have ¢,, = ¢,,; and hence
there exists ¢ € R such that ¢, = ¢ for any n € NU {0}. Now we let £y C K denote the
set of Lebesgue points of f, i.e.,

gfIZ{IEK

i f 17— 1) mide) =0} (812
0 By(z,r)

Then, by the volume doubling property of m and the Lebesgue differentiation theorem
(see, e.g., |[Hei, Theorem 1.8]), we have £ € B(K) and m(K \ .Zf) = 0. For any = € %
and any n € NU {0}, by Proposition 8.7 and Assumption 8.6-(2),(3),

1
R O AL e e

[ 1@ = )] i)
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<C x) — m(dy),
< ]éd(wmum £ mldy)

where we used (8.4) and the volume doubling property of m in the last inequality, and
C € (0,00) is independent of z, f and n. By letting n — oo in the estimate above, we
obtain f(z) = ¢ for any x € %, which completes the proof. O

As shown in [Shi24, Kig23|, WP is a nice Banach space embedded in C(K) if K is
p-conductively homogeneous and p > dimagrc. In general, we can show the following
theorem.

Theorem 8.16. Let p € [1,00). Assume that (K, d,{Ky}wer,m) satisfies Assumption
8.6 and that K is p-conductively homogeneous. Then WP is a Banach space and WP is
dense in LP(K,m). If p € (1,00), then WP is reflexive and separable. Moreover, if in
addition p > dimagrc(K, d), then WP can be identified with a subspace of C(K) and WP
is dense in C(K') with respect to the uniform norm.

Remark 8.17. By [Kig20, Theorem 4.6.9], the condition p > dimarc(K, d) is equivalent
to o, > 1.

Proof. Note that WP is a Banach space by [Kig23, Lemma 3.24| and that W? is dense in
LP(K,m) by |Kig23, Lemma 3.28].

In the rest of this proof, we assume that p € (1,00). Let us show that WP? is reflexive.
Theorem 8.12 and [Kig23, Lemma 2.27| together imply that there exists a constant C' €
(0, 00) such that for any k,l € N, A C T, and f € RS,

EX A(Poif) < CEXEL L (). (8.13)

The rest of the proof is very similar to [MS23, Proof of Theorem 6.17], so we give a
sketch (see also [Shi24, Theorem 5.9] and the proof of Theorem 8.19-(a) below). Let

~ 1/p
1l = <|| 1T (m) +&( )) , which can be regarded as the LP-norm on K U E.

Also, we consider 5” as a [0, oo]-valued functional on LP(K,m). From [Dal, Theorem 8.5
and Proposition 11.6], by extracting a subsequence of {é}}}neN if necessary, we can assume
that {&] }nen [-converges to some p-homogeneous functional Ej,: LP(K,m) — [0, 0] as

n — oo. Then {[[-|,, }ninn I'-converges to [|- || = (I - ||Lp Km) T Ep)l/p as n — 00,
and hence (|| - |7, WP) is a p-energy form on (K,m) satlsfylng (Cla)p. By using (8.13)
and noting that limy_, P, fx(w) = P,f(w) for any n € NU {0}, any w € T, and any
fo fe € LP(K,m) with limyeo [|f = full (g my) = 0, We can show that |- || is a norm on
WP that is equivalent to || - ||,,,,. Thus, W? is reflexive by Proposition 3.4 and the Milman—
Pettis theorem. The separability of WP immediately follows from [AHM23, Proposition
4.1] since LP(K,m) is separable and the inclusion map of W? into LP( K, m) is a continuous
linear injection.

In the case p > dimagrc(K,d), WP can be identified with a subspace of C'(K) and is
dense in (C(K),|| - by [Kig23, Lemmas 3.15, 3.16 and 3.19]. O

lsup)
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Let us introduce an important value, p-walk dimension, which will be a main topic in
Section 9.

Definition 8.18 (p-Walk dimension). Let p € (0,00). Assume that (K, d, {Ky}wer)
satisfies Assumption 8.6-(1),(2),(4),(5). Let r. € (0,1) be the constant in (8.4), let o, be
the p-scaling factor of (K, d,{Ky}wer) (see (8.11) and Remark 8.13). We define 7, € R
by

log oy,

= 8.14
ks logr; ! ( )

If in addition m is Ahlfors regular with respect to d, then we define dy , € R by
dywp = di + Tp, (8.15)

where dy denotes the Hausdorff dimension of (K, d). We call dy, , the p-walk dimension of
(Ka da {Kw}wGT)-

Now we prove the main result in this subsection, which is an improvement of [Kig23,
Theorem 3.21].

Theorem 8.19. Let p € (1,00). Assume that (K,d,{Ky}wer,m) satisfies Assumption
8.6 and that K is p-conductively homogeneous. Then there exist £,: WP — [0,00) and
c € (0,00) such that the following hold:

(a) (é;,)l/p is a seminorm on WP and
No(F) S E)T S N(f) for amy | € WP, (8.16)

(b) (Ep,Wp) is a p-energy form on (K, m) satisfying (GC),.

(c) (Invariance) Let T: (K,B(K),m) — (K,B(K),m) be Borel measurable and preserve
m, i.e., T"1(A) € B( ) and m(T~*(A)) = m(A) for any A € B(K). Then foT €
wr cmdé’(foT) E(f) for any f € WP.

(d) If in addition p > dimagrc (K, d), then (é\p, WP) is a regular p-resistance form on K
and there exist C' € [1,00) such that

Cld(x,y)™» < Rg (x,y) < Cd(z,y)™  for any x,y € K. (8.17)

Proof. The most part of the proof will be very similar to that in [Kig23, Theorem 3.21|,
but we present the details because we do not assume p > dimagrc(K, d) unlike [Kig23,
Theorem 3.21]. Let 5 be a subsequential I'-limit of {8"}n with respect to the topology
of LP(K,m) as in [Kig23, Proof of Theorem 3.21], i.e., there exists a subsequence {Sp o
I-converging to gp with respect to LP(K,m) as n’ — oo. (Note that such a subsequential
I-limit exists by [Dal, Theorem 8.5].)

(a): 6/; is p-homogeneous by [Dal, Proposition 11.6]. The triangle inequality for
éA’p( )Y/ will be included in the proof of (b), so we shall prove (8.16). From the defi-
nition of the I-convergence, it is immediate that &,(f) < liminf, . 5”( ) < NL(f)P.
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Let us show the former inequality in (8.16). Let f € WP and let {f/}, be a recovery

sequence of {En}n/ at f, ie., limy oo || f = furll o my) = 0 and & o(f) =limy 0 € (fn)
Since lim,; oo Pkfn (w) = Pkf( ) for any k € N and any w € Ty, by (8.13),

g;f(f) = hm 5 (fw) < C lim 5 (fnf) ZC?p(f)a

n/—o00

where C' € (0, 00) is the constant in (8.13). We obtain the desired estimate by taking the
supremum over k € NU {0}.

(b): Let us fix ny,ne € N, ¢4 € (0,p], g2 € [p,o0] and T = (T3, ...,T,,): R — R
satisfying (2.1). Define Q,,: L'(K,m) — L*(K,m) by

f=Y Puf(w)ly, forfeL'(K m). (8.18)

weTy
Note that [|Q,]] Lo(Km)—Lo(Km) < 1 by (8.8) and Hélder’s inequality. Let us show
1f = Qnflliozmy = 0 asn — oo for any f € LP(K,m). Define the Hardy-Littlewood
maximal operator ./ : LP(K, m) — L°(K,m) by

r>0

M f(x) = sup ]i @), e K

Since m is volume doubling with respect to d by Assumption 8.6-(3), [HKST, Theo-
rem 3.5.6] implies that there exists a constant C' € (0, 00) (Km) =
Cllflpoxemy for any f € LP(K,m). We also easily see that for any f € LP(K,m) and

any r € K,

B n
Qi< Y Pfw< Y ™ TrE(KQ)))]i( 1 dm

wWETh;xEKy, wWETn;xe Ky,

m(Bg(z, 2cor™))
> m(Ba(T, cs77))

’wETn;IGK'Lu

M f(x) < Crdl f(x),

where z,, € K, and ¢y, ¢5 are the same as in Assumption 8.6-(2) and we used the volume
doubling property in the last inequality, and C; € (0,00) is a constant depending only
on sup,cr #I'1(w), ¢, c5 and the doubling constant of m. Let f € LP(K,m) and let
Z; C K denote the set of Lebesgue points of f (recall (8.12)). Then .Zy € B(K) and
m(K \ %) = 0 by the Lebesgue differentiation theorem for a volume doubling metric
measure space (see, e.g., [Hei, Theorem 1.8]). Since

f@) - Q@< Y ][ y)| m(dy)

wWET;xEKy,

<0 f (@) — £(y)| m(dy),
Bg(z,2cor?)

we have |f(z) — Qnf(x)] = 0 as n — oo for any z € Z;. Now the dominated convergence
theorem implies [|f — Qu [/ 1oy — O-
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Let w = (uy,...,u,, ) € (WP)™ and choose a recovery sequence {ug , }ns of {g’;}'}n/ at
uy, for each k € {1,...,n;}. For brevity, we write @, = (U1, ..., Un, n/) and

Pyu,(v) = (Pn/ul,n/(v), . ,Pn/unw/(v)) eR™, veT,,
Qn’un/(v) = (Qn/ul,n/<v)a <. 7Qn’un1,n’ (/U)) € Rnlv v e Tn’-

Note that ||ty — Quttkm | 1o,y — 0 as n' — oo by the fact proved in the previous
paragraph. Similar to an argument in [Kig23, p. 46|, by using ||Qn||Lp(K,mHLp(K’m) <1
and the estimate (2.21), we have

1Ti(w) = To(Quttn) | o s my ———> 0 forany L€ {1,... no}. (8.19)

Also, we note that
Py (T(Quun)) = Ti(Pyuy) € R™  for any I € {1,...,ns}. (8.20)

With these preparations, we prove (GC), for (EI,,WP). We suppose that ¢; < oo since
the case ¢u = 0o is similar. By (8.19) and (8.20), we see that

Z@(Tl(u alp < thmf&’ Tl(Qn/un/))qz/p
=1

n'—oo
520 g o q2/p
: lsz:lo%fZ T Y TP (1) = TPt (w) [
(vw)EE?,
/ q2/p
(219 ol
< 11nlln_>1£f 7‘0 Z | T (Pt (v)) — TPt (v)) || oo
(v,w)GEz/
) a2/p
21 o
< 1}%@ 717 Z | Poa(v) — Pow(v)][je
(vw)eE?,
O.n' ni /o /P
.. D pra
<liminf | 2= 37 D [Puwie(0) = Pt (w)| ]
(v,w)EET*L, =1
() ni o'n’ a/p ﬁ.%
< limi r g (V) — Pt () [P
< i 2[2 >0 Putiew(v) = P <w>|]
k=1 (v,w)eEE?,
P 92 Lp .42
ni q1 P ni R a P
< (Z hmsupc‘f (uk,n/)‘“/p> < <25p<uk)ql/p> , (821)
k—1 n/—o0 k=1

where we used the triangle inequality for the ¢”/%-norm on E’ in (). Hence (éA’p, WP)
satisfies (GC),.
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(c): This is clear from P, f = B,(f o T) € R for any n € NU {0}, f € LP(K,m).

(d): In the case p > dimarc(K, d), a combination of (b), [Kig23, Lemmas 3.13, 3.16,
3.19 and Theorem 3.21] and Theorem 8.16 implies that (g'p, WP) is a regular p-resistance
form on K. Then the estimate (8.17) is exactly the same as [Kig23, (3.21) in Lemma
3.34], so we complete the proof. O

Remark 8.20. The construction of 85 in [MS23+, Theorem 6.22] is very similar to that

of é/’;, in the proof above although the setting and assumption on a ‘partition’ in [MS23 | |
is slightly different from ours. Thanks to Proposition 8.7, the operators M,, and .J,, defined
in [MS23+, (6.8) and (6.9)] correspond to P, and @, respectively. In particular, (8.19)
and (8.20) for M, and J, are also true. Hence we can easily see that the p-energy form
(&), Fp) in [MS23 1, Theorem 6.22| also satisfies (GC),,.

Before concluding this subsection, we deal with the capacity upper bound and a
Poincaré-type inequality under the additional assumption on the Ahlfors regularity of
m. In addition to the density of W? in C'(K), we can obtain the following capacity upper
bound under the p-conductive homogeneity of K if p > dimarc(K,d) and m is Ahlfors
regular.

Proposition 8.21 (Capacity upper bound). Let p € (1,00) and A € (1,00). Assume
that Assumption 8.6 holds, that K is p-conductively homogeneous, that p > dimagrc(K, d)
and that m is Ahlfors reqular. Then there exists C' € (0,00) such that for any (z,r) €
K x (0,1],

m(Ba(w,1)

inf {N,(u)? | u € WP, ulp,@) = 1,suppg[u] C Ba(z, Ar)} < C -

(8.22)

Proof. Let r, € (0,1) and M, € N be the constants in Assumption 8.6. For r € (0, 1],
choose n € N as the minimal number so that co(M, + 1)r? < (A — 1)r, where ¢y is
the constant in (8.3). Let z € K and set T,,(x,r) = T,[Bqa(x,r)| for simplicity. Then,
by the metric doubling property of (K, d), there exists N € N which is independent
of z and r such that #7T,(x,r) < N. By [Kig23, Lemma 3.18] and its proof, for any
w € T,,(z,r) there exists hyy, ., € WP such that hay, |k, = 1, sSuppghas w] € Un, (w) and
Np(hat, w)? S oy Now we define 4, , = > wety () Mrw € WP Then ¢y, |pyws) > 1,
sUppg [¢z.r] € Ba(x, Ar) and
Np(toe)? < NP1 max Np(hag, ) S o = rilmton) g i,
weTy (x,r

Since m is Ahlfors regular and N, (¢, A 1) < Ny(¢,,) by [Kig23, Theorem 3,21, we
obtain (8.22). O

We can describe Poincaré-type inequalities in terms of discrete p-energies as follows.

Lemma 8.22. Let p € (1,00). Assume that Assumption 8.6 holds, that K 1is p-
conductively homogeneous, and that m is Ahlfors reqular. Then there exists a constant
C € (0,00) such that for any f € LP(K,m) and any w € T,

/w f(w)—][wfdm

p ~
m(dz) < Crl®vr liminf £ (f). (8.23)

oo PSS (w)
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Proof. Set k = |w|. Recall that lim, e |Qnf — fll1sxm) = 0 as shown in the proof of
Theorem 8.19-(b). Hence, for any n € N, we see that

T 2 Pl 0) = R @) m(K)
vES™ (W)
1

o o [ 0wt = Py min

UGS”(w

- ]f{ Quenf (#) — Pof () m(ds) — § |£(z) — Puf(w) m(dz),  (8.24)

n—oo Kw

where we used Proposition 8.7 in the second equalty. By [Kig23, (5.11) in Theorem 5.11|
and (8.10), there exists C' € (0, 00) which is independent of f and n such that

D |Pakf () = Pef(w) P m(K,) < Crlerm@gig (f). (8.25)

m<Kw) veES™(w)
We obtain (8.23) by combining (8.24), (8.25), (8.5) and the Ahlfors regularity of m. [

Proposition 8.23. Let p € (1,00). Assume that Assumption 8.6 holds, that K is p-
conductively homogeneous, and that m is Ahlfors reqular. Then there exist C,a € (0, 00)
such that for any (x,r) € K x (0,1] and any f € LP(K, m),

/ f—- ][ fdm
By(z,r) By(z,r)

Proof. Throughout this proof, M, € N and r, € (0,1) are the same constants as in
Assumption 8.6. Let (z,7r) € K x (0,1]. We first consider the case r € (csr, 1], where c3
is the constant in (8.4). By applying Lemma 8.22 for w = ¢,

p (7.14)
/ f— ][ fdm| dm < 2P /
By(z,r) Bg(z,r) Bg(z,r)

p

dm < Cr®» Jim inf EF 1 Batwam) (F)- (8.26)

dm

dm < Chmmfﬁ”(f)

n—o0

where C' € (0,00) is the constant in (8.23). Since diam(K,d) = 1, this shows
(8.26) for any A > c3'r;'. Hence it suffices to consider the remaining case, i.c.,

r € (0,c37.]. Let n € N satisfy c3r™ > r > c3r™™ . Set Ty (z;n) = {v € T |
v € 'y, (w) for some w € T, with © € K,,}. Then we see that

/ fly) - ][ fdm
Unr, (z30) U, (z3m)

<ot Y (/ W) = Puf () m(dy) +m(K.,)

welyy, (z;n)

p

m(dy)

)

Pufw)~f
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< dp T inif S0k dy
< Z (r Ph’gglfgp,sk(w)(f)—i-r

wel pr, (z5n)

Pf)~f g

P
) e
Note that, by Proposition 8.7,

P ~f  fdm= s 30 (Bufw) = BS0)ml)

* (%, n>> vel p, (z3m)

For any w € 'y, (z;n), by choosing w’ € Ty, (x;n) \ {w} so that P, f(w) — P, f(w') =
MaXyer s, (w5n) ’Pnf U)) - Pnf(v)|, we have

Pufw)~f

Hence, by Holder’s inequality, (8.10) and [Kig23, (2.17)],

P~ fam

< IPnf(w> - Pnf(w/)|'

p
< @M+ 17 o (F)

dyp—d etk
<r “lim inf £ Jsr‘k(rM (@ n))(f). (8.28)

k—o0

Note that #I'y,(z;n) < LM*Jr2 by Assumption 8.6-(1) and that S*(Ty, (w;n)) C
Tk Ba(w, csr™)] C Ty Ba(z, c3'rs 047“)] by Assumption 8.6-(2), where ¢, is the same
as in (8.4). Now we set A == (1V 64)03 7. Then, by (8.27) and (8.28),

/ Fy) — ][ Fdm
Unm, (z;n) U, (z5m)

(8.28) _ ~
dw n+k My+2, .dw,p 1; 1 k
< e lim inf E & (f) < LS rr h’gr_l)gf EptyBatw,ary (f)-

k—oo p,Sk(F]\/[* (z,n))

p

m(dy)

wel pr, (z5n)

Since
p (7.14) P
/ f(y) —][ fdm| m(d < 2p/ ][ fdm| m(dy)
By(z,s) Bg(z,r) (2,8) U, (z5m)
(s. 4) P
<o W-f  fam midy),
M, (z5n) Upy, (z5m)
we obtain (8.26). O

8.2 Construction of self-similar p-energy forms on p-conductively
homogeneous self-similar structures

In this subsection, we construct a self-similar p-resistance form on self-similar structures
under suitable assumptions. Our main result in this subsection, Theorem 8.29, implies
that self-similar p-energy forms constructed in [Kig23, Theorem 4.6] satisty (GC),.
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We start with some preparations before constructing self-similar p-resistance forms.
In the following definition, we introduce a good partition parametrized by a rooted tree.

Definition 8.24 (|Kig23, Definition 4.2]). Let £ = (K, S, {F}}ics) be a self-similar struc-
ture, let r € (0,1) and let (j,).es € N°. Define

Jj(w) = iji and g(w) = P for w=w...w, € W,.
i=1

Define 7(wy « - - wy,) == wy -+ - wyp_q for w =w; ... w, € W, and
Ny={w=w - w, € W, | g(T(w)) > r* > g(w)}.

Set T\ == {(k,w) | w € ALY, T = Ukenuoy 7" and define v: T) — W, as o(k,w) =
w. Moreover, define E, ) C T % 7() by

Erw = {((k,v), (k+1,w)) € T,gr) X Tk(:)l ke NU{0},v=worv= %(w)},
so that (T"), Epqy) is a rooted tree (see [Kig23, Proposition 4.3]).

In the rest of this subsection, we presume the following assumption on the geometry
of our self-similar structure.

Assumption 8.25. Let £ = (K, S, {F;}ics) be a self-similar structure such that #5 > 2
and K is connected. Set K, = K,y for w € T*(r*) for simplicity. There exist r, €
(0,1) and a metric d giving the original topology of K with diam(K,d) = 1 such that
(K,d,{Ky}peree, m) satisfies Assumption 8.6, where m is the self-similar measure on K

with weight (rJ*%).cs and dy is the unique number satisfying > o ré*% = 1.

Under Assumption 8.25, we have the d¢-Ahlfors regularity of m as follows.

Proposition 8.26 (|Kig23, Proposition 4.5]). The value ds coincides with the Hausdorff
dimension of (K,d) and m is dg-Ahlfors reqular with respect to d.

To obtain a self-similar p-energy form on L, we first discuss the self-similarity for
WP (recall (5.5)). The following lemma can be shown in exactly the same way as [Kig23,
Theorem 4.6-(1)] although the condition p > dimagrc (K, d) is assumed in [Kig23, Theorem
4.6].

Lemma 8.27. For any u € LP(K,m), any k € NU {0} and any n € N U {0} with

n > maxy,ew, j(w),

> &Py (uo Fy)) < E(Pau). (8:29)

weWy,

In particular, if in addition K is p-conductively homogeneous (with respect to { Ky} et ),
then uwo F,, € WP for any u € WP and any w € W, and hence

WPNC(K) C{ueC(K)|uoF;, € WP for any i € S}. (8.30)
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Similar to the case p = 2 (see, e.g., [Kig00, KZ92|), we will obtain a self-similar p-
energy form on (£, m) with weight o, = (J{f)se s as a fixed point obtained by applying
Theorem 5.21. To this end, we need the converse inclusion of (8.30) and uniform estimates
on Sy, (£) for any/some E € U,(WP NC(K)); recall the definition of Sy, ,, in Definition
5.20. These conditions are true if K is p-conductively homogeneous and p > dimagrc (K, d)
as described in the following proposition. (This result is essentially proved in [Kig23, Proof
of Theorem 4.6].)

Proposition 8.28. Let p € (1,00) and assume that K is p-conductively homogeneous
(with respect to { Ky }yereo ). If p > dimagc(K, d), then

WP ={ueC(K)|uoF; € WP for anyi € S}, (8.31)
and there exists C' € [1,00) such that for any E € U,, any uw € WP and any n € N,
C N (W) < Sppn(E) (1) < CN (). (8.32)

Proof. The uniform estimate (8.32) follows from [KKig23, (4.6) and (4.8)]. (In the proof of
[Kig23], the assumption p > dimagrc (K, d) is used to obtain [Kig23, (4.8)].) In the rest of
the proof, we prove

WP D {ueC(K)|uoF, e WP for any i € S} = WE.
(The converse inclusion is proved in Lemma 8.27.) We note that the following estimate

in [Kig23, lines 8-9 in p. 61] is true for every u € W: there exists a constant C’ € (0, 00)
such that

)<’ Z oI N, (uwo Fy)P = C'Sy, n(NP)(u) for any n € N, u € WE.  (8.33)

p
’LUGWn

(We need p > dimagc(K, d) to obtain (8.33) by following the argument in [Kig23, p. 61].)
Taking the supremum over n € N in the left-hand side of (8.33), we have Wi C WP, [J

Now we can obtain the desired self-similar p-energy form. The following theorem is a
generalization of [Kig23, Theorem 4.6] taking into account the case p < dimagrc (K, d).

Theorem 8.29. Let p € (1,00). Assume that Assumption 8.25 holds, that K is p-

conductively homogeneous (with respect to { Ky }yere. ) and that the following pre-self-
similarity conditions hold:

WPNC(K)={ue C(K)|uoF, e WP for any i € S}. (8.34)

There exists C' € [1,00) such that (8.32) holds for any u € WP NC(K), n € N. (8.35)

Let o, be the constant in (8.11), set o, = (03 )ses, let (Ep,Wp) be any p-energy form on

(K, m) given in Theorem 8.19 and set F, = Wr N C(K )Wp. Then there exists {ny ren C
N with ny, < ngy1 for any k € N such that the following limit exists in [0,00) for any
u € Fp:

ng—1
Ey(u) = klggon—k ZO So, (&) (8.36)
J

Moreover, the following properties hold:
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(a) (&, Fp) is a self-similar p-energy form on (L,m) with weight o,, and there exist
ag, a1 € (0,00) such that apN,(w)P < E,(u) < arNy(u)? for any u € F,.

(b) (Generalized p-contraction property) (€,,F,) satisfies (GC),.

(c) (Strong locality) (&,, F,) satisfies the strongly local property (SL1).

(d) Ifin addition p > dimagrc (K, d), then F, = WP and (€,, F,) is a reqular self-similar
p-resistance form on L with weight o, and there ezist ag, a1 € (0,00) such that

Qo d(.T, y)Tp < Rc‘)p (ZE, y) <o d(l’, y)Tp fOT’ any v,y € K. (837)

Remark 8.30. (1) In the case p > dimagrc(K,d), the pre-self-similarity conditions,
(8.34) and (8.35), can be dropped by virtue of Proposition 8.28.

(2) In |[CGQ22]|, self-similar p-energy forms on p.-c.f. self-similar structures are con-
structed, which are p-resistance forms under a certain condition as shown in Subsec-
tion 8.3. Note that any p € (1, 00) is allowed in the framework of [CG(Q)22| unlike that
of [Kig23] (see (d) above). It is extremely hard to determine the value dimarc (K, d)
in general; however, dimagc (K, d) for a p.-c.f. self-similar set K is typically 1. (See
[CP14, Theorem 1.2] for a sufficient condition for dimarc(K,d) = 1.) In Appendix
B.2, by using some results in [CGQ)22], we prove that the Ahlfors regular conformal
dimension of any affine nested fractal equipped with the p-resistance metric is 1.

Proof. The existence of the limit in (8.36) and its properties (a), (b) and (c) are immediate
from (8.34), (8.32), Lemma 5.15, Theorem 5.21, Propositions 5.22-(a) and 5.23. Let us
verify (d). Recall that WP C C(K) by p > dimarc(K,d) (see Theorem 8.16), whence
F, = WP. A similar argument as in the proof of Theorem 8.19-(d) shows that (&,, WP)
is a regular p-resistance form on K satisfying (8.37). This completes the proof. O

Similar to Theorem 7.9, we can obtain the monotonicity of a;/(p_l) inp > dimagrc(K, d).
Note that the following result is not restricted to p.-c.f. self-similar structures.

Theorem 8.31. Assume that Assumption 8.25 holds. Let p,q € (dimarc(K,d),o0)
with p < q. In addition, assume that K is s-conductively homogeneous (with respect
to {Ky}weros ) for each s € {p,q}. Then

U;/(pfl) < U;/(qfl)_ (8.38)
Proof. The proof is very similar to that of Theorem 7.9. By Proposition 8.28, (8.34) and
(8.32) with s € {p, ¢} in place of p hold. Let (&, W?) be a self-similar s-resistance form
on L given in Theorem 8.29 for each s € {p,q}. Fix two distinct points xg,yp € K,
set B = {x0,y0} and define h, = A [12] € WP. Then 0 < h, < 1 by the weak
comparison principle (Proposition 6.26) and we can find w € W, satisfying K,,NB = () and
hpw = h, o F,, & Rl . Similar to (7.13), by using (6.31) and (7.1), for any {u,v} € E,

we can show that
n(dw,p_df)%

|Pohgw(u) — Pohgw(0)]TF < Cry ,
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where C' € (0, 00) is independent of n. Hence we have

n ”(dw,p*d)g;fp n
Sq (hpw) = Z | Prhgaw(u) — Pnhq,w(v)rl <Cr,s f 1gp (Ppw),
{uv}eE;
which implies that
(0710l D1 &y ) < CE ) < CN () (8.39)

By (8.13), there exists C;, € (0,00) such that N,(f)? < C,liminf, gg(f) for any
f € LYK, m). This together with (8.39) implies that

N, (hy)? lim sup <a;102(7q’1)/(p’1)>n < C'Ny(hp)? < 0.

n—oo
Since Ny(hy.) > 0, we obtain Uq*laz()q_l)/(p_l) < 1, which yields (8.38). O

We conclude this subsection by applying Theorem 6.37 (elliptic Harnack inequality)
in the case p > dimarc(K,d) of Theorem 8.29. We immediately obtain the following
corollary by combining Propositions 7.12, 8.21, 8.26 and (8.37).

Corollary 8.32 (Elliptic Harnack inequality for self-similar p-resistance form). Let p €
(1,00). Assume that Assumption 8.25 holds, that K is p-conductively homogeneous (with
respect to {Ky}yereo) and that p > dimarc(K,d). Then (€,, WP) and {T¢,(u) buewr

given in Theorem 8.29 and in (5.11) respectively satisfy the assumptions in Theorem 6.37

with m, df(fp_l), dw’pﬁffl) in place of u, @, 3.

8.3 Construction of self-similar p-resistance forms on post-critically
finite self-similar structures

In this subsection, under the condition (R) of [CGQ22, p. 18], we see that the construc-
tion of p-energy forms on p.-c.f. self-similar structures constructed due to [CG()22] yields
p-resistance forms. The framework in [CG()22] is focused only on p.-c.f. self-similar struc-
tures, but restrictions on weights of self-similar p-resistance forms are flexible so that

non-arithmetic weights are allowed unlike the framework in Subsection 8.2. See Section
B.1 for details.

In the following definitions, we recall some classes of p-energy forms on finite sets
considered in [CGQ)22].

Definition 8.33 (|CGQ)22, Definition 2.1]). Let A be a finite set with #A > 2. Let
E:R* — [0,00) and consider the following conditions.

(i)  E(tf+ 1 —t)g) <tE(f)+ (1—t)E(g) for any f,g € R* and any ¢ € [0, 1].

(ii)  E(tf) = |t|" E(f) for any f € R* and any t € R.

(iii) E(f +tla) = E(f) for any f € R* and any ¢ € R.
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(iv) E(fT A1) < E(f) for any f € R4,
(v) {feR|E(f) =0} =Rl

We define M,,(A) and MP(A) by
M,y (A) = {E: R* = [0,00) | E satisfies (i)-(v)}, (8.40)
M,(A) == {E: R* = [0,00) | E satisfies (i)-(iv)}. (8.41)

Definition 8.34 (|CGQ)22, Definition 2.8]). Let A be a finite set with #A > 2. For
By, Ey € My(A), define a metric dgg ) on M,(A) by

dip )\ Er ) = sup{]El(u) — By(u)| | u € R, osclu] = 1}. (8.42)

For simplicity, we set |E|/\7,,(A) = d/\?,,(A)(E7 0) for £ € -//\-/lvp(A)'
(1) We define S,(A) C M, (A) by

there exists (Cyy)zyea C [0,00) such that

Sl ) = {E € My(4) ’ E(f) = Y yen lF@) = F(@)]7 cuy for f RA}' (8.43)

Note that any functional in S,(A) is a p-resistance form on A (see Example 6.3-(3)).
(2) We define Q),(A) € M, (A) by

there exist B D A and E € S,(B) such that

'(A) ={E A2 ~ < . (844
Qp() { E/\/lp()'E‘A:E,WhereE|AisthetraceoonnA} (8.44)
Let Q,(A) be the closure of Q) (A) in (./\/lp(A),dﬂp(A)), ie.,

there exists { £, }nen € Q! (A) such
Q,(A) = {E € M, (A) ‘ that lim,, . d (j)(E, E:) —0 (8.45)

Then we can show that any functional in Q,(A) is a p-resistance form on A.

Proposition 8.35. Let A be a finite set with #A > 2 and let E € Q,(A). Then E is a
p-resistance form on A.

Proof. Thanks to Proposition 2.9-(a), it suffices to prove (RF5),, i.e., (GC),, for E €
Qp(A). Let {Ey}nen € Q) (A) satisfy lim,, o0 dﬂp(A)(Ev E,) = 0. Then it is easy to see
that lim, ,oo F,(u) = E(u) for any u € R? (see also [CG()22, Lemma A.1]). Since E,
satisfies (GC), for any n € N, we have (GC), for E by Proposition 2.9-(b). O

Next we introduce renormalization operators playing central roles in the construction
of p-energy forms on p.-c.f. self-similar structures. In the rest of this subsection, we always
suppose that K is connected and that £ = (K, S, {F;}ics) is a p.-c.f. self-similar structure
with #S > 2.
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Definition 8.36 (Renormalization operator; [CGQ)22, Definition 3.1]). Let p, = (pp.i)ies €
(0,00)% and & € N U {0}. For a p-resistance form E on Vj, define p-resistance forms
Ap, (E): RVt — [0,00) and R, (E): RY — [0,00)? by

u) = pr,iE(U oF;), we RY+1  and Rp,(E) = App(E)‘
icS

Lo (846)

(Recall Proposition 7.8 and Theorem 6.13.) Precisely, A, , R,, depend on k, but we omit
it for convenience. By [CGQ22, Lemma 3.2-(b)], we have A} (E = Ry, (E) for any
n € NU{0}, i.e.,

v

Ry (E)(u) = inf{ > ppwEwo Fy)

wEWn

v € RV ]y, = u}, u e R,

The following theorem ensures the existence of an eigenform with respect to R,,
This theorem can be shown by combining [CG()22, Lemma 4.4, proof of Theorem 4.2]
and Proposition 8.35, so we omit the proof.

Theorem 8.37 (Existence of an eigenform). Let p, = (ppi)ies € (0,00)°. Assume that
there ezist ¢ € (0,00) and a p-resistance form E on Vi such that

i Rgn > Ryn e NU{0}. A
L R (00) 2 € max Ry (r0) for anyn €NU(O) ()

(a) There ezists a unique number A = X\(p,) € (0,00) such that the following hold. For
any E' € M,(Vy), there exists C' € [1,00) such that

CIN"E'(u) < R, (E')(u) < CAN"E'(uw)  for any n € NU{0} and any u € RY0.
(8.47)
(b) Let Ey € Sp(Vy). Forn €N, define E, € Q,(Vo) by

En(u) = inf{ -

1 < o
S AN (B)(ely,) veRVn,vm:u}, uweRY, (3.48)
=0

where X is the number given in (a). Then there exists a subsequence {E,, }ren such
that it converges in the topology induced by d - In particular, there exists F, €

Q,(Vo) such that

Z)\JAJ (Eo)(u), ueRY, (8.49)

(c) Let Ey € S,(Vo), let E, € Q,(Vy) be given by (8.49) and let X be the number given in
(a). Then {\"'R., (E.)(u)}ienugoy is non-decreasing for any u € R and RPP(E(O))
(0)
AEp 7, where
EO(y) = lim AR (B)(u), uweRY™. (8.50)
—00 P

p

9We use different symbols from [CGQ22].
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Remark 8.38. If p, satisfies (A) for some p-resistance form E on Vj, then for any p-
resistance form F on V; there exists ¢ € (0,00) such that (A) with £, ¢ in place of E, ¢
holds by [CGQ)22, Lemma 4.4-(a)]. Hence (A) is a condition relying only on p,.

In the rest of this subsection, we fix p, = (pp.)ics € (0,00). Let us introduce two
important conditions on p, similarly to [CGQ22].

(A’) There exist a p-resistance form é}go) on Vj such that RPP(EIEO)) = S;O).
(R) ((A’) holds and) min,eg p,; > 1.
Note that, by Theorem 8.37, (A’) is equivalent to (A).

The following proposition is important to construct a self-similar p-resistance form as
an “inductive limit” of discrete p-resistance forms as presented in [CG(Q)22, Proposition
5.3], which is an adaptation of the relevant pieces of the theory of resistance forms due to
[KigO1, Sections 2.2, 2.3 and 3.3].

Proposition 8.39. Assume that (A’) holds. We define g = Agp(é:,ﬁo)), i.e.,
8(") Z ppwﬁ(o)(u oF,), u€&R"™. (8.51)
weWn,
Then 5,§”) is a p-resistance form on V,, and 815”””) ‘v = Sé") for any n,m € NU{0}, i.e.,

{(Vn,é}g"))}mo is a compatible sequence of p-resistance forms.

Proof. We will show &"™™ |, = &M (See [Kig01, Proposition 3.1.3] for the case p = 2.)
It suffices to prove 515"“)\V = & for any n € NU {0} by virtue of Proposition 6.15.
Note that the case n = 0 is true by R, (&) = &, and that

nH Z:Opz (wo Fy), for any n € NU{0} and u € RV (8.52)

€S

Assume that £™ \ = ™Y for some m € N. Then for any u € RV,

m (8.52) m—
EMN(u) =7 ppibm (uo F)

1€S
= me» min{é’ém)(v o F}) ‘ v € REMVmit =u Ki}
€S
G2 mln{prZ J(voF) UERVm“,MVm:u}
€S

(852) . m m
i 0) | 0 € Ry, = ) = €007, (o)

which completes the proof. O]
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We can naturally construct a p-resistance form as an inductive limit on the countable
set V, as described in the following proposition.

Proposition 8.40. Assume that (A’) holds. We define a linear subspace F, . of RV and

Fp = {u c R%- ) lim &0 (uly,) < oo}, and (8.53)
£l = Jim E0ul). w € B (850

Then (&, «, Fp ) is a p-resistance form on 'V, satisfying &, «|v, = 5,%) for any n € NU{0}.
Moreover, the following self-similar properties hold:

Fps ={u€RY |uoF; € F,, for any i€ S}, (8.55)
u) = Z ppi&ps(uo Fy)  for any u € Fp . (8.56)
i€s

If in addition (R) holds, then for any u € F, . there exists a unique u € C(K) such that
uly, =u, and {u | u € F,.} is dense in C(K).

Proof. It is immediate from Theorem 6.21 that (&, ., F,.) is a p-resistance form on V,
with &, .|y, = 5,§f3). By the definition in (8.51), it is easy to see that for any n, k € NU{0}
and any v € R"*,

EN P uly,) = D ppawl" (wo Fulv,).

weWy,

This immediately implies (8.55) and (8.56). The existence of unique continuous exten-
sions of functions in F,, under (R) is proved in [CG()22, Theorem 5.1-(b)|. A standard
argument using the Stone-Weierstrass theorem shows that ¢ = {u | u € F,.} is dense
in C(K). Indeed, ¥ is an algebra since F, . is also an algebra by Proposition 2.2-(d).
For any =,y € K with z # y, choose n € N and v,w € W, so that = € K,,y € K, and
K,NK, = 0. (Such n,v,w exist by (5.3).) Then, by setting v = hf};’* (15, (v, we see that
Opy = U € € satisfies @, () = 1 and ¢,y (y) = 0, so we can use the Stone-Weierstrass
theorem to conclude that € is dense in C(K). O

To extend (&, Fp«) to a p-energy form defined on K, we need to specify how to
regard functions in F, . as functions defined on K, which is indeed a delicate problem
and discussed in [CGQ)22, Theorems 5.1 and 5.2|. In this paper, we are mainly interested
in the case F, . can be embedded into C(K). In other words, we always assume that (R)
holds. (See [CGQ)22, Theorem 5.2] and [KS.b, Appendix| for details on a situation when
we can identify a function u € RY* satisfying lim,, S,E")(u|vn) < oo with a function on
K without (R).) To state a construction of self-similar p-resistance forms under (R), we
need the following lemma.

Lemma 8.41. Assume that (A’) and (R) hold. Let (€,., Fp,.) is the p-resistance form

on V. given in Proposition 8.40. Then idy,: (Vi, R(lg/p) — K is uniquely extended to the
completion, which gives a homeomorphism.
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Proof. The proof is very similar to arguments in [KigO1, Proposition 3.3.2, Lemma 3.3.5
and Theorem 3.3.4]. Let (K,d) be the completion of (V*,Rl/p ) and let (&,., Fps)

be the p-resistance form on K defined by (6.26) and (6.27), where we choose S =
{(Vn,&gn))}neNU{o}. Also, we fix a metric d on K which gives the original topology of

K. Recall that R;A/p = gby Corollary 6.23. For n € N, we define

O, = min inf R, x )
" V,WEW; KyNKw=0 \ 2€F, (Vi),y€Fw (Vi) 5”’*( ’y)

Then 6, > 0 since Re, ,(z,y) > Ex (hf};’*[]le(VO)])_l for any x € F,,(Vi),y € F,(Vi). Let
{Zy }n>0 be a Cauchy sequence in (V;, Régp*) For each n € N, choose N(n) € N so that
sup Rg,, (wr, 21) < 0y
kJI>N(n)
Then there exists w € W, such that {x;}i>nm) C UUGW” KonKuwz0 Fo (Vi) = A
Since lim,,_,o max,ew, diam(A, ,,d) = 0 by (5.3), we conclude that idy, : (Vi, Rl/p)
(Vi d

v, xVv. ) is uniformly continuous. Now we define 6: (K , d) (K, d) as the unique con-
v, = idy,. Let us show that 6 is injective. Assume that z,y € K

satisfy 0(x) = 0(y). Let {z,}n>0, {¥n}n>0 be Cauchy sequences in (V;,R}ggi) satisfying
lim,, o0 c/l\(:p, Tp) = lim,,_ o c/l\(y, Yn) = 0. Then lim,, ., d(0(x), x,) = lim, oo d(0(y), yn) =
0 since # is continuous. For any u € ﬁpﬁ*, let w, € C(K) be the unique function satisfying
Unlv, = hf};* [u]y;, ], which exists by Proposition 8.40. Also, let v, € C(K) be the unique

hf/i‘* [u]y, ]; recall the proof of Theorem 6.22. Then we see that

on(w) = lim A2 [u)(zy) = Bu(6(x)) = Tu(8(y)) = lim 2y [u](ye) = valy). (857

k—o0 Vn k—o0

Let us fix 0 € Vy C V,,. By (6.3) for (5p*7]?p,*)7

~ 5 g,
u(z) — va(2)]” < Rg, (2,0)&p(u— ) = Rg, (v,0)E.(ulv. — Iy [ulv,]),

which together with (6.17) and (8.57) implies that

u(z) = lim v,(x) = lim v,(y) = u(y).

n—o0 n—oo

Since u € .7?,,7* is arbitrary, we conclude that Rg (z,y) = 0 and hence x = y. This means
that @ is injective. 7
Next we see that {F;};cs yields a family of contractions on the complete (non-empty)

metric space (K, d) By virtue of (8.56), similarly to the proof of (7.1), one can show
that for any w € W, and any z,y € V.,

d(Fu(), Fu(y))’ = Rg (Fu(@), Fu(¥) < ppuRe (2,y) = pphd(z, y)".

Py*
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In particular, F,|v.: (Vi,d 1) — (V*, d) is uniformly continuous, and hence there exists a
. Then it is clear that

unique continuous map £ K. K — K such that FK |v
c/l\(Ff(:L‘), Ff(y)) < Dpad 1P d(z,y) for any z,y € K, (8.58)

and that QoFK F,,00. Now, by (R) and (8.58), {FR} g 18 a family of contractions on
(K,d). By [Klo 01, Theorem 1.1. 4] there exists a unique non-empty compact subset KO
of K such that K, = UZGSF (Ko). Let us fix 0 € K, and set A = Uwew. FK( ) C K.
Then 0(A) = U,ew. Fu(f(0)) is dense in (K, d) by (5.3). Since 6(A) C 0(K,) C K and
ng(o) is compact by the continuity of ¢, we have 0(Ko) = K and thus §(K) = K. Then
K turns out to be compact since K = Ky by the injectivity of . Now 6 turns out to be a

homeomorphism between K and K. From the uniqueness of #, we conclude that K=K
and 0 = idg. We complete the proof. n

The following theorem describes a construction of self-similar p-resistance form as the
inductive limit of {8,(,”)},120 under the assumption that (R) holds.

Theorem 8.42. Assume that (A’) and (R) hold. We define
Fp = {u € C(K ‘ hrn 5(”)(u|v ) < oo} and (8.59)
&(u) = lim 5;”( ), ucF, (8.60)

Then (E,, Fp) is a reqular self-similar p-resistance form on L with weight p,, E,|v, = 515”)
for any n € NU {0}, and R, is compatible with the original topology of K.

Remark 8.43. Similar to Proposition 5.22, by choosing a suitable Ey € S,(Vp) in Theo-
rem 8.37, we can verify nice properties like the symmetry-invariance (see (9.7) for details)

of F, in (8.49), 5}(,0) in (8.50) and &,. See also Theorem 8.52.

Proof. By Lemma 8.41 and Corollary 6.23, (&,,F,) is a p-resistance form on K. The
self-similarity conditions, (5.5) and (5.6), for (&,, F,) are obvious from Proposition 8.39.
By Lemma 8.41 and Proposition 8.40, Rg, is compatible with the original topology of K
and (&,, F,) is regular (recall Definition 6.5). O

Let us recall the following proposition, which is useful to verify (R) for concrete
examples.

Proposition 8.44 (|[CGQ)22, Lemma 5.4]). Assume that (A’) holds. If w € W, satisfies
W= www - -+ € Pr, then py.,, > 1.

Next we move to the elliptic Harnack inequality for (non-negative) p-harmonic func-
tions. In the same setting as Theorem 8.42; one can verify the assumptions in Theorem
6.37 (elliptic Harnack inequality). Indeed, (8.61) and (8.62) in the proposition below are
proved in [KS.a, Lemma 6.8, Propositions 6.9 and 6.14] (see also Lemma B.4-(b), (c) for
affine nested fractals) and (8.63) is implied by Proposition 7.12. We summarize the results
in the next proposition and corollary.
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Proposition 8.45. Assume that (A’) and (R) hold. Let di(p,) € (0,00) be such that

Yics p;?f(p")/(pfl) =1, let m be the self-similar measure on L with weight (p;?f(p”)/(pfl))ieg,

let (£, Fp) be the p-resistance form given in Theorem 8.42, and let {I'¢,(u)}uer, be the
associated p-energy measures (recall (5.11)). Set }A%p = Ap,gp for simplicity. Then there
ezist C, A € (1,00) such that for any (z,s) € K x (0,00) with B (x,s) # K and any
u € Fploc(Bg, (2, As)),

O 1stilPr) < m(Bg (z,5)) < Csdier) (8.61)
inf{€,(u) | u € Fprulp, (ne) = Lsuppglu] C By (v, A9)} < C507), (8.6)
P
/ u —][ udm| dm < C’sdf(pp)+p_1/ dl'e (u). (8.63)
Bﬁp(x,s) Bﬁp (z,s) Bﬁp(ac,As)

Corollary 8.46 (Elliptic Harnack inequality on p.-c.f. self-similar structures). Assume
that (A’) and (R) hold. Let di(p,) € (0,00), m, (&, Fp) and {T'¢,(u) }uer, be the same as
in Proposition 8.45 Then the assumptions in Theorem 6.37 holds with m, d¢(p,), di(p,) +
p — 1 in place of 1, Q, B.

8.4 Verifying (A) for strongly symmetric p.-c.f. self-similar sets

Let us conclude this section by showing (A) for a special class of p.-c.f. self-similar sets
called affine nested fractals, which was introduced in [FHK94] as a generalization of the
class called nested fractals introduced by Liondstrgm [Lin90]. More precisely, we will
work in a wider class called strongly symmetric p.-c.f. self-similar sets. The proof of
(A) for affine nested fractals was given in [CGQ)22, Theorem 6.3], but their description
on the group of symmetries in the paper [CG()22] is not sophisticated!’, so we provide
the details of the proof for (A) and improve the assumptions in [CG(Q)22, Theorem 6.3|
simultaneously in Theorem 8.51.

We start with recalling the definitions of a group of symmetries, affine nested fractals
and strongly symmetric p.-c.f. self-similar sets. See, e.g., [Kig01, Section 3.8| for details.

Framework 8.47. Let D € N and let S be a non-empty finite set with #5 > 2. Let
{cities € (0,1), {aities € RP and {U;}ies € O(D), where O(D) is the collection of
orthogonal transformations of RP. Define f;: RP? — RP by fi(x) = ¢;Usx + a; for each
i € S. Let K be the self-similar set associated with {f;}ics, set F; == f;|x for each i € S
and assume that £ = (K, S, {F;}ics) is a p.-c.f. self-similar structure. We also assume
that K is connected, M = #(Vy) < oo and Zf\il ¢ = 0, where ¢; € RP is defined so
that Vo = {¢}M,. Let d: K x K — [0,00) be the Euclidean metric on K given by

d(z,y) = |z —yl.

0For a group of symmetries, say G, one of the essential properties that is needed to prove the G-
invariance of the resulted self-similar p-energy form is Proposition 8.50-(2). We have to be careful whether
this property holds for G, but this point is not handled very well.
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Definition 8.48 (|KigO1, Definitions 3.8.3 and 3.8.4]). (1) We define

w € W, there exists w’ € W,, such that

g € O(D), for any n € NU {0} and any}
9(Ky) = Ky and g(F,(Vo)) = Fur (Vo)

gsym(ﬁ) = gsym = {g’K

where O(D) denotes the orthogonal group in dimension D.

(2) For x,y € RP with = # y, let g,,: RP? — R be the reflection in the hyperplane
{zeRP ||z —z]=ly—2z|}.

(3) Let my = #{|lr —y| | z,y € Vo,z # y} and lp = min{|z —y| | z,y € Vb, x # y}. We
define {I;}7" inductively by l;4; = min{|z —y| | 7,y € Vi, |z —y| > I;}.

(4) Let m € NU {0} and (z;)", € (V;)". Then (x;)I, is called an m-walk (between z;
and x,) if and only if there exist w!, ..., w™ € W,, such that {z;, 7,11} C F,:(Vy) for
alli e {1,2,...,n—1}. A O-walk (z;)!", is called a strict 0-walk (between z; and x,,)
if and only if |x; — x;41| = lp for any i € {1,2,...,n — 1}.

(5) L is called a strongly symmetric p.-c.f. self-similar set if and only if it satisfies the
following four conditions:

(SS1) For any z,y € Vi with x # y, there exists a strict 0-walk between = and y.

(SS2) If z,y,z € Vp and |z —y| = |z — 2|, then there exists g € Gsym such that
g9(z) =z and g(y) = z.

(SS3) For any ¢ € {0,...,m, — 2}, there exist z,y,z € Vj such that |z —y| = [,
|z — 2| = l;41 and gyZ|K € Gsym-

(SS4) Vj is Geym-transitive, i.e., for any =,y € V with z # y, there exists g € Goym
such that g(z) = y.

(6) L is called an affine nested fractal if g,y|x € Geym (L) for any =,y € Vi with z # y.

Remark 8.49. In |Kig01, Definitions 3.8.3 and 3.8.4|, the following group of symmetries
G; is used instead of Ggym:

Y

gs = {9’[(

note that Ggymy € Gs. Under the assumption that

g € O(D), for any n € NU {0} and any w € W,
there exists w’ € W, such that g(F,,(Vp)) = Fu (Vo)

L(F,(Vo) N Fj(Vo)) <1 for any i,j € S with i # j, (8.64)

we know that Gy = G, by [KigO1, Proposition 3.8.19]. The difference between Gy and
Gs does not affect the arguments in the parts of [Kig0l, CGQ22] (Proposition 8.50 and
Theorem 8.51 below) that we need.

Let us recall a few properties of Gsm and of affine nested fractals in the following
proposition, which can be shown in the same ways as in [Kig01, Section 3.8]. (Let us
emphasize that we do not assume (8.64) unlike [Kig0O1, Section 3.8].)

Proposition 8.50 (|Kig01, Propositions 3.8.7, 3.8.20 and Lemma 3.8.23|). (1) IfL is an
affine nested fractal, then it is a strongly symmetric self-similar set.
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(2) Let w e Wy, g € Goym and set
Ugw = Fq;,l ogoF,,

where w' € W, is the unique word satisfying Fy (Vo) = g(F(Vo)). Then Uy € Gsym-
(3) Let a,b € Vy and assume that gaw|x € Gsym- if ,y € Fy,(Vo) for some w € W,,
|z —b| < |z —al and |y —b| > |y — al|, then gu(K,) = K.

Now we can present the following theorem proving the existence of an eigenform on
Vo for strongly symmetric self-similar sets and improving [CG(Q)22, Theorem 6.3]. Note
that the case p = 2 corresponds to the existence of a harmonic structure on £ in [Kig01,
Theorem 3.8.10].

Theorem 8.51. Assume that L is strongly symmetric. If
Ppi = Ppg for anyi € S and g € Geym, (8.65)

then p, satisfies (A). In particular, if there exists p, € (0,00) such that p,; = p, for
any i € S, then (A’) and (R) with (/\(pp)*lpp)ies in place of p, hold, where \(p,) is the
number given in Theorem 8.37-(a).

Proof. The proof is essentially the same as [CG()22, Proof of Theorem 6.3|, but we give
the details of the argument since we weaken the assumption of [CG()22, Theorem 6.3].
For n € NU {0}, define E,,, € S,(V},) by

Epn@) = Yy S lu(Fu(@) —u(Fu)f, uwe R,

weWn z,y€Vo;lz—y|=lo

Note that, by Proposition 8.50-(2) and (8.65), E,,,, is Gsym-invariant, i.e., £, ,(uogly,) =
E,n(u) for any u € R and g € Gy We fix a1, as € Vj that satisfy |a; — as| =y and
claim that for any n € N and x,y € V{ with x # vy,

1

§RE,,,”(G1>@2) < Rg,,(z,y) < (#V)PRE,,, (a1, a2), (8.66)

which implies (A) for p, with ¢ = 2(#V,)?.

We first show the upper estimate in (8.66). Let (z;)%, € (Vo)*™ be a strict 0-
walk between x and y. Then, by (SS2), (SS4) and the Ggym-invariance of E,,, we have
Rg, (%, zi41) = Rg,, (a1, az) for any i € {0,...,k — 1}. Hence we see that

k—1

Rg,,(2,9)"" < 3" Rp, (v1,001)"" = kRg, , (a1,a2)/" < (#Vo)Ri, (a1, a2)",

=0

which shows the desired estimate.
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Next we prove the lower estimate in (8.66). The case |x — y| = ly is clear by (SS2),
(SS4) and the Ggym-invariance of E, ,,, so we assume that |z —y| > lp. By (SS1), there
exists z € Vp such that |z — z| = ly. Define u € R by

(a) h%’;}[lx](a) if a € V, satisfies |a — z| < |a —y|,
u(a) = )

hff,’;} [12](gy-(a)) if a € V, satisfies |a — z| > |a — 9|,
f;’;}[]lx](a) = 1/2 whenever |a — z| =
ja—yl. Since |v — 2| = Iy < |z —y|, we have u(z) = hZ}[L](x) = 1. Also, u(y) =
h%;;}[]]-r] (94-(y)) = 0. Hence Rg,, (z,y) > E,,(u)"'. Now we define H,, = {a € V,, |
la —z| <la—vyl|}, Hyp ={a €V, ||a—2z > |a—y|} and we see that

which is well-defined since Theorem 6.13 implies A

E

(W) = Z + Z + Z PpwEpo(uo Fulv)

wEWn; weEWp; ’U)eWn;
Fw(VO)ng,n Fw(VO)gHZn Fw(VO)ZHi,n

Epn
=2 Z PpwEipo (h{;:z} [1,] 0 Fw|Vo> + Z PpawEpo(u o Fylvy).
weWn; weWn;
Fy(Vo)CHi,n Fu(Vo)ZHi

To estimate the second term in the right-hand side in the above inequality, let a,b € V}
satisfy |a —b| = lo, |Fy(a) — z| < |Fy(a) —y| and |F,(b) — z| > |F,(b) —y|. Then we
have g,.(F, (Vo)) = F,(Vo) by Proposition 8.50-(3). This along with the minimality of [,
implies that g,.(F,(a)) = F,,(b), whence it follows that u(F,(a)) = u(F,(b)). Hence

Z PrwEpo(uo Fulv,) = Z Ppw Z [u(Fu(a)) — u(Fu(b))["

WEWn: wEWn; a,beVo;la—bl=lo,
Fu(Vo)ZH; Fo,(Vo)ZH; {Fw(a),Fu(b)}CHin
or{Fy(a),Fy(b)}CHa p

<2 Z PpawEpo (hii;} [1,] o Fw|V0>;
wEWn;
Fu(Vo)ZH;n

and we deduce that

1

-1
Ri, ,(@.9) = Byn(u)™ 2 5By (B2 [L]) = SR, (a1, 02),

completing the proof. O

The following theorem gives symmetry-invariance self-similar p-resistance forms on
strongly symmetric self-similar sets.

Theorem 8.52. Assume that L is a strongly symmetric p.-c.f. self-similar set and that
(A7), (R), (8.65) hold. Then there exists a self-similar p-resistance form (€,,F,) on L
with weight p, such thatuog € F, and E,(uog) = &,(u) for anyu € F, and any g € Gsym.
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Proof. Define Ey € S,(Vy) by Eo(u) =", ey, [u(z) — u(y)[” for u € RY. Then Ey(u) =

Eo(uog) for any u € R" and g € Gsym. By Theorem 8 51 and explicit expressmns (8.48),
(8.49) and (8.50), there exists a p-resistance form £ on Vj such that Ry (5 N =gl
and £ (u) = & (o g) for any u € RY and g € Geym- The desired symmetry-invariance
for (€,,F,) is immediate from (8.65), Proposition 8.50-(2) and the expressions (8.59),
(8.60). O

9 p-Walk dimension of Sierpiniski carpets/gaskets

In this section, we prove the strict inequality dy , > p for generalized Sierpinski carpets
and D-dimensional level-l Sierpinski gasket as an application of the nonlinear potential
theory developed in Sections 6 and 7. In particular, we remove the planarity in the
hypothesis of the previous result [Shi24, Theorem 2.27|.

9.1 Generalized Sierpinski carpets

By following [Kaj23, Section 2|, we recall the definition of generalized Sierpinski carpets.

Framework 9.1. Let D,l € N, D > 2,1 > 3 and set Qg = [0,1]P. Let S € {0,1,...,1—
1}P be non-empty, deﬁne fi RD — RD by fi(x) == 17Y + 7'z for each i € S and set
Q1 = U,es fi(Qo), so that @1 C Q. Let K be the self-similar set associated with {f;}cs.
Note that K C Qo. Set F; := fi|x for each i € S and GSC(D,,S) = (K,S,{F,}ics)
Let d: K x K — [0,00) be the Euclidean metric on K given by d(z,y) = |z — y|, set
dy = log;(#5), and let m be the self-similar measure on GSC(D, [, S) with uniform weight

(1/#S)ies-

Recall that dy is the Hausdorff dimension of (K, d) and that m is a constant multiple
of the d¢-dimensional Hausdorff measure on (K, d); see, e.g., [KigO1, Proposition 1.5.8 and
Theorem 1.5.7]. Note that df < D by S € {0,1,...,1— 1}7.

The following definition is due to Barlow and Bass [BB99, Section 2|, except that
the non-diagonality condition in [BB99, Hypotheses 2.1] has been strengthened later in
[BBKT] to fill a gap in [BB99, Proof of Theorem 3.19]; see [BBKT, Remark 2.10-1.] for
some more details of this correction.

Definition 9.2 (Generalized Sierpiniski carpet). GSC(D, [, S) is called a generalized Sier-

pinske carpet if and only if the following four conditions are satisfied:

(GSC1) (Symmetry) f(Q1) = @, for any isometry f of R with f(Qo) = Q.

(GSC2) (Connectedness) (); is connected.

(GSC3) (Non-diagonality) intgs (Q1 N [T, [(ix — ex)I7Y, (4 + 1)I71]) is either empty or
connected for any (i)P_, € ZP and any (g;,)2_, € {0,1}7.

(GSC4) (Borders included) [0,1] x {0}P~! C Q;.
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See |[BB99, Remark 2.2] for a description of the meaning of each of the four conditions
(GSC1), (GSC2), (GSC3) and (GSC4) in Definition 9.2. To be precise, (GSC3) is slightly
different from the formulation of the non-diagonality condition in [BBK'T, Subsection 2.2],
but they have been proved to be equivalent to each other in [Kajl0, Theorem 2.4|; see
[Kaj10, Section 2| for some other equivalent formulations of the non-diagonality condition.

In this subsection, we assume that GSC(D,[,S) = (K, S,{F;}ics) as introduced in
Framework 9.1 is a generalized Sierpiriski carpet as defined in Definition 9.2.

We next ensure the existence of a symmetry-invariant p-resistance form on GSC(D, [, S)
for p > dimagrc (K, d) by applying Theorem 8.29.

Definition 9.3. We define

Go = {fl | f is an isometry of R, £(Qo) = Qo}, (9.1)

which forms a finite subgroup of the group of homeomorphisms of K by virtue of (GSC1).

Corollary 9.4. Let p € (dimarc(K,d),00). Then Assumption 8.25 holds with r, = 171,
K is p-conductively homogeneous, and there exists a reqular self-similar p-resistance form
(&, WP) on GSC(D, 1, S) with weight (0,)ies such that it satisfies the conditions (a)-(d)
of Theorem 8.29. In particular, (€,, WP) has the following property:

Ifu e WP and g € Gy then wo g € WP and E,(uo g) = &E,(u). (9.2)

Proof. Assumption 8.25 and the p-conductive homogeneity for the generalized Sierpinski
carpets in the case p € (darc, 00) follow from [Kig23, Theorem 4.13] or [Shi24, Proposition
4.5 and Theorem 4.14]. Let (&,, W?) be a self-similar p-resistance form given in Theorem
8.29. Then the desired properties except for (9.2) are already proved. The symmetric-
invariance (9.2) follows Theorem 8.19-(c), (8.36) and the fact that F, ' o go F; € G, for
any i € S; see also Proposition 5.22-(b). O

Recall that o, and dy,, are defined for any p € (0,00) (under Assumption 8.25). We
know the following monotonicity on dy ,/p in p € (0, 00).

Proposition 9.5. dy,,/p > dy ,/q for any p,q € (0,00) with p < q.
Proof. This follows from [Kig20, Lemma 4.7.4] and the fact that d; = log;(#5). O

The following definition is exactly the same as a part of [[Kaj23, Definition 3.6].
Definition 9.6. (1) We set Vi = K N ({e} x RP™!) for each ¢ € {0,1} and U, =
K\ (Vg UTg).

(2) We define g. € Gy by g. = .|k for each € = (g4)2_, € {0,1}7, where 7.: RP? — R”
is given by 7.((x)2_,) = (e, + (1 — 2e1)z)P_,, and define a subgroup G, of Gy by

G :={g. | e € {0} x {0,1}°'}. (9.3)
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In the rest of this subsection, we fix p € (darc,o0) and a self-similar p-resistance
form (£,,WP) in Corollary 9.4. Recall Theorem 6.13 and let hg = h\g/zﬂuvol []lvol] € Wr.
The strategy to prove dy, > p is very similar to [[aj23], that is, we will prove the non-
Ey-harmonicity on Uy of hy = Y7 . (Fu)«(I7%ho + ¢'1x) € WP, which also satisfies
holyg =i (i = 0,1). (See [Kaj23, Figures 2 and 3| for an illustration of kg and h.) Then
the strict estimate dy, , > p will follow from &,(hy) < &,(h2) and the self-similarity for &,.
Our arguments will be easier than that of [Kaj23] by virtue of WP C C(K).

The next proposition is a key ingredient. Note that it requires our standing assumption
that S # {0,1,...,1 — 1}P, which excludes the case of K = [0,1]” from the present
framework.

Proposition 9.7. Let hy = > . (Fu)«(I7%ho + ¢'1x) € WP. Then hy is not &,-
harmonic on Uy and ha|ys =i for each i € {0,1}.

Proof. The proof is a straightforward modification of [[{aj23, Proposition 3.11| thanks to
Theorem 6.13. We present here a self-contained proof for the reader’s convenience.

We claim that, if hy were £,-harmonic on Uy, then hy € WP would turn out to be
&y-harmonic on K \ V', which would imply by combining with Proposition 6.11 that
Ep(ho) = Ey(ho; ho) = 0, which would be a contradiction by (RF1), and WP C C'(K).

For each ¢ = (g)2, € {1} x {0,1}P7", set U* == K N [[_y(ex — L,ex + 1) and
K¢ = KNJ[lex — 1/2,ex + 1/2]. Fix p. € WP N C.(U?) so that o] = Tge,
which exists by (8.17), (RF1), and (RF5),. Let v € WP N C.(K \ V) and, taking an
enumeration {e™}27" of {1} x {0,1}”~! and recalling Proposition 2.2(c), define v, €
WPNC,(U?) for e € {1} x {0,1}P~1 by v.) == vy, and v = v k) Hf;ll(]lK — Pe0))
for k € {2,...,2P71}. Then v — 286{1}X{071}D,1 Ve = UHae{1}x{o,1}D*1(]lK — ) EWPN
Ce(Up), hence &,(ho; v) = >° 11401301 Ep(ho; v=) by Proposition 6.11 (with Y = K\ Uj).
Therefore the desired &,-harmonicity of hy on K \ Vy would be obtained by deducing that
E(ho;v.) =0 for any € € {1} x {0,1}P~L.

To this end, set €@ = (1yy(k))E_,, take i = (ix)P; € S with 4y < [ — 1 and
i+e© ¢ S, which exists by # # S € {0,1,...,1— 1}’ and (GSC1), and let ¢ = (g;,)2_, €
{1} x {0,1}P~1. We will choose i¢ € S with Fy-(¢) € F;(K N ({1} x (0,1)P71)) and
assemble v, 0 g, 0 F.;! with a suitable g,, € G, for w € Wy with Fj-(g) € K, into a function
Vo € WP N Co(Uyp). Specifically, set i57 == ((I — 1)(L13(k) + 1 — &) + (28, — 1)nk)kD:1
for each n = (n,)P_, € {0} x {0,1}P~! and I® == {n € {0} x {0,1}¢71 | i7" € S}, so that
i€ == i*%2 € S by (GSC4) and (GSC1) and hence 0p € I¢. Thanks to v. € WP N C.(U?)
and i +¢® & S we can define v. 5 € C(K) by setting

—1 : € IR X
Veolk, = {UEOQ"OFW %fneluandw—zz ! for each w € W, (9.4)
’ 0 ifwé {iee" |nel}

Then suppy|ves] € K; \ Vi C Uy by (9.4) and iy < [ — 1. In addition, v.5 0 F,, € WP
for any w € Wy by (9.4), v. € WP and (9.2). Thus v.» € F, by (5.5) and therefore
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v.2 € WP N C.(Up). Recall that hy o F, = [72hg + ¢ 1 for any w € Wy and note that,
by the uniqueness in Theorem 6.13, hg o g,, = ho for any n € I°. Then we have

21-2(p-1) g
hz,vw E o, [t ho,vgogn)
nele

=Y ol ?PIE (ho 0 gyive) = (#I)apl P VE, (hos v.). (9.5)

nele

Now, supposing that hs were £,-harmonic on Uy, from (9.5), #I1¢ > 0, v.» € F, N C.(Up)
and Proposition 6.11, we would obtain &,(hg;v.) = o, 2P~ 1)(#[5) € (hg,v&g) = 0,
which would imply a contradiction as explained in the last two paragraphs. O

Theorem 9.8. d, > p for any p € (0, 00).

Proof. 1t suffices to prove the case p € (darc, 00) by Proposition 9.5. Let hg, ha € WP be
as in Proposition 9.7. By Proposition 9.7, we have £,(ho) < &,(ha). This strict inequality
combined with (5.6) shows that

Epho) < Ep(ha) = (a,(#S)77)*E, (o),

whence 1P < o,(#S). Since o, = [™»~% and d; = log#S/logl, we get dy, =
log (0,(#5))/logl > p. O

9.2 D-dimensional level-/ Sierpinski gaskets
Following [Kaj13, Example 5.1], we introduce D-dimensional level-I Sierpinski gaskets.

Framework 9.9 (D-dimensional level-l Sierpinski gaskets). Let D,l € N, D > 2, [ > 2
and let {qz}2_, C R be the set of the vertices of a regular D-dimensional simplex so
that qo,...,qp_1 € {(x1,...,2p) € RP | 2y =0} and ¢p € {(z1,...,2p) € RP | z; > 0}.
Further let S = {(iy)f; | ix € NU {04,320 i, <1 — 1}, and for each i = (ix)f_, € S
we set ¢; = qo + Yor_ 7Yk (qr — qo) and define fi: RP? — RP by fi(z) == ¢+ 1" (z — qo).
Let K be the self-similar set associated with {f; }ics and set F; :== f;|x. Let SG(D,[,S) =
(K, S,{F;}ics), which is a self-similar structure. Let d: K x K — [0, 00) be the Euclidean
metric on K, set d; == log, #5, and let m be the self-similar measure on SG(D, [, S) with
uniform weight (1/#5);es.

Each SG(D,,S) is called the D-dimensional level-l Sierpiriski gasket and belongs to
a class called the nested fractals (see [KigO1, Section 3.8] for details on nested fractals).
In the rest of this subsection, we fix such a Sierpinski gasket SG(D,,S) and the self-
similar measure m as in Framework 9.9. We can easily verify [Kig23, Assumption 2.15|
for SG(D,1,S). In addition, it is well known that m is dgAhlfors regular (see [Kig23,
Proposition E.7| for example). Similar to Corollary 9.4, we have a symmetry-invariant
p-resistance form on SG(D,!,S) for any p € (1,00). (The Ahlfors regular conformal
dimension of (K, d) is 1. See Theorem B.9.)
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Definition 9.10. We define
Go = {fl | f is an isometry of R”, f(Vy) = Vol (9.6)

which forms a finite subgroup of the group of homeomorphisms of K.

Corollary 9.11. Let p € (1,00). Then Assumption 8.25 holds with r, = 7', K
s p-conductively homogeneous, and there exists a reqular self-similar p-resistance form
(&, WP) on SG(D, 1, S) with weight (0,,);es such that it satisfies the conditions (a)-(d) in
Theorem 8.29. In particular, (€,, WP) has the following property:

If u e WP and g € Gy then wo g € WP and E,(uo g) = E,(u). (9.7)

Similar to Proposition 9.5, we have the following monotonicity of dy ,/p in p.
Proposition 9.12. d,, ,/p > dy,/q for any p,q € (0,00) with p < q.

We can prove the following main result by using compatible sequences.

Theorem 9.13. d,, > p for any p € (0,00).

Proof. Let p € (1,00) and let (£,,WP) be a self-similar p-resistance form as given in
Corollary 9.11. Define u € C(K) by u(xy,...,xp) = z; for any (z1,...,2p) € K C RP.
Then uly, € WP|y, for any n € NU {0} by Proposition 6.8. We claim that if uly, were
Eplvi-harmonic on V; \ Vi, then &,y (uly,) = 0, which would contradict (RF1),.

Suppose that &,|v; (ulvy; @) = 0 for every ¢ € R"* with ¢y, = 0. Noting that (u|y; o
F)lv, = " uly, + ¢y, for some constant ¢; € R and using (7.5), we have

Eplvi(ulvi;0) = 0, Eplwy(ulyy 0 Fsp0 F) =177 Vg, > & |y, (ulyy;p 0 Fi). (9.8)
€S (ISh)

It is easy to see that (Vi \ Vo) N {(z1,...,2p) € RP | z; = 0} # 0. Let z € V1 \ Vj
with z € {z; = 0} and let ¢ = ]l}/;} € R“. Since uog = u for any ¢ € G, with
g{z1 = 0} N K) = {x; = 0} N K, the Gy-invariance (9.7) implies &,|y, (u|V0;]l¥2i}) =
Eplva (] vy 1&}) for any 4,5 € {0,...,D —1}. Since ¢ o F; = 0 € R for any j € S with
z & K;, we have from (9.8) that

0=_Elv(ulviip) =1""Va, > &l (uly;po F)

i€S;zeK;

— [~ (#{z es | z € K; })S |V0 (U|VO’ {lJo})

Hence we get &y, (u|V0; ]l}/;)j}) = 0 for every j € {0,..., D — 1}. Therefore,

gp’VO(u‘VO;]l}{/SD}> & |V0 U‘VmﬂVo ZS |Vo u"/ov {g; })
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which yields &,|v;, (u|v,; v) = 0 for every v € RY". In particular, &, v, (uly,) = 0, which is a
contradiction and hence we conclude that ul|y, is not &,|y,-harmonic on V3 \ V5. Combining
with Proposition 6.15, we see that

Eplvy
Exlva(ula) = Enlvalva (ulve) = &l (I [ulval) < &l (ulvy). (9.9)

Similar to (9.8), we have &y|v; (ulv,) = 7Po,(#S)Ep|v, (ulv, ). Hence the strict inequality
(9.9) yields 1 < [7P{%w»=dt(#S) = [4»=P which proves d,, > p for any p € (1,00). By
Proposition 9.12, we complete the proof. O
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A Symmetric Dirichlet forms and the generalized con-
traction properties

In this section, we verify generalized contraction properties for some energy forms related
with symmetric Dirichlet forms.

Throughout this section, we fix a measure space (X, B, m).

A.1 Symmetric Dirichlet forms satisfy the generalized 2-contraction
property

In this subsection, we verify that any symmetric Dirichlet form satisfies (GC)s.

Let us recall the definition of symmetric Dirichlet form. See, e.g., [CF, FOT, MR] for
details on the theory of (symmetric) Dirichlet forms.

Definition A.1 (Symmetric Dirichlet form). Let F be a dense linear subspace of
L*(X,m) and let £: F x F — R be a non-negative definite symmetric bilinear form
on F. The pair (€, F) is said to be a symmetric Dirichlet form on L*(X,m) if and only
if 7 equipped with the inner product £ + (-, -)r2(x,m) is a Hilbert space and u* A1 € F,
E(ut Al ,ut A1) < E(u,u) for any u € F.
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We can show that a symmetric Dirichlet form (€, F) satisfies (GC), by modifying the
proof of [MR, Theorem 1.4.12].

Proposition A.2. Let (€, F) be a symmetric Dirichlet form on L*(X,m). Then (&, F)
is a 2-energy form on L?(X,m) satisfying (GC)s,.

Proof. The triangle inequality for £'/2 is clear, so we shall prove (GC), for (£, F). Let
us fix ny,ny € N, ¢4 € (0,2], g2 € [2,00] and T' = (T3,...,T,,): R™ — R™ satisfying
(2.1) with 2 in place of p. We consider the case go < 0o (the case ¢o = 0o is similar). Let
{G4}as0 be the strongly continuous resolvent on L?(X,m) associated with (&, F); see,
e.g., [MR, Theorem 1.2.8|. By [MR, Theorem 1.2.13-(ii)], it suffices to prove that for any
w = (Up,..., Uy ) € L*(X,m)™ and any « € (0, 00),

n9 1/q2 ni 1/q1
(2«1—aaam<u>,ﬂ<u>>‘f!&,m)) < (Z«l—aG >uk,uk>iz/&m)> C(AD)

=1 k=1

By the linearity of G, and (2.1), it is enough to prove (A.l) in the case where uy is a
simple function for each k € {1,...,n;}, so we assume that

N
uk:ZakiﬂAi, Eed{l,...,n}, (A.2)

i=1
where N € N, (ap;)¥; CR, {A4;}Y, C B(X) with m(A;) < oo and A;NA; =0 for i # j.
Fix a € (0,00) and, for i,7 € {1,..., N}, we define

bi,j = <(1 — CYGa)]lA” ]lAj>L2(X,m)7 )\l = m(Al) and CLZ']' = <OéGa]1Ai, ]lAj>L2(X,m)'

Then b;; = \id;j — a;; by a simple calculation, and a;; = aj; since G, is a symmetric
operator on L?(X,m) (see, e.g., [MR, Theorem 1.2.8]). Hence for any (z1,...,zy) € RY,

N N
Z Zizjbij = Z al-j(zi - Z]’)Q + Z ijJZ, (AS)
ij=1 i<j j=1

where m; == \; — Zfil a;;. Note that a;; > 0 for any 4,5 € {1,..., N} since aGoly4, > 0
by [MR, Theorem 1.4.4]. We set A == |JY, A;, and then we have aG,(14) < 1 by [MR,
Theorem 1.4.4] and

Zaw—a/]lAG (]lA)dm—a/G (L4)14, dm</]lA dm = \j,

u=1 X

whence m; > 0. With these preparations, we show (A.1) for u defined in (A.2). Set
T = Ti(agiy ..., qyy) foreach [ € {1,...,n2}.

na na N q2/2
> (1= aGa)Ti(w), Ti(w) By ) = Z(Zn,iﬂ,jbij)

=1 =1 \ij=1
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i<j Jj=1
(2.19) na 2/a2 N na 2/a2\ /2
. 2 2
S (oS ) S (o)
i<j =1 Jj=1 I=1
o o g/ 2/ N o w/a\ 2/ q2/2
2 s (zmm >) £ [ (Zaz;)
i<j k=1 7=1 k=1
ny 2/q N n 2/q BT
a1/2 q1/2
(5 (St aw) 3 (St )
i<j \k=1 =1 \J=1
a1 92
(%) n1 N a2\ 2o\ 2 a
21 (3 (Souton - owr+ S,
k=1 1<j j=1
ni N 7/2 a/0
(3 (oot e,
k=1 \1i<j Jj=1
s [ (L ai/2\ #/9 n %
. 2
= (Z akiakjbij) = <Z<(1 —aGa)ukauk>qu2/(x,m)> )
k=1 \i—1 =1

where we used the triangle inequality for £2/9.-norm in (). The proof is completed. [

Next we will extend (GC), to (€, F.), where F. is the extended Dirichlet space; see
Definition A.4 below. (See, e.g., [FOT, Section 1.5] or [CF, Section 1.1] for details on the
extended Dirichlet space.) We need to recall the following result.

Proposition A.3 (|Sch99b, Proposition 1| and [Sch99a, Lemma 1|'!). Assume that m
is o-finite. Let (£, F) be a symmetric Dirichlet form on L*(X,m). If {uy}tnen C F
converges m-a.e. to 0 and limyp; oo E(ur, — uy, up — uy) = 0, then lim, o E(tun, u,) = 0.

Now we define the extended form (&, F.).

Definition A.4 (Extended form). Let (£, F) be a symmetric Dirichlet form on L*(X,m).
We define the extended form (€, F.) by

lim,, o fn = f m-a.e. for some { f,, }nen C .7:}
with limgaiseo E(fe — fio f — fi) =0 ’

HMore precisely, this is a special case of [Sch99a, Lemma 1]. In [Sch99a, Lemma 1], (£, F) is assumed
to be a positive semi-definite bilinear form satisfying the strong sector condition (see [Sch99a, Definition
1]) and the Fatou property (see [Sch99a, Definition 2|), both of which are satisfies if (£, F) is a symmetric
Dirichlet form. Indeed, the strong sector condition is immediate from the Cauchy—Schwarz inequality for
& and the Fatou property for (£, F) follows from [Sch99b, Proposition 1].

F. = { f e L(X,m) (A.4)
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g(f7 f) = nh_g)log(fnufn)? (A5)

where {f,}nen is a sequence as in (A.4). Such {f,}nen as in (A.4) is called an approxi-
mating sequence for f. (By virtue of Proposition A.3, lim,, o E(fn, fn) does not depend
on a particular choice of {f,}nen. See also [FOT, Theorem 1.5.2-(i)].)

We also need the following proposition, which is proved by utilizing a version [CF,
Theorem A.4.1-(ii)] of the Banach—Saks theorem .

Proposition A.5 ([Sch99a, Lemma 2|'?). Assume that m is o-finite. Let (€, F) be a
symmetric Dirichlet form on L*(X,m). Let {u}neny C F. If liminf, o0 E(up, u,) < 00
and {u, tnen converges m-a.e. to uw € L°(X,m) as n — oo, then u € F, and E(u,u) <
liminf,, o & (up, uy).

Now we can show that the extended form (&, F.) satisfies (GC), under the extra
assumption that m is o-finite.

Proposition A.6. Assume that m is o-finite. Let (£, F) be a symmetric Dirichlet form
on L*(X,m). Then (€, F.) is a 2-energy form on (X, m) satisfying (GC)s.

Proof. Set E(u) = E(u,u) for u € F,. Then £: F, — [0,00) is clearly 2-homogeneous.
Let us show (GC), for (£, F.). As in the proof of Proposition A.2, let us fix ny,ny € N,
@1 € (0,2], ¢ € [2,00] and T = (T, ..., T,,): R™ — R" satisfying (2.1) with 2 in place
of p. Let u = (uy,...,up,) € Fi. Foreach k € {1,...,n1}, let {upn}nen € F be an
approximating sequence for uy. Set u, = (U1, ..., Un, ). Since T} € C(R™) and (&, F)
satisfies (GC)a, lim, o T(u,) = T)(w) m-a.e. and {E(T;(u,)) }nen is bounded. Then we
have T)(u) € F. and E(T)(u)) < liminf, .. E(T;(u,)) by Proposition A.5. In addition,
by (GQ), for (£, F),

=1 =1

(€T () )2 |, < || (tim inf E(Ti(a,)) '),

092

< ligi;}f I (5(7}(“”))1/2)7:21 Hqu

< h?{giol.}f H (g(uk,">1/2)zlz1”m - H (E(uk>1/2)zlz1Heql )

which means that (&, F.) satisfies (GC)s. O

A.2 The generalized contraction properties for energy measures

In this subsection, under additional topological assumptions on (X, m), we verify (GC),
for the (2-)energy measures associated with a regular symmetric Dirichlet form.

In the rest of this section, we assume that (X, m) satisfies (3.27), (3.28) and that X is
separable, and let B = B(X). (These are the same topological assumptions as in [FOT,

(1.1.7)].)

12Similar to Proposition A.3, this proposition is true for any positive semi-definite bilinear form (€, F)
satisfying the strong sector condition and the Fatou property.
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Recall that (£, F) is said to be regular if and only if (£, F) possess a core in the sense
of Definition 3.24. A regular symmetric Dirichlet form is known to satisfy the following
representation.

Theorem A.7 (Beurling-Deny expression of a regular symmetric Dirichlet form; see,
e.g. [FOT, Theorem 3.2.1|). Assume that (€, F) is a regular symmetric Dirichlet form
on L*(X,m). Then there exist a symmetric bilinear form £© on F N C.(X) satisfying
EW(u,v) = 0 for any u,v € F N C.(X) with v constant on a neighborhood of suppy [u],
symmetric positive Radon measure J on X x X with J({(z,z) | v € X}) = 0 and a
positive Radon measure k on X such that

E(u,v) = EO(u,v) + ED (u,v) + EW(u,v)  for any u,v € F N CL(X), (A.6)

where
£0)(u, v) = /X (ua) = u()ola) o) Tz, dg). ¥ (u0) = /X u()o(z) k(dz).

In addition, such E9, J and k are uniquely determined by £. We call £ the local part
of £, J the jumping measure associated with € and k the killing measure associated with

E.

In the next propositions, we extend each part in the decomposition (A.6) to F,. and
associate energy measures to them. See [FOT, Chapters 2 and 3| for their proofs.

Proposition A.8. Assume that (€, F) is a reqular symmetric Dirichlet form on L*(X,m).
Let u € F. and {up}nen C F be an approzimating sequence for u. Then, for any
E* € {£©9 W) RN LEF (Up, Un) Inew is a Cauchy sequence in [0,00) and the limit
lim,, o0 E7 (U, u,) does not depend on a particular choice of an approzimating sequence

{un}n for u.

Proposition A.9. Assume that (€, F) is a reqular symmetric Dirichlet form on L*(X, m)
and let EF € {£,£©@ £0) MY For any u € F N C.(X), there exists a unique positive
Radon measure [y O X such that

1
/ godu?; = &% (u, up) — 55#(152, @) forany p € FNC(X). (A.7)
be
Moreover, for any Borel measurable function ¢: X — [0,00) with |l¢ll,,, < oo, any
u € F. and any approzimating sequence {uy, tneny C F NCe(X) for u, {fX @dutm}neN is

a Cauchy sequence in [0,00), lim, o0 [ gpdutw does not depend on the choice of {uy}n,
and fXgodu?; = lim, 0o fxcpdﬂtn>, where ,u?fw s the positive Radon measure on X
defined by u@(A) = lim,, o0 utn>(A) for A € B(X).

Definition A.10 (Energy measures). Let u € F.. Let j,) denote the measure in the
above proposition in the case £# = £. We call fuy the energy measure of u. For each w €
{c, j, k}, let iy denote the measure in the above proposition in the case £# = £®). For

w0 € F, we also define 4, ) = § (o) = Hfumy)s wheve iy € {pay, iy i g1l )
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The following lemma is a Fatou-type property for energy measures.

Lemma A.11. Let p: X — [0,00) be Borel measurable with |||, < oo and let pﬁf,) €

sup

{u<.>,u?‘>,p{,>,u’<€,>}. If {uptneny € F and u € F,. satisfy lim, oo u, = u m-a.e. and
SUP ey € (Un, uy) < 00, then

/ goduzi) < liminf/ gpdut y- (A.8)
X n— 00 X n

Proof. By extracting a subsequence of {u,}, if necessary, we can assume that the limit
lim, o0 [ gpdutn> exists. By using a version |[CF, Theorem A.4.1-(ii)] of the Banach—
Saks theorem, we can find a subsequence {uy, }ren such that {v;}eny C F defined by v, ==
[t 22:1 Uy, satisfies limya; oo € (v —vy, vy—v;) = 0. Noting that lim;_,, v; = u m-a.e. and
using Proposition A.3, we have lim; ., £(u — v, u — v;) = 0. Hence lim;_,, fX gpd,uil> =

1/2
fX gpd,u?; by Proposition A.9. By the triangle inequality for (fX gpduﬁ) ,

Y 2 1/2
(frrmts) <15 (fomts)

which implies (A.8) by letting [ — oc. [

Now we can show that the integrals with respect to energy measures give 2-energy
forms satisfying (GC)s.

Proposition A.12. Let ¢: X — [0,00) be Borel measurable with ||¢l|,,, < oo and let

,u?ﬂ € {u<.>,u?>,u2_>,u’<€.>}. Then (fXgoduﬁ,fe) is a 2-energy form on (X, m) satisfy-
ing (GC)s.

Proof. Let us fix ny,ne € N, ¢ € (0,2], @2 € [2,00] and T = (T4,...,T,,): R™ — R™
satisfying (2 1) with 2 in place of p. It suffices to prove that for any w = (uy,...,u,,) €

(FNC(X))™ and any ¢ € F N Cu(X),
1/2
#
(o))

172\ "2
#
"( W”m(u») )
=1

Indeed, we can extend (A.9) to any w € F* and any Borel measurable function ¢: X —

e

[0, 0] as follows. Let us start with the case ¢ = 14, where A € B(X). By [Rud, Theorem
2.18|, there exist sequences { K, }nen and {U }nen such that K,, C A C U, K, is compact,
U, is open and lim,, oo Max,c (7 (u )}lu{uk}k (U \ K,,) = 0. By Urysohn’s lemma, we can
pick ¢, € C.(X) so that 0 < ¢, <1, n|Kn =1 and suppy|¢,] C U,. Applying (A.9) for

. # n2 # ni
#n; We obtain H <M<Tl(“)>(Kn)l/2>l:1 a2 = H <M<“k>(U")1/2>k:1
get (A.9) with ¢ = 14, i.e.,
< |t a7

# 1/2\n2
H (Hm(u)) (A) )z:1 k=1

ni

< (A.9)

092 k=1ll¢n1

. By letting n — oo, we

25!

(A.10)

¢a2 a
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By the reverse Minkowski inequality on ¢9/? and the Minkowski inequality on ¢%/2
(see also (2.20)), we can extend (A.10) to (A.9) for any non-negative Borel measur-
able simple function ¢ on X, By the monotone convergence theorem, (A.9) holds
for any Borel measurable function ¢: X — [0,00]. Next we will extend (A.9) to
u = (Uy,...,u,) € F. Since F N C(X) is dense in (F, |||z ,), there exists an
approximating sequence {ug,}tneny € F N Co(X) for uy for each k € {1,...,n1}. Set
Wy, = (Uip,-..,Un,n). Then, for each I € {1,...,n2}, lim, o T}(w,) = T}(u) m-a.e.,
Ti(u,) € F and sup,cy (11 (u,), Ti(u,)) < oo by Proposition A.2. Hence T;(u) € F. by
Proposition A.5, and

1/2\ ™2 Y2\ ™
.. #
|| ( Sod,u (Ty( u)>> ) = <(h££f/); @dﬂ(Tl(un))) )
il 1=11lpa2
1/2\ "2
< lim inf (( / wdﬁ‘ﬁmn))) >
X 1=11lpa2
(A9 # YA
< liminf / 2 dﬂ(uk )
n—00 ' k=11lpga1

172\ ™
((fer)”) ]
k=1
where we used Lemma A.11 in the first inequality and Proposition A.9 in the last equality.

This implies that ([, god/ﬁf.), Fe) is a 2-energy form on (X, m) satisfying (GC)s.

Let us go back to the proof of (A.9) in the case u = (u1,...,u,,) € (FNC:(X))™ and
v € FNC.(X). Fix a metric d on X which is compatible with the given topology of X,
an increasing sequence of relatively open sets {G;};en with (J,cy Gi = X and a sequence
of positive numbers {0, };eny with 6; | 0 as I — oo. Then there exist a sequence of positive
numbers {3, }neny With 5, 1 0o as n — oo, a family of positive Radon measures {04} 40
on X x X and a family of positive Radon measures {mgs}s~o on X with mg < m such
that for any v € F N C.(X),

[ etne =t (5[ 1) —o)P ptoronttn.n + % [ 1o ol mata) )
(A1)

01

and

/ @ duf,y = lim lim @
X

fim tim 22 o) — vly) ¢(a) o, dr dy). (A12)
oo nTeo {(Ivy)eGl XGlld(I7y)<5l}

See [FOT, the equations just before (3.2.13) and (3.2.19)] for details. Note that 7j(u) €
FNC(X) for each I € {1,...,ny} by Proposition A.2 and T;(0) = 0. If ¢» < 0o, then we
have from (A.11) that

ng q2/2
> </ Somez(u»)
X

=1
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i (5T~ T el s, i
q2/2
#5 [ e o) mi))
2.1 q2/2
< him (5 ) ) =l o) oatdndn) + 5 [ o)l ot mi))

[g / jur () = ur(y)[* p(x) o5(der, dy)

2 a

+5 [ @ m5<d:c>] /> .
_ (i (/Xsodmuw)qlm) ‘12/‘“’

k=1

where we used the triangle inequality for a suitable L?%-norm on (X x X)L X. Here LI
denotes the disjoint union. The case g3 = o0 is snnllar SO we obtain the desired estimate
(A.9) for ;ﬁf_> = pu(.y. The other case ;ﬁf SRR RN } can be shown in a similar
way by virtue of the expression in [FOT, (3 2. 23)] O

Next we see that “|Vu|” also satisfies similar contraction properties. To present the
precise definition of the density, we recall the notion of minimal energy dominant measure.

Definition A.13 (Minimal energy dominant measure; [Hinl10, Definition 2.1]). A o-finite
Borel measure p on X is called a minimal energy-dominant measure of (€, F) if and only
if the following two conditions hold.

(i)  For any f € F, we have pp < pu.

(ii) If another o-finite Borel measure p' on X satisfies (i) with p in place of ', then
poL

The existence of minimal energy-dominant measure is proved in [Nak85, Lemma 2.2]
(see also |Hinl0, Lemma 2.3|). For any minimal energy-dominant measure p of (€, F),
the same argument as in [Hml() Proof of Lemma 2.2] implies that u< 5 < p for any

f € F.. In addition, for ,u ) € {1y, 1y, ,ui } we easily see that [L (. < for any
#

f,9 € Fe. We define T'# (u, v) = dué—;*”) and Ff(u) =T (u, u) for u,v € F.

Proposition A.14. Let u be a minimal energy-dominant measure of (€, F) and for each

feFe, let Uy(f) = dpypy/dp and U (f) = dpifyy /dp for each w € {c, j, k}. Let I#(-) e

{Tu(-),06(-),T5(-),Lk(-)}. Then for any ni,ne € N, g € (0,2], g2 € [2,00] and T =

(T, ..., Tn,): R™ — R™ satisfying (2.1) with 2 in place of p and any w = (uq, ..., Uy, ) €
Fo,

H(Ff(Tl(u))( )1/2)7121“%2 < H( (ug) ()2 mle for p-a.e. x € X. (A.13)



130 N. Kajino and R. Shimizu

Moreover, for any p € [q1,g2] N (0, 00),

H( F#Tl ))Zduy/p) ((/Xrﬁ(uk)ﬁduy/p)

Proof. We first establish a good p-version of I'#(v) for each v € F.. Fix {X; }nen € B(X)
such that X,, € X,11, X = U,,eny X» and u(X,,) € (0,00) for each n € N. Let {Ay}ren
be a countable open base for the topology of X. Set AY := X \ A; and Aj = A, for each

k € N, and define
Ay = {U AL

a€cl

no ni

< (A.14)

I=11l¢a2 k=11l¢a1

IC {0,1}’“}, k €N,

where Ay = N5, A% for a = (a;)E, € {0,1}*. Note that Usez Az = 0 if T = (. Then
{Aj}ren is a non-decreasing sequence of o-algebras on X with (J, . Ax generating B(X).
Note that Uae{o,l}k A% = X and that A¢ N A’,f = for o, 8 € {0,1}* with a # 3. For
veF,nkeN, ae{0,1}*, define I'#(v),,: X — [0,00) by, for z € A,

p(AF N X)) Tl (AR N X)) i p(Ag 0 X,) >0,

. (A.15)
0 if u(AYNX,) =

Ff(v)n,k(az) = {

d XTL
We also set p, == pu(X,) " p((-) N X,) and v¥ Ez()(m);n) :

E,, [0 | Ax] = T#(0)n i p-ae. on X, and hence hmk_>c>o T#(0)np = v p-ae. on X, by
the martingale convergence theorem (see, e.g., |[Dud, Theorem 10.5.1]) and the fact that
Uken Ar generates B(X). Now we define ff(v) X — [0,00) by fﬁ(v)(x) = v (x) for
n € Nand z € X, \ X,,_1, where Xy := (). Then ff(v) =T'#(v) p-a.e. on X.

Next we show (A.13). Let ny,ns € N, ¢1 € (0,2], g2 € [2,00], w = (u1,...,u,,) € FM
and let T' = (11,...,T,,): R™ — R™ satisfy (2.1) with 2 in place of p. By Proposition
A.12 and (A.15), for any n,m € N and any = € X,

H7 (T @) (2)7) 2 e < 8 (@) 2)32

By letting m — 0o, we obtain
ni

| (Er ) ], < |(Fee™),

whence (A.13) holds. If p € [¢1,¢2] N (0,00) and ¢» < 00, then we see that

([, rem >2dﬂ)w < ([ gt ), o d@)””
([N, )™

. Then we easily see that

n2

for p-a.e. z € X,

=1 091

=1
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e/q

< (Z (f Ffwk)’z’du)ql/p) , (A16)

k=1

where we used the triangle inequality for the norm of éﬁ/lql. The case go = 0o is similar,

so we obtain (A.14). O

If (€, F) is strongly local, then we can show (GC),, for (T',(-)?/?, F.). To prove it, we
need some preparations. The following proposition is the standard Minkowski integral
inequality (see, e.g., [DF, Appendix B5]).

Proposition A.15. Let (X;, B;,m;) be a o-finite measure space for each i € {1,2}. Let
q € (1,00) and f: X; x X9 — R be measurable. Then

(/Xl ( “ f(xl’@)m?(di”?))q ml(dl'l)); < /X2 (/Xl | f(zy, 22)] m1(dx1)) ; ma(ds).

(A.17)

Next we show a tensor-type inequality for a bilinear form.

Proposition A.16. Let V' be a finite-dimensional vector space over R, E: V xV — R
a non-negative definite symmetric bilinear form, ny,ne € N and A = (Ak)1<i<ns,1<k<n
a real matriz. Then for any (ui,...,u,,) € V™ and any ¢1 € (0,00), q2 € (0, 00] with
q1 S q2,

n2

n 1/2
E <Z Alkuk) < HA”e%ll—w??Q H(E<Uk)1/2>21:1H4q1 ) (A.18)
k=1

I=11l¢22

where we set E(u) = E(u,u) foru e V.

Proof. The desired inequality follows from a Beckner-like result in [DF, 7.9.] (see also
[Bec75, Lemma 2|). We present a complete proof for convenience. Let 7, be the Gaussian
measure on R", ie., v,(dz) = (2m) "% exp (— | z||” /2) dz, for each n € N and set n =
dim(V/E~1(0)) e NU{0}. If n =0, i.e., E(u) = 0 for any u € V, then (A.18) is clear.
Hence we assume that n > 1 in the rest of the proof. Let m;: R" — R be the projection
map to the j-th coordinate for each j € {1,...,n}. Then we have from [DF, Proposition
in 8.7.] that for any (ay)7_, € R,

-1
HﬂlHLm(Rm) (/ Z@jﬂj(x)
R |50

Indeed, (A.19) is obviously true in the case («;); = (01;); and this together with the
invariance of 7, under ¢2-isometries implies the desired equality (A.19).

q /¢
d’Yn(dx)) = H(aj>?:l||Z2 . (A.19)
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Let us fix a basis {e;}7_; C V of V satisfying E(e;, e;1) = d;; for each j, j' € {1,...,n},
which exists by the Gram Schmldt orthonormalization. Now we define .: V' — L9 (R", v,,)
by

t(u) = H7r1|];qll(Rm) ZE(U, e))?rj, uweV. (A.20)

j=1

Then [[e(uw)| o g,y = (Z;.Lzl E(u,ej))1/2 = E(u,u)'? by (A.19). If ¢ < oo, then we
see that

no a1, 1

na 1 qQ @2/a1\ a2 a
(1] )
=1 \YR" k=1

a1/qo /¢
/ (Z ) dn

=1
ni 1/QI
<Al ([ D btu™ do,
R™ k=1
ni 1/‘11
= [[Allg ez (Z E(“k)‘“”) :
k=1

where we used (A.17) with ¢ = ¢1/¢2 in (*). Since the case ¢o = oo is similar, so we obtain
(A.18). O

=
VoY
| ME

=

Eal

e

x>
N———
=
(&)

I

I=111¢a2

INE

Z Alkb Uk

k=1

Let us recall the definition of p-energy forms introduced by Kuwae in [Kuw?24]

Definition A.17 ([[K{uw24, Definition 1.4]). Let ¢ be a minimal energy-dominant measure
of (§,F),p€ (l,00)and Z C {u € LP(X,m)NF | Fu(u)% € LP(X, )} a linear subspace.
Assume that (€, F) is strongly local and that

limy, oo [ Ty )E dp = 0 for any {u,tnen € 2 with
P . (A.21)
1im,, A —soo fX (Up, —Up,) 2 dpp = 0 and lim,, o ||un||L,,(X7m) =0.
We define the norm |- || 1, on 2 by [[ull . = (1l + [ Tulw)® dpt)"” for u e 2

and H"(X) = A Then, for v € H"(X), we can unlquely extend I'), to u
with ', (u )z € Lp(X p) as the LP(X, p)-limit of T (un)%, where {u,}tnen C Z satisfies
iy a0 [y Tpu(tn — U )% dpe = 0 and lim,, o ||u — unHLp (xm) = 0-

Remark A.18. The condition (A.21) is verified in the case p > 2 in [Kuw24, Proposition
1.1).

Now we can show the main result in this subsection.
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Theorem A.19. Let p be a minimal energy-dominant measure of (€,F), p € (1,00) and
2 C{ue LP(X,m)NF | F#(u)% € LP(X, )} a linear subspace. Assume that (€, F) is
strongly local and that (A.21) holds. In addition, we assume that

f(u) €9 foranyu € 9" and any T € C>*(R™) satisfying
|T(@)-T(y)] ~ (A.22)
SUPy yeRn:z£y Te=l < 0o and T(O) =0.
Then for any ni,ny € N, ¢ € (0,p], 2 € [p,o0] and T = (T4,...,T,,): R™ — R™
satisfying (2.1) and any w = (uy, ..., u,,) € H"P(X)™, we have T(u) € H"P(X)™ and

[(Cu(Ti ) (@)) 2 e < [ (Culun) (@) 2) e ||, for prace. ze X (A23)
In particular, ([ Tyu(- )2 dp, H'P(X)) satisfies (GC),.

Proof. Let us consider the same mollifiers as in [Kuw24, The last paragraph in p. 10], i.e.,
define j: R™ — R by j(z) = exp (—m) for ||z|| < 1 and j(z) := 0 for ||z| > 1, set
Jm(x) = m™ j(mz) for each m € N. We define T} ,(z) = [pu, (Jn(z =) —ju(¥)T1(y) dy =
Sz 3 @) (T (@=y)=Tin(y)) dy so that T, € C(R™), T1,(0) = 0 and lim, 00 Tin(7) =
Ti(x) for any x € R™. Then (2.1) with T™ = (Ty,,, ..., Tp,.) in place of T holds; indeed,
for any x,y € R™,

n2

7)== | ([ 0Tt = 2) - Tty = 2 )

I=111¢92

—

L @I =) = T = D ds

(2.1) '
< e = il / ju(2)dz = 17—yl (A24)
R™1

where we used (A.17) with ¢ = ¢ in (%). Moreover,

k=1 =1

whence H(@kﬂm(x))]u%_%% <1 for any x € R™.

(A.24)
=lime™! [T (@) =T (@ + ey, < llen s (A25)

a2

We first prove (A.23) with T in place of 7" under the assumption that u =
(Ury ... Up,) € ™. Set u = (uy,...,u,,) where 4y is a E-quasicontinuous m-version
of uy (see [FOT, p. 69 and Theorem 2.1.3]). We have T} ,,(u) € Z by (A.22) and

LT (u Z 011 n(u(2))0; T n(w(z))l(us, uj)(z) for prae. z€ X (A.26)

3,0=1

by the chain rule in [Kuw24, (7) in p. 2]. Let {fi}rea € F be an algebraic basis of F over
R. Then there exist n € N, {ax;}7_; C R, k € {1,...,m}, and {g;}7-; € {fa}rea such
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that u, = >0 | oy ;g; for each k € {1,...,m}. Let R be the ﬁnitely generated algebra

=J Mt x>

. {zg

J=1

ajeRforeachje{l,...,n}}

so that {uy};L, C U and U is countable. Since R is dense in R, forany x € X, N e N, k €
{1,...,m}and I € {1,...,ns}, there exists Afk’fx € R such that ‘8len(ﬁ(q;)) - Af,;ﬁ <

N~ Note that T',(-, -)(z): U x U — R is a non-negative definite symmetric bilinear
form for p-a.e. x € X since U is countable. By Proposition A.16, for p-a.e. z € X,

n2

1/2
(zAzzf:Az;f:r uz,uj><x>)

4,7=1

[=111¢a2
ni n2
(o (B ) )
k=1 1=11gaz
< (1 + H(@len(ﬂ(m)))zk (Alkn o HzqQ) ” 1/2 - ngl :

Letting N — oo in the estimate above and recalling (A.26), we obtain
T (Ton(w)) (@)2)2 Ly < [ (Culur) @) 2) L[|,y for prae. z€ X, (A27)

under the assumption that w € ™.

Next let w = (ug, ..., Uy, ) € H*P(X)™ and fix {u™ = (U1, ..., Un,n) tneny C D™ s0
that lim,, oo MAXKE(1, 1} |lue — k|1, = 0. Then (A.27) together with the same same

((/X T, (ugn)? du) 1/p>

argument as in (A.16) implies that
, 1/p\ "2
H( L Tinu™) ) )

=1
In particular, {7}, (u(™)},cn is bounded in H'?(X). Noting that H*?(X) is reflexive (see
[Kuw24, Theorem 1.7]) and that lim, o0 [y Dp(ur — upn)? du = 0, we find {n;}jen C N
with infjen(n;51—n;) > 1 such that T() (u(™)) converges weakly in H'?(X)®"213 to some
v = (V1,...,Up,) € H"(X)®" and maxyeqr,.. i} Lp(ur — g, )(x) = 0 for p-ae. z € X
HLP = 0 by (A.24) and the dominated
convergence theorem, we have v; = Tj(u). By Mazur s lemma (Lemma 3.13), there exist
{N(i)}ien € N and {a;} C [0, 1] with inf;en(N (i) — i) > 1 and Z % a; j = 1 such that

= Zjvz(z) @i T, (u u(™)) converges strongly in H'?(X) to Tj(u) for any [ € {1,...,ny}

ni

<

92 k=1ll¢n

as j — oo. Since lim,,_, HTln ™) — Ti(u

13The direct sum HP(X)®"2 is equipped with the norm 1l griw(xyone = > I1fill g1 5y for amy
=, s fn,) € HVP(X)ON2,
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as ¢ — 0o. Then we easily see that for py-a.e. x € X and any ¢ € N,

n2

| (@)@ )2 e, < Za” (Th, (™)) ()2

I=11l¢a2
<Zau (0 (T, (™)) () 72)2 o
(A.27) N(Z §
< ZauH w (W ) (@) L (A.28)

where we used the triangle inequality for the norm of /% in the second inequality. Note
that for p-a.e. x € X,

1212320(” H uk”] 1/2>n1 Heth - H(FN(uk)<x>1/2)nl HE‘H ’

Since lim;_, fX INOTES Tl(u))g dp = 0, there exists {m;}ien € N with inf;en(m; —
m;) > 1 such that lim; o I, (0, —T1(w))(z) = 0 for pra.e. x € X andany ! € {1,...,no}.
In view of the triangle inequality for FN(-)% (see [Kuw24, (3) in p. 2|), we have
im; o maxeqr,. ot |Tu(Oim, ) (@) = Tu(Ti(w))(x)] = 0 for p-ae. x € X Hence we ob-

.....

tain (A.23) by (A.28). Once we get (A.23), we easily see that ([, I'u(+)% du, H2(X))
satisfies (GC), by the same argument as in (A.16). O

B Some results for p-resistance forms on p.-c.f. self-
similar structures

B.1 Existence of p-resistance forms with non-arithmetic weights

In this subsection, we discuss a gap between the frameworks in Subsection 8.2 and in
Subsection 8.3 for p.-c.f. self-similar structures. As in Subsection 8.3, we fix p € (1,00)
and a p.-c.f. self-similar structure £ = (K, S, {F}}ics) with #S > 2 and K connected.

The following proposition about the “eigenvalue” A(p,) in Theorem 8.37 is a key result.

Proposition B.1. Let p, = (ppi)ics € (0,00)°. Assume that p, satisfies (A) (recall
Remark 8.38).

(a) For any a € (0,00), ap, = (appi)ics satisfies (A) and N ap,) = aX(py).
(b) Let p, = (ppi)ies € (0,00)°. If p, satisfies (A) and p,; < ppi for any i € S, then
App) < A(pp).

Proof. Throughout this proof, we fix a p-resistance form Ej on Vj.
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(a): Since Ry, (Eo) = aR}, (Eo) for any n € NU {0}, we easily see that ap, satisfies
(A). Recall from Theorem 8.37-(a) that A(ap,) € (0,00) is the unique number satisfying
the following: there exists C' € [1, 00) such that

C~'Nap,)"Eo(u) < Rap, (Eo)(u) < CAapp)" Eo(u) for any n € NU{0}, u € RY.
(B.1)
Therefore, A(ap,) = aX(p,).
(b): Since Ry (Eo)(u) < Ry (Eo)(u) for any u € R by (B.1), there exists C' € [1, c0)
such that for any n € NU {0} and any u € R",

CIA(py)" Eo(u) < Ry (Eo)(u) < Ry (Eo)(u) < CNpp)" Eo(u).

Since n € N U {0} is arbitrary and Ey(u) > 0 for u € R" \ Rly,, we conclude that
App) < A(py)- 0

Now we can show the existence of p-resistance forms with non-arithmetic weights on
some affine nested fractals as follows.

Proposition B.2. Let L be an affine nested fractal. Assume that there exists 1 € S such

that
g™ 6) # s (B.2)

geg

Then there exists p, = (ppi)ies € (0,00)° such that X(p,) =1, pp; > 1 for anyi € S, p,
satisfies (8.65) and

1 A
08 Ppi ZQ for somei,j€S. (B.3)
log pp.;

In particular, there exists a self-similar p-resistance form (&,, F,) on L with weight p,,.

Remark B.3. (1) Any weight p, = (pp.i)ics of a p-energy form constructed in Theorem
8.29 must satisfy p,; = o0, for some n; € N, where 7, € (0, 00) is the p-scaling factor.
Hence constructions of self-similar p-energy forms with weight p, which satisfies (B.3)
are not covered by Theorem 8.29 (and by [Kig23, Theorem 4.6|).

(2) The condition (B.2) is not so restrictive. See Figure B.2 for self-similar sets satisfying
this condition. In Figure B.1, we present examples of self-similar sets that do not
satisfy (B.2).

Proof. Fixi € S and set 51 == J,4 gM (i) and S, := S\ Sy, which is non-empty by (B.2).
For t € R, we define p,(t) == (pp,s(t))ses by

pps(t) =14+tlg,(s) forsesS.

It is easy to see that p,(t) satisfies (8.65). Set A,(t) :

= A(pp(t)) for simplicity. By
Proposition B.1, for any t € R, any § € (0,00) and any s € .5,

(1=t — ON(0) < \(t — 8) < Ay() < At +8) < (1+t+ 8N 0),
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Figure B.1: Examples of affine nested fractals that do NOT satisfy (B.2). From the left,
D-dimensional level-2 Sierpiriski gasket (D = 2, 3), pentakun and hexagasket.

4%
W W

Figure B.2: Examples of affine nested fractals that satisfy (B.2). From the left, 2-
dimensional level-l Sierpinski gasket (I = 3,4), snowflake and a Sierpiniski gasket-type
fractal.

whence \,(t) is continuous in ¢.
Fix 7 € S5 and define

_ log (ppi(t)/A(t)) —log (A (1))
- log (pp(1)/Ap(t))  log (1 +1¢) —log (Ap(t))’

Since 1 ;(0) = 1 and 7; j(t) is continuous in ¢, there exists t, € R\{0} such that r; ;(¢.) &€ Q.
The existence of a self-similar p-resistance form on £ with weight p,, follows from Theorems
8.51 and 8.52, so we complete the proof. O

teR.

rij(t)

B.2 Ahlfors regular conformal dimension of affine nested fractals

In this subsection, we prove that the Ahlfors regular conformal dimension of any affine
nested fractal equipped with the p-resistance metric for any p € (1,00) is 1. We also show
that the Ahlfors regular conformal dimension with respect to the Euclidean metric is also
1 under some geometric condition,

Throughout this section, we assume that £ = (K, S, {F; }ics) is an affine nested fractal
(see Framework 8.47 and Definition 8.48). Let ¢; € (0,1) be the contraction ratio of F;
for each i € S. Note that (¢;)ics € (0,1)% must satisfy

Ci = cyuy(;y forany i € S and any g € G, (B.4)
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because of the symmetry of £. For each p € (1,00), we also fix a self-similar p-resistance
form (£, F#) on L with equal weight (p4,)ies € (1,00)° for some py, € (1,00), ie.,
.7:# C C(K) and

# _ # ;
Fir={ueC(K) |uo F; € FJ for any i € S},
EF(u) = p#ngf(u o F;) for any u € F.
i€S
By Theorem 8.51, such a self-similar p-resistance form on £ exists and the number py
is uniquely determined. Let R¥ denote the p-resistance metric associated with (£, F7).

The following lemma describes good geometric properties of metric balls with respect
to the p-resistance metrics. (The lemma below is true for p.-c.f. self-similar structures as

well. See [KS.a, Section 6] for details.) Recall the definition of Uﬁp’g"(x, s) in Definition
7.10.

Lemma B.4. Let p € (1,00) and let (£,,F,) be a self-similar p-resistance form on L
with weight p, = (pp.i)ies € (1,00)7.

(a) There exist ai, s € (0,00) such that for any (s,z) € (0,1] x K,

Bs  (z,018) C UIRP’SP (x,s) C By , (x,ass). (B.5)

qugp
FEquivalently, R e, 1s 1-adapted to the weight function g(w) = pfi,/(pfl); see [Kig20),
PCp D,
Definition 2.4.1].)
b) Let di(p,) € (0,00) be such that ) . p_c-lf(p")/(p_l) =1, and let m be the self-similar
p i€S Fp,i
measure on L with weight (p;jf(pp)/(p*l))ieg. Then there exist ¢1,cy € (0,00) such
that for any (x,s) € K x (0, diam(K, fzp,gp)],
c18%Pr) < m(Bj . (7,5)) < cpsiPr) (B.6)
p,€p

~

In particular, Ry, is metric doubling.
(c) There exists C' € (0,00) such that for any (x,s) € K x (0, diam(K, §p7gp)],

inf{&,(u) | u e ‘Fp’u|B§p,£p(%°‘15) = 1, supp[u] C Bﬁp,gp (7,2008)} < Cs™ @7V,
(B.7)
where aq, ag are the constants in (B.5).
Proof. In this proof, we set fip = Ep’gp and A, = A for simplicity.

(a): By (7.1), we have diam(K,, R,) < ppal ®" diam(K, R,) for any w € W,, which
implies the latter inclusion in (B.5) with ay € (2diam(K, R,), co) arbitrary. (In particular,
diam(K,, R,) < ags for any w € A;.) We will show the former inclusion in (B.5). It
suffices to prove that there exists oy € (0, 00) such that R,(z,y) > ays for any s € (0, 1],
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any w,v € Ay with K, N K, = () and any (z,y) € K,, x K,. Let ¢, = hf}g []l}ﬂ for any
q € Vp. Fix w € A; and let u,, € C(K) be such that, for 7 € Aj,

1 if 7 =w,
U © Fr = 43 v @reru vy Ya if 7#wand K, N K, # 0, (B.8)
0 if K, NK, =10.

By the self-similarity for (€,, F,), we have u,, € F, and

Epltw) = Z PprEp(t 0 Fr) = Z Pp.rEp Z Ue |- (B.9)

TEAS TeEAN\{w}; K- NKWw#0D q€Vo;Fr(q)€Fw (V)

(Note that Ay is apartltlon of ¥.) Set p, = maxies pp; € (1,00) and ¢; = max,ey, &,(1y) €
(0,00). Then p, > > (p,)"'s"~" for any 7 € A,. Since #{1 € A, | K, N K, # 0} <
(#CL)(#%) by [K1 ¢01, Lemma 4.2.3], (B.9) together with Hélder’s inequality implies
that

Ep(uw) < (F#Co)#Vo)p,s P (# Vo) er = (ans) P70, (B.10)

For any v € A, with K, N K, = ) and any (z,y) € K,, x K, we clearly have u,(z) =1
and wu,(y) = 0. Hence

~

Ry(,y) > E(u) V0D > ays,

which proves the desired result.

(b): This is immediate from (B.5), #{r € A, | K, N K,, # 0} < (#C)(#Vo) (see
[Kig01, Lemma 4.2.3]) and m(K,) = ppal P~ (see [Kig01, Corollary 1.4.8]).

(c): Let u, € F, be the same function as in the proof of (a) for each w € A;. Then
@ = MaXye), , (z) Uw Satisfies Y|y, 25 = 1. Since diam (K, ﬁp) < (s, we see from (B.5)
that suppy] C Bp (z,2azs). By (2.5) for (&, F,), (B.10) and [Kig01, Lemma 4.2.3], we
have ¢ € F, and

D Epluw) < (ars) PV (HCL)(H# Vo) = Cs™ 7. O

The next proposition ensures that E# is quasisymmetric to the g¢-resistance metric
with respect to any self-similar g-resistance form arising from Theorem 8.51. (Recall
Definition 8.5-(3).)

Proposition B.5. Let p,q € (1,00) and assume that p; = (pgi)ics € (0,00)° satisfies
(8.65), pgi > 1 for any i € S and N(p,) = 1, where X(p,) € (0,00) is the unique number
giwen in Theorem 8.51. Let (&,, F,) be a self-similar q-resistance form on L with weight
Pq, which exists by Theorems 8.51, and let ]/%q be the q-resistance metric associated with
(&g Fq)- Then Eq’gq is quasisymmetric to ﬁf



140 N. Kajino and R. Shimizu

Proof. We will use |Kig20, Corollary 3.6.7| to show the desired statement. We first show
that there exist oy, as € (0, 00) such that

alp;llu/(p_l) < diam(K,,, ﬁq) < 042,0;111}/(”_1) for any w € W,. (B.11)

The upper estimate in (B.11) is immediate from (7.1). To prove the lower estimate in
(B.11), note that we can easily find my € N such that for any w € W, there exist
v, 02 € Wigjgm, with v < w, i = 1,2, and K,» N K,2 = 0. (It is enough to choose
my satisfying 2(max;es ¢;)™ < 1.) Then, by combining the proof of Lemma B.4-(a) and
Ppwi < Pgw(MaXies pgi)™°, there exists oy € (0,00) that is independent of w € W, such
that R

(z,y)egiflxKvg Ry(w,y) 2 Oélpqiv/(p Y,

which implies the desired lower estimate in (B.11).

Next we note that £ is a rationally ramified self-similar structure by [Kig09, Propo-
sition 1.6.12]; moreover, by combining [Kig09, Proposition 1.6.12], K, N K,, = F,(V,) N
F,(Vp) for any v,w € W, with ¥, N ¥, = 0 (see [Kig01, Proposition 1.3.5-(2)]) and the
fact that each element of V; is a fixed point of F} for some i € Sg, .= {i € S | K;NV, # 0},
L is rationally ramified with a relation set

R = {({w()}. {00} 05 2(). 9()) | w(i).v(3), 2(7).w(G) € W\ {01}, (B.12)

satisfying w(j),v(j) € Sux. (See |Kig09, Sections 1.5 and 1.6 and Chapter 8] for details
about rationally ramified self-similar structures.)

With these preparations, we will apply [Kig20, Corollary 3.6.7] for R]’gq and ﬁf By

~

Lemma B.4-(a) and (B.11), Ry, is 1-adapted and exponential (see [Kig20, Definition
2.4.7 and 3.1.15-(2)| for these definitions; see also Remark in [Kig20, p. 108]). Similarly,
ij is also l—adzipted and exponejltial. Hence, by [Kig20, Corcillary 3.6.7], R,e, is qua-
sisymmetric to R¥ if and only if Ry, is gentle with respect to R (see [[Kig20, Definition
3.3.1| for the definition of the gentleness). Define g,(w) = p;},]/(q_l) and gx ,(w) = p;;'
for w € W,. Since g, and g4, satisfy the condition (R1) in [Kig09, Theorem 1.6.6] by
(8.65) and (B.12), we obtain the desired gentleness by [Kig09, Theorem 1.6.6] and (B.11).
This completes the proof. n

Now we can determine the Ahlfors regular conformal dimension of (K, ﬁf ).
Theorem B.6. dimagc(K, ﬁf) =1.

Proof. We will use the characterization of the Ahlfors regular conformal dimension in
[Kig20, Theorem 4.6.9]. Note that (K, R¥) satisfies (BF1) and (BF2) in [Kig20, Section
4.3] by Lemma B.4-(a), (B.11), [Kig09, Proposition 1.6.12, Lemmas 1.3.6 and 1.3.12]. We
define a graph G,, = (V,,, E,,) and g-energy EE", q € (1,00), on G, by

E, ={(z,y) | z,y € F,(Vp) for some w € W,},
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and
1

&) =5 D If@-fWl", feRr™

(LE,y)EEn

Note that {G,},>0 is a proper system of horizontal networks with indices (1,2(#Vy —
D)#Vo, 1, 1) (see |[Kig20, Definition 4.6.5]). Hence, by [Kig20, Theorem 4.6.9], dimagrc (K, R#)
1 if and only if the following holds: for any ¢ € (1 00),

lim inf sup 1nf{5 IR (F) ‘ feRekt flo vy =1 flz,, = 0} =0, (B.13)

k—oo wew,

where Z,, , = {2 € Viy|4n | © € F,(V}) for some v € W, with K, N K,, = 0}. Since both
5#|V 1/ 7 and £70(-)!4 are norms on the finite-dimensional vector space R /Ry,

there ex1sts C > 1 such that C”lgf‘vo (u) < EFo(u) < CE#‘V ) for any u € R". Hence,
by Propositions 7.2-(3) and 7.4, we obtain C_15#|Vn ) < P LS (u) < C’S#‘V ) for
any n € NU {0} and any u € R". Recall that I'j(w) = {v € W}, | K, N K, # @} for
w € W, (see Definition 8.3). Let kg, € F} be the unique function satisfying .|k, = 1,
hgwlx, = 0 for any v € W, \ I'1(w) and

q

EF (hyw) = mf{gj‘(u) ] uli, = 1,ulx, =0 for any v € Wiy \Fl(w)}.
Then we see from (B.7), (B.5) and (B.11) that

. Glw
sup inf{ £ () | £ € R flr g = 1. flz, = 0}

’U)GW*
(|lw|+k ~(jwl+k y
< Cp#l [+k) SU_p g#l q,w|V|w|+k) < C'O#ff‘l +k) Seul/llj; g#(hqw> S Pttg

Viwl+k
Since py 4 € (1,00) for any ¢ € (0,1), we obtain (B.13). The proof is completed. O

To discuss the Ahlfors regular conformal dimension of K with respect to the Euclidean
metric, we need the following assumption.

Assumption B.7. We define A¢ := {0},
A ={w|w=mw ... w, € W,\ {0}, diam(K, ., ,,d) > s> diam(K,,d)}
for each s € (0,1). For s € (0,1, M € NU{0} and z € K, define

A?}M(x) = {v

and U¢,(z, s) = UweAg{M(x) K. Then there exist M, € N, ag, a1 € (0,00) such that

{z()}Yio, C A with B < M 41, 2(1) = w, Z(k):v

v € Ag?, there exists w € A? with 2 € K, and}
such that K.jyNK.(j41) # 0 for any j € {1,. -1}

Uy (2, a08) C By(z,s) C U (z,018) for any (z,s) € K x (0,1].

(Equivalently, d is M,-adapted; see [Kig20, Definition 2.4.1].)
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Remark B.8. We do not know whether Assumption B.7 is true for any affine nested
fractal. Even for a nested fractal, being 1-adapted with respect to the Euclidean metric
is assumed in [Kig23, Assumption 4.41].

Now we can show the main result in this section under Assumption B.7.

Theorem B.9. Assume that Assumption B.7 holds. Then dimagrc(K,d) = 1.

Proof. Thanks to Theorem B.6, it suffices to prove that Eﬁ is quasisymmetric to d. Obvi-
ously, d is exponential since diam(K,,d) = ¢, diam(K,d). By (B.4), a similar argument
as in the proof of Proposition B.5 implies that R;’f is gentle with respect to d. Hence

[Kig20, Corollary 3.6.7] together with Assumption B.7 implies that ﬁ# is quasisymmetric
to d. O

B.3 An estimate on self-similar regular p-resistance forms on p.-
c.f. self-similar structures

This subsection aims to prove the following result, which is a generalization of [Kig03,
Theorem A.1].

Theorem B.10. Let p € (1,00) and let L = (K, S,{F;}ics) be a p.-c.f. self-similar
structure with #S > 2. Assume that there exists a self-similar p-resistance form (€, F)
on L with weight p = (p;)ics and that min;es p; > 1. Then there ezists ¢ € (0,1) such
that for any z,y € K and any w € W,

Cp;le(I, y) < Re(Fu(x), Fu(y)) < p;le(:E, y). (B.14)

Since the upper estimate in (B.14) is obtained in (7.1), what matters is the lower
estimate in (B.14). To prove it, we need the following lemma.

Lemma B.11. Assume the same conditions as in Theorem B.10. Let x,y € K and
weW,. St AN={r=m...7€Wil| (Pryry )" > pw > p;'}, U= VoU{z,y},
Vi = Upen Fo(Vo) and V :=Vy U{F,(z), Fy(y)}. Then A is a partition of ¥ and

Elv(u) = pu€lv(uo Fy) + Z p-E|lvy(uo Fr)  for any u € Fly. (B.15)
TeA\{w}

Proof. The proof is very similar to Proposition 7.4. It is clear that A is a partition of 3.
Note that C(K) = C(K, Ré/p) and (K, Ré/p) is bounded by Proposition 7.2-(3). For any
u e f|v,

Elv(u)
=min{&(v) | v € F,v|y =u}
(5.7)

= min{pwg(von)—i— Z p-E(vo F;)

TeA\{w}

ve}",v\vzu}
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> min{pwé'(vo Fy)|veF vy = u} +min{ Z prEWo F) |veFuly= u}
TeA\{w}
> ppymin{E(v) |v € F,v|y =uo F,} + Z prmin{&E(v) | v € F,v|y, =uo F,}
reA\{w}
= pullo(uo Fu)+ Y pr€ly(uocFy).

TeA\{w}

To prove the converse, let v € C(K) satisfy v o F,, = h§[uo F,] and, for 7 € A\ {w},
vo F, = hi [uo F;]. Such v is well-defined since K, N K, = F,(V) N F-(Vp). Also, we
have v|y = v and v € F by (5.5). Moreover,

Elv(u) < E&(v) &0 ZpTé’(v oF.)=pu€lu(uoF,)+ Z prElvy (uo Fy).
TeA reA\{w}

This completes the proof. O

Proof of Theorem B.10. Let A,U, V),V be the same as in Lemma B.11. Set I'y(w; A) :=
{reN|w+#71,K,NK, # (0} for simplicity. Then #I';(w; A) < #(C)# (Vo) by [Kig01,
Lemma 4.2.3]. Let 1, € F satisfy ¢y, (2) = 1, ¥y (y) = 0 and E(¢sy) = Re(z,y)~ ' Let
u, € F satisfy u. () = 1, us(y) = 0, uly\p, ) € Rly\p, @) and

E(uy) =inf{E(v) |v e F,(vo Fy)lu = ey, v|n\r,w) € RIyp,@)}-

Such wu, is uniquely exists by a standard argument in the variational analysis. Also, by
Proposition 2.2-(b), we easily see that 0 < u, < 1. Since R /R1y; is a finite dimensional
vector space, there exists a constant C' € (0, 00) such that

Elve(w)? < C max |u(z) —u(2')| for any u € R". (B.16)

z,2'€Vpy

Then, by using Lemma B.11, we see that
Re(Fu(w), Fu(y)) ™ < E(w) = Elv ()
= puElu(uo Fu)+ 3 prEly(uo F)

TeA\{w}
= pullo(w. o Fu)+ > prlyy(uso Fy)
7€l (w;A)
(B.16)
< Rp—w—l—cp Z Pr
g(LU, y) 7€l (w;A)
1
< o (b O () (T s A
<p (Rg(x’y)+0 max p; ) (#1I' (w )))

(1 Bery)
P (Rg@:,y) e Rgmy))

z,z' €K

which shows the desired lower estimate in (B.14). O
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